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Abstract: This paper presents the integration of an UAV for the autonomous monitoring of rice crops. The system
integrates image processing and machine learning algorithms to analyze multispectral aerial imagery. Our
approach calculates 8 vegetation indices from the images at each stage of rice growth: vegetative, reproductive
and ripening. Multivariable regressions and artificial neural networks have been implemented to model the
relationship of these vegetation indices against two crop variables: biomass accumulation and leaf nitrogen
concentration. Comprehensive experimental tests have been conducted to validate the setup. The results
indicate that our system is capable of estimating biomass and nitrogen with an average correlation of 80% and
78% respectively.

1 INTRODUCTION

The use of Unmanned Aerial Vehicles (UAV) in the
solution of agriculture-related problems spans a wide
range of operations such as crop variable measure-
ment (Gevaert et al., 2015),(Gago et al., 2015) fruit
detection (Carrijo et al., 2017), crop plot detection
(Hongli et al., 2017), crop yield improvement (Arroyo
et al., 2017) and crop mapping (Guo et al., 2012),
(Khanna et al., 2015). In (Dongyan Zhang, Xin-
gen Zhou, Jian Zhang, Linsheng Huang and Zhao,
2017) the sheath blight fungus disease of rice was de-
tected using a Phantom 2 UAV coupled with a high-
resolution RGB multispectral camera (Micasense).
Pix4D software was used to generate 2D and 3D geo-
referenced maps and to compute different vegetation
indices. In (Yong et al., 2016), (Lu et al., 2015),
UAVs were used for nitrogen estimation and chloro-
phyll quantification (Uto et al., 2013) using hyper-
spectral sensors.

Multispectral images have been used in plant anal-
ysis for some time now (Naito et al., 2017). Initially,
few vegetation indices were commonly used, mainly
the Normalized Difference Vegetation Index (NDVI)
for estimating above ground biomass. However, due
to the presence of external factors such as water, soil
backgrounds and the difference of the crop at each
stage of growth, different vegetative indices were in-

troduced, such as the Soil-Adjusted Vegetation Index
(SAVI), the Modified SAVI (MSAVI), the Modified
Chlorophyll Absorption Ratio Index (MCARI) and
the Modified Triangular Vegetation Index (MTVI),
among others (Gnyp et al., 2014).

The development of an UAV-based crop monitor-
ing system involves multiple challenges. In hardware
terms the UAV requires sufficient autonomy to cover
the crop area, also adequate on-board store capac-
ity for high-resolution data, as well as low-weight
sensors. The integration of the native UAV hard-
ware with external sensors requires a significant in-
terplay between hardware and software in order to
guarantee data reliability, online processing and sim-
ple end-used experience. In previous work (Devia
et al., 2019), we tackled these challenges by devel-
oping an autonomous UAV robotic system to monitor
biomass dynamics based on NIR information. In this
paper, we present a preliminary approach to also mon-
itor leaf nitrogen concentration during the three main
stages of plant growth: vegetative, reproductive and
ripening. Our goal is to estimate biomass dynamics
and nitrogen variations by calculating several vegeta-
tion indices from multispectral data. To this purpose,
we present the robotic system architecture detailed in
Figure 1. Two UAVs have been setup with both NIR
and thermal cameras (upcoming work is oriented to-
wards cooperative-UAV monitoring). For instance,
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each robot captures a dataset of images independently
and the processing is done in a PC base-station.

2 METHODS

2.1 UAV Robotic System

As mentioned, two UAVs were integrated: The AS-
CTEC Pelican1 and the DJI Phantom2. Also, the fol-
lowing equipment was used:

• ASCTEC Pelican:

– ASCTEC autopilot.
– Mastermind board for image processing and

data acquisition.
– Tetracam ADC-Lite multispectral camera: this

camera captures visible light wavelengths
longer than 520nm and near-infrared (NIR)
wavelengths up to 920nm. The multispectral
camera is located in the bottom of the drone and
aligned with the center of mass.

• DJI Phantom:

– DJI autopilot.
– Parrot Sequoia multispectral camera3: his cam-

era comes with 4 different sensor to capture im-
age in different wavelengths: red, green, NIR
and Red-Edge.

– Flir duo R thermal camera4 with 640× 512 in
resolution with 32oC field of view. It incor-
porates a radiometric sensor operating at sam-
pling frequency of 30Hz and capable of sensing
the crop temperature between−20oC and 50oC
with a resolution of ±5oC.

The standard GPS waypoint navigation for both
drones comes with a graphical user interface -GUI
that allows for autonomous take-off, waypoint tra-
jectory following and landing. In this work, the
flight planning was enhanced with an additional mod-
ule created for the image capturing planning process.
This new module creates a GPS grid with the posi-
tions were the images must be taken in order to ensure
appropriate image resolution, crop plot coverage and
sufficient overlapping of images for ensuring reliable
data-mapping of the crop. In this sense. our photo
planner algorithm uses geometric parameters of the

1http://www.asctec.de/en/uav-uas-drones-rpas-roav/
asctec-pelican/

2https://www.dji.com/phantom-4
3https://www.parrot.com
4https://www.flir.com/products/duo/

NIR/thermal camera and the crop plot area to gener-
ate the cartesian points.

The required UAV altitude is also estimated in the
photo planning algorithm. This is done by using the
camera’s field of view in each axis and the desired
image resolution. Figure 2 presents experimental re-
sults regarding aerial crop coverage and geo-mapping
of crop plots by applying classical image mosaicing
techniques. The aforementioned methods were pre-
sented in previous works reported in (Rojas et al.,
2017), (Jose et al., 2016), and (Rojas et al., 2018).

2.2 Crop Variable Estimation

This section addresses the challenges associated with
NIR and thermal image processing to properly com-
pute Vegetative Indices (VI). It mainly consists in
three different stages:
1. Image processing: By taking raw images from

the NIR camera, the system determines the crop
area (plots) that are suitable for VI analysis. In
this process we apply perspective corrections to
the images (using drone’s IMU information) and
filtering strategies to remove the background and
noise. Finally, NIR image segmentation is applied
to extract the crop plot (parcel) of interest, as de-
tailed by Figure 3(a).

2. Vegetation index computation: VI are well-known
formulas that use the reflectance of the plants
in different wavelengths to provide information
about the health state of the plant. Table 1 details
the VI used in this work and their corresponding
formulas.

3. Machine Learning: Once the vegetative indices
are computed, we applied Multivariable Regres-
sion models (MR) to calculate the accumulated
biomass. Only polynomial models were consid-
ered using the vegetative indices as the indepen-
dent variables. Furthermore, we also used Artifi-
cial Neural Networks (ANN) to estimate leaf ni-
trogen concentration by training our system dur-
ing the three main stage of rice growth: vegeta-
tive, reproductive and ripening. Both MR an ANN
models required a ground-truth dataset for train-
ing. In this sense, biomass and nitrogen were di-
rectly measured from the rice crop by following
the traditional sampling method. For biomass, 1
linear meter of plants were cut from the ground,
as detailed by Figure 3(b). Plants were sampled
and weighted, then put in the oven at 65 degrees
Celsius for 4 days or until a constant weight was
reached. For nitrogen, we used a SPAD sen-
sor (Soil-Plant Analyses Development) to directly
measured leaf nitrogen.
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Figure 1: Multi-UAV robotic system architecture for crop monitoring.

Figure 2: (a) image mosaicing flow diagram: SURF and
ORB algorithms were implemented for feature extraction.
The FLANN Fast (Library for Approximate Nearest Neigh-
bors) algorithm was used for matching, whereas RANSAC
(Random Sample Consensus) algorithm was used to cre-
ate the homography for coordinate frame transformations.
(b) Geo-referenced mosaicing results of applying the steps
from (a) to both NIR and RGB images. (c) resulting NIR
digital map of the crop and the trajectory followed by the
drone.

3 EXPERIMENTAL RESULTS

Experiments were carried out during 2017 and 2018
in the rice farms of the Center of International
Agriculture -CIAT, located in the Department of
Meta, Colombia: latitude 4o1′37.85′′N with Longi-
tude 73o28′28.65′′W . Figure 4 shows experimental
results for several weeks of in-field testing. Both
MR and ANN methods have been used for the esti-
mation of the crop variables based on NIR imagery.
On average, the former, denoted as Estimation 1,

Table 1: NIR Vegetation Indices used (ρ f denotes the re-
flectance of the for the frequency f ) (Gnyp et al., 2014).

Name Equation

Normalized
Difference Veg-
etation Index
-NDVI

ρ780−ρ670
ρ780+ρ670

Green Normal-
ized Difference
Vegetation
Index -GNDVI

ρ780−ρ500
ρ780+ρ500

Soil-Adjusted
Vegetation
Index -SAVI

(1+L)
(

ρ800−ρ670
ρ800+ρ670+L

)
with L = 0.5

Modified SAVI
-MSAVI

1
2

(
2ρ800 +1−

√
(2ρ800 +1)2−8(ρ800−ρ670)

)
Corrected
Transformed
Vegetation
Index - CTVI

NDVI+0.5
|NDVI+0.5|

√
|NDVI+0.5|

Difference Veg-
etation Index -
DVI

ρ780−ρ670

achieves more accurate estimation compared against
the ground-truth value, denoted as Measurement. The
results are consistent for the three stages evaluated:
vegetative, reproductive and ripening. The left plots
of Figure 4 show the biomass and nitrogen estimation
values respectively. Abrupt variations of the signals
(e.g. sampled image 225 in the horizontal axis) indi-
cates a change of crop stage from vegetative to repro-
ductive. In this sense, the time evolution window of
both crop variables is about 3 months.

Using the VIs and the metadata of the corre-
sponding images, the multilinear regression models
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(a) NDVI (b) GNDVI (c) DVI (d) TVI (e) MSAVI

Fig. 3 Vegetative indices for upland rice system during ripening stage.

(a) NDVI (b) GNDVI (c) DVI (d) TVI (e) MSAVI

Fig. 4 Vegetative indices for lowland rice system during vegetative stage.

viding more parameters with the same available information. Commonly, the
accumulation of biomass in rice crops during the ripening stage behaves lin-
early with certain vegetation indices, however, for other stages of the crop, the
relationship between biomass and the vegetation indices could be nonlinear.

(a) Upland rice system (b) Lowland rice system

Fig. 5 Rice production systems: lowland and upland. Both pictures correspond to the crops
assessed during the experiments reported in this paper.

3 Field Report

Experiments were carried out during 2017 in the experimental station of CIAT
located in Santa Rosa-Meta (upland conditions) and Palmira-Valle del cauca
(lowland conditions). The results of this field report were obtained from three

NIR original image Image Transformation Filtered image k-means clustering Segmentation

8.1m

10m
4.2m

0.5m

Sampled plants
Edge

(a)

(b)

VI computation

Ground-truth for Machine Learning

Figure 3: (a) Experimental results regarding NIR image pre-processing algorithms. Classical image clustering based on k-
means has enabled to separate NIR pixels into two cluster: plant and no-plant. This allows the image background subtraction
to properly extract the parcel of interest. (b) Ground-truth dataset for machine learning training.

Table 2: Numerical values for biomass and nitrogen/SPAD in vegetative stage directly measured from the crop (ground-truth
values).

Plot/parcel Repetition Fresh weight [g] Dry weight [g] Water Content [g] SPAD/nitrogen

13B1 1 656 118 82.01 47.70
38B4 1 394.00 76.00 80.71 45.30
63B1 1 450.00 88.00 80.44 34.27
88B4 1 814.00 100.00 87.71 41.23
13B5 2 792.00 136.00 82.83 44.37
38B8 2 420.00 76.00 81.90 46.53
63B5 2 646.00 120.00 81.42 43.07
88B8 2 550.00 104.00 81.09 40.30
13B9 3 626.00 126.00 79.87 36.63

38B12 3 656.00 110.00 83.23 44.10
63B9 3 428.00 76.00 82.24 38.13

88B12 3 540.00 108.00 80.00 43.63

were performed for every possible combination of
vegetative indices. Strong linear dependencies were
found between the VIs from Table 1 and the dynamics
of biomass and nitrogen. For instance, linear multi-
variable regressions of the form: βcαc +βSRSRαSR +
βNDVINDVIαNDV I + βGNDVIGNDVIαGNDV I +
βCTVICTVIαCTV I + βSAVISAVIαSAV I +
βDVIDVIαDV I + βMSAVIMSAVIαMSAV I were used to
estimate both crop variables, computing the 7 VIs
with a constant coefficient, where αc, αSR, αNDV I ,
αGNDV I , αCTV I , αSAV I , αDV I and αMSAV I take the
value of 0 or 1. For each coefficient combination
(VIs and the constant term), two images were taken
randomly from each plot. This was done since not all
the plots had the same number of photos, so if all the
photos were used, the resulting regression could have
some bias.

For each stage of the crop (vegetative, reproduc-

tive and ripening), we performed 20 flights, capturing
around 2,000 images per stage, yielding a dataset of
6,000 images per trial. Overall, around 18,000 im-
ages were processed for the estimation of biomass
and nitrogen. Both MR and ANN methods used a
training set of NIR images accounting for the 60% of
the entire database, whereas the remaining 40% for
testing and validation. On the other hand, the corre-
lations between estimated data and the ground-truth
measurements are shown in the histograms depicted
in the right plots of Figure 4. On average, our system
is capable of estimating biomass and nitrogen with a
correlation of 80% and 78% respectively 5. Higher
correlations above 80% were achieved during the first
vegetative stage of the crop. During this stage, the

5The following video illustrates the steps performed dur-
ing the experiments: https://youtu.be/BTwD4GduXDo
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Figure 4: Experimental results (a) Biomass estimation (dry weight), (b) Nitrogen estimation. Left plots compare the estimated
variables (labels Estimation 1 and 2) against the ground-truth labeled as Measurements. For nitrogen, this values is directly
measured using a SPAD device. The time evolution window of both crop variables is about 3 months: vegetative, reproductive
and ripening. Right plots contain the histogram information regarding the correlations achieved during the experiments.

green color of the plants is predominant, as observed
by the inset in Figure 4(a). Therefore, our methods
can be properly calibrated based on accurate VIs cal-
culated from NIR image reflectances. Numerical val-
ues of the ground-truth measurements for the vege-
tative stage are consigned in Table 2. The reproduc-
tive stage is the more critical for our estimations al-
gorithms since panicle formations yield yellow colors
in the images. The merge of both green and yellow
colors difficult the training, specially during the clus-
tering phase where only two clusters are conformed:
plants (green pixels) and no-plant (soil) cf. Figure
3(a). Larger fluctuations in biomass and nitrogen es-
timations occur in this crop stage, as observed in both
Figure 4(a)(b) left plots. Lastly, in ripening stage, the
yellow color becomes predominant, allowing a proper
calibration and therefore accurate estimation of the

crop variables.

4 CONCLUSIONS

This paper presented the integration and deployment
of an UAV system for rice crop monitoring. By using
multivariable regressions and neural networks, our
system was able to estimation biomass and nitrogen
dynamics during the time evolution of the crop, con-
cretely for three stages: vegetative, reproductive and
ripening. From the specialized literature, we identi-
fied the set of vegetation indices that were sensible
to biomass and nitrogen variations according to NIR
image reflectance properties. We combined those in-
dices to achieve the estimations of both values. A
comprehensive field testing of the proposed system
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enabled us to calculate correlations between the es-
timations and the in-field measurements of the crop
variables. Since the vegetation indices tend to be
evolve linearly during the crop growth, we achieved
accurate correlations using multivariable regressions;
on average, correlations of 80% for biomass and 78%
for nitrogen were achieved. Upcoming work is ori-
ented towards improving the correlations by including
more sophisticated image classification and clustering
algorithms to consider several feature spaces for the
NIR pixels. By now, our system is not reliable during
the reproductive stage of the crop due to the mixed
plant color in between yellow and green. Also, differ-
ent genotypes of rice varieties are planted in the same
plot area. In this sense, we also expect to improve on
the estimation, since the biomass and nitrogen read-
ings are highly dependent of the plant variety.
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