
Simulating the Impact of Annotation Guidelines and Annotated Data on
Extracting App Features from App Reviews

Faiz Ali Shah, Kairit Sirts and Dietmar Pfahl
Institute of Computer Science, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia

Keywords: App Feature Extraction, Supervised Machine Learning, Annotation Guidelines, Requirements Engineering.

Abstract: The quality of automatic app feature extraction from app reviews depends on various aspects, e.g. the feature
extraction method, training and evaluation datasets, evaluation method etc. Annotation guidelines used to
guide the annotation of training and evaluation datasets can have a considerable impact to the quality of the
whole system but it is one of the aspects that is often overlooked. We conducted a study in which we explore
the effects of annotation guidelines to the quality of app feature extraction. We propose several changes
to the existing annotation guidelines with the goal of making the extracted app features more useful to app
developers. We test the proposed changes via simulating the application of the new annotation guidelines
and evaluating the performance of the supervised machine learning models trained on datasets annotated with
initial and simulated annotation guidelines. While the overall performance of automatic app feature extraction
remains the same as compared to the model trained on the dataset with initial annotations, the features extracted
by the model trained on the dataset with simulated new annotations are less noisy and more informative to app
developers.

1 INTRODUCTION

App marketplaces provide app users a channel to sub-
mit feedback in the form of a review. Users in these
reviews provide valuable information such as fea-
ture requests, bug reports, user experience, and eval-
uation of app features (Pagano and Maalej, 2013).
The analysis of opinions expressed about different
features of an app in user reviews offers opportuni-
ties and insights to both app users and app develop-
ers. For app developers, it is useful to monitor the
“health” of app features in the context of release plan-
ning (Maalej et al., 2016) as well as to evaluate prod-
uct competitiveness and quality (Shah et al., 2016).
From the users’ perspective, such information helps
decide which app to select from a wide range of com-
peting apps. Both Apple’s App Store and Google’s
Play Store receive enormous amounts of reviews ev-
ery day rendering a manual analysis infeasible and
demanding automated methods. One standard ap-
proach towards automation is to generate sentiment
summaries of a product at feature-level involving two
steps (Zhang and Liu, 2014): 1) identification of app
features (also called aspect terms or opinion targets
in the opinion mining literature) in user reviews, and
2) determination and aggregation of sentiments ex-

pressed on product features identified in the previous
step.

Since identifying product features in user reviews
is a crucial step for generating sentiment summaries,
several prior studies on app review analysis have ex-
clusively focused on this step. Previous work on as-
pect extraction from app reviews includes using topic
modeling (Guzman and Maalej, 2014) and an ap-
proach called SAFE (Simple Approach for Feature
Extraction) based on manually extracted rules (Jo-
hann et al., 2017). The performance reported with
these two approaches is summarized in the first two
rows of Table 1. Although these results seem to indi-
cate that the topic modeling and the SAFE approach
are complementary with regards to precision and re-
call, they are not directly comparable because the au-
thors used different sets of app reviews, different an-
notation guidelines (AGs) and different performance
evaluation methods. Johann et al. (2017) compared
the performance of a version of the topic modeling
approach proposed by Guzman et al. (2014) on their
set of app reviews using the same AGs and evalua-
tion procedure as in the SAFE approach. These re-
sults, shown in the 3rd row of Table 1, indicate that
the performance of the topic modeling approach is
much lower than reported in the original paper and

384
Shah, F., Sirts, K. and Pfahl, D.
Simulating the Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews.
DOI: 10.5220/0007909703840396
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 384-396
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Table 1: Performance obtained with different approaches to
extract features from app reviews.

Ref Approach Prec Rec F1

Guzman et al. (2014) Topic modeling (1) 0.58 0.52 0.55
Johann et al. (2017) SAFE 0.24 0.71 0.36
Johann et al. (2017) Topic modeling (2) 0.22 0.28 0.24
Sanger et al. (2016) CRF 0.69 0.56 0.62

also worse than that of the SAFE approach, in par-
ticular with regards to recall. Another recent study
for extracting features from app reviews, conducted
on German language reviews (Sänger et al., 2016),
used a supervised machine learning method of Con-
ditional Random Fields (CRF) (Lafferty et al., 2001).
Previously, CRF method has been successfully ap-
plied to extract features from LAPTOP and RESTAU-
RANT reviews (Pontiki et al., 2016; Liu et al., 2015),
which serve as standard aspect extraction benchmark
datasets in sentiment analysis community. The results
of Sanger et al. (2016), shown in the last row of Ta-
ble 1, suggest that supervised machine learning meth-
ods might have an advantage over unsupervised and
rule-based methods (such as SAFE) also for extract-
ing features from English app reviews, given that an-
notated training data is available.

There are several questions previous studies fail
to answer when developing systems for automatically
extracting features from app reviews. An important
question is related to the annotation of app features:
Which word or sequence of words in a review con-
stitutes an app feature? Training a feature extraction
system using supervised machine learning methods
requires a training set where all feature instances are
annotated1. Unsupervised or rule-based systems do
not need an annotated training set but they need an
annotated test set to evaluate how well the system
performs. Clearly, the exact annotation procedure,
operationalized via AGs, potentially affects both
the evaluation results and the usefulness of those
results to app developers. This motivates our research
question:

RQ: To what extent is automatic feature extraction
from app reviews sensitive to the used AGs?

To study this research question, we use two avail-
able app review datasets that are both annotated with
app features using different AGs: 1) English app
review data contributed by Guzman et al. (2014),
which includes annotated reviews of seven apps from
App Store and Play Store (GUZMAN dataset) and
2) German app review data published by Sanger et al.
(2016), which contains annotated reviews from eleven

1Note that we use the words annotated and labeled as
synonyms in this article.

app categories of Play Store (SANGER dataset).2

Furthermore, we employed two undergraduate
students as annotators. Each of them annotated in-
dependently 500 reviews of the seven apps contained
in the GUZMAN dataset3 following the AGs proposed
by Sanger et al. (2016). Because the inter-annotator
agreement between the two annotators on the newly
annotated dataset is low (Dice index = 0.28), we treat
the annotations of the two annotators as two different
datasets.

We train and evaluate supervised CRF models on
all datasets, i.e., the GUZMAN dataset, the SANGER
dataset, and the datasets annotated by our student an-
notators using cross-category validation (CCV) set-
tings. The CCV training regime assumes that reviews
of different app categories share enough common in-
formation that a model trained on the reviews belong-
ing to one set of apps or app categories will general-
ize to the apps or app categories whose reviews the
model has not seen during training. In this training
regime, we select to hold out one app category and
train the model on the app reviews of all other cate-
gories. Finally, we test on the app reviews of the held-
out app category. This procedure is repeated until all
categories have been held out in turn. Then we use
the average feature extraction performance of these
models as a proxy for evaluating the goodness of the
AGs. We simulate several changes in AGs and as-
sess their effect using the performance of the predic-
tive CRF modeling. Using this procedure, we are able
to propose several changes to the app feature AGs that
improve the quality of the annotated app reviews for
both training and evaluation purposes.

2 RELATED WORK

Several methods for extracting app features from app
reviews have been proposed. Guzman et al. (2014)
used unsupervised LDA topic modeling (Blei et al.,
2003) for automatic extraction of app features from
user reviews of seven apps (three from App Store
and four from Play Store). The extracted app fea-
tures were evaluated against human labeled app fea-
tures. The study of Gu et al. (2015) classifies re-
view sentences into categories, such as feature evalu-
ation, praise, feature requests, bug reports and others,
and then extracts app features using 26 manually de-
signed rules only from those sentences that belong to
the feature evaluation category. Johann et al. (2017)

2The particular apps from which the reviews are taken
are not known.

3Reviews annotated by our students may differ from
those in the GUZMAN dataset.

Simulating the Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews

385



proposed a rule-based approach SAFE that uses Part-
of-Speech (POS) and sentence patterns for extracting
app features from app descriptions and user reviews.
Malik et al. (Malik et al., 2018) uses syntactic rela-
tions between the features and opinion words for the
extraction of app features from user reviews.

A few studies focus on summarizing reviews that
are informative for developers using topic models
(Guzman et al., 2015; Panichella et al., 2015; Luiz
et al., 2018). Recently, supervised machine learning
approaches have been used to classify app reviews
into functional and non-functional requirements (Lu
and Liang, 2017; Kurtanović and Maalej, 2017).

Instead of trying to directly extract app features,
the study of (Vu et al., 2015) extract all potential key-
words from user reviews and rank them based on the
review rating and occurrence frequency. Their ap-
proach also has the ability to cluster or expand the set
of extracted keywords based on their semantic simi-
larity. The study of (Keertipati et al., 2016) extracted
nouns as candidate app features from the app review
sentences but they did not perform an evaluation to
check whether the extracted features actually repre-
sent true app features.

All of the aforementioned studies related to app
feature extraction use different techniques, review
datasets and AGs; therefore, the results reported in
these studies are not directly comparable to each
other. Additionally, without having access to differ-
ent datasets and AGs, it is difficult to assess the qual-
ity of the annotations that were used to evaluate the
systems. We were able to obtain the evaluation set of
Guzman et al. (2014) together with its AGs and we
use this dataset as one of the annotated experimental
training sets (GUZMAN dataset) in our study.

In the literature, much research (Kang and Zhou,
2017) is dedicated to automatic extraction of features
from product reviews in the LAPTOP and RESTAU-
RANT domains. The best results have been achieved
using supervised learning approach such as Condi-
tional Random Fields (CRF) and Convolutional Neu-
ral Network (CNN) (Pontiki et al., 2016; Poria et al.,
2016). We know of only one study that used super-
vised sequence tagging model (i.e., CRF) for auto-
matic extraction of app features from app reviews has
been performed by Sanger et al. (2016) on German
app reviews.

3 STUDY DESIGN

We study our Research Question RQ by evaluating the
results of several simulation experiments on app re-
view data with human-annotated app features. These

experiments include several variables, some of which
are fixed and some are systematically altered to study
the Research Questions. Table 2 summarizes all de-
sign variables.

Table 2: Summary of design variables.

GIVEN DESIGN VARIABLES

1. Annotation guidelines

a) SANGER annotation guidelines (German and English)

b) GUZMAN annotation guidelines (English)

2. Annotated datasets

1) SANGER dataset (Sänger et al., 2016), annotated using SANGER guidelines

2) SHAH dataset: annotated by two annotators using translated SANGER guide-
lines.

a) SHAH-I: SHAH dataset labeled by annotator I.
b) SHAH-II: SHAH dataset labeled by annotator II.

3) GUZMAN dataset (Guzman and Maalej, 2014), annotated using GUZMAN
guidelines

3. Modeling approach: CRF model with the following features extracted from the
current word and its context of two preceding and two following words:

a) the words themselves

b) POS of the words in the sentence

c) one to four character prefixes and suffixes of the words

d) the position of the words

e) the stylistics of each word (e.g. case, digit, symbol, alphanumeric)

4. Evaluation methods

a) Type-based exact match

b) Type-based partial match

5. Training procedure

• CCV: Cross-Category Validation on the full dataset

MANIPULATED DESIGN VARIABLES

6. Data processing flow

Step 1 (Pre-processing): remove non-consecutive app features, remove
app reviews with no annotated features

Step 2 (Simulation step I): Remove pseudo-features

Step 3 (Simulation step II): Remove app features that do not contain a
NOUN

Step 4 (Simulation step III): Remove app features that are longer than
three words

To study Research Question RQ we use all Given
Design Variables 1 to 4 and adopt CCV as training
procedure to explore the effects of the Data Process-
ing steps simulating the changes in the AGs. We as-
sume that the quality of the training data annotations
and the accuracy of the app feature extraction model
are positively correlated. Thus, we use model accu-
racy on the test set to assess the impact of a change in
the AGs. We train and evaluate CRF-based app fea-
ture extraction models on all our annotated datasets
after each Data Processing steps and assess their accu-
racies to approximate how each step affects the qual-
ity of the annotations.

In the following, we describe all design variables
in detail.

ICSOFT 2019 - 14th International Conference on Software Technologies

386



3.1 Annotation Guidelines

Our experimental datasets (described more thor-
oughly in the next subsection) are annotated using two
distinct set of AGs, i.e., GUZMAN and SANGER AGs.

The GUZMAN AGs4 were developed by Guzman
et al. (2014) to annotate their evaluation set. These
AGs define an app feature as a description of specific
app functionality visible to the user (such as upload-
ing files or sending emails), a specific screen of the
app, a general quality of the app (such as time needed
to load or size of storage) or a specific technical char-
acteristic (e.g. a network protocol or HTML5). The
AGs encourage to annotate the exact words used in
the text but do not enforce it. The guidelines explicitly
allow for annotating app features consisting of non-
consecutive words.

The SANGER AGs5 were developed by Sanger
et al. (2016) to annotate app features, subjective
phrases, and relationships between them. We trans-
lated these guidelines from German into English.
SANGER AGs define as an app feature “anything that
is part of the application or in some form connected
with the app”. This includes existing and requested
app features, bugs and errors as well as entities refer-
ring to non-functional features such as usability, de-
sign, price, license, permissions, advertisements and
updates. The guidelines explicitly instruct to annotate
the mentions of the app itself as a feature. Instructions
also ask to annotate implicit features represented by
a single verb such as runs. Annotators are encour-
aged to keep the annotated features as short as possi-
ble although a particular length limit is not set. The
SANGER guidelines specifically require not to include
function words into annotated app features, which
probably also influences the length of the annotated
app features. Although no explicit mention about an-
notating consecutive vs non-consecutive words as fea-
tures is made, all example features only consist of
consecutive words.

Although both AGs can be used to label the same
information—features in app reviews—they have dif-
ferences which may influence how well the data an-
notated with these guidelines can be used to train a
model for automatic feature extraction.

1) Using feature annotations not comprised of exact
words used in the review text will make any auto-
matic use of these annotations very difficult. Al-
though this practice is discouraged in the GUZ-
MAN guidelines, it is not explicitly prohibited.

4https://mast.informatik.uni-hamburg.de/wp-
content/uploads/2014/03/Coding Guide.pdf

5Available from http://www.romanklinger.de/scare/

2) Annotating non-consecutive app features, allowed
in GUZMAN guidelines, restricts the types of
models that can be used. In particular, sequence
tagging models like Conditional Random Fields
and Recurrent Neural Networks, which produce
state-of-the-art results on the feature extraction
task (Liu et al., 2015), can only process features
consisting of consecutive words.

3) The instruction in SANGER guidelines to anno-
tate mentions and references to the app itself is
most probably motivated by the particular task of
Sanger et al. (2016) to learn to extract both app
features and their relations to subjective phrases.
In the context of plain app feature extraction these
features can be considered pseudo-features, as
they not give any useful information to the app
developers.

4) Similarly, the instruction in SANGER guidelines
to annotate standalone abstract verbs such as runs
is probably motivated by the joint task of learning
both app features and subjective phrases. In the
context of app feature extraction these aspects will
likely cause problems because they are difficult to
distinguish from other generic verbs not labeled as
app features. Also, these very generic app features
are likely of very little value to the developers.

3.2 Annotated Datasets

We have at our disposal four annotated app review
datasets: GUZMAN dataset, SANGER dataset and two
versions of SHAH datasets. We present some char-
acteristics of these datasets in Table A of Appendix6.
Note that we do not show data per individual app but
aggregated per app category. Each review dataset is
characterized using the following information:

a) the total number of reviews;
b) the total number of sentences in all reviews;
c) the total number of annotated app features in (to-

kens);
d) the number of distinct app features (types);
e) the number of app features consisting of a single

word only;
f) the number of app features consisting of at least

two words;
g) the type-token ratio of annotated app features (the

number of feature types divided by the number of
feature tokens).

The GUZMAN dataset7 was used as an evaluation
set in the study performed by Guzman et al. (2014).

6https://figshare.com/s/2bad5b1507ac0f6a8a43
7The dataset was obtained from the authors of Guzman

et al. (2014)

Simulating the Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews

387



It contains annotated app reviews in English language
from six different app categories. Most app categories
contain reviews from one app only: AngryBirds from
Games category, TripAdvisor from Travel category,
PicsArt from Photography category, Pinterest from
Social category and Whatsapp from Communication
category. The only exception is the Productivity cate-
gory which contains reviews from two apps: Dropbox
and Evernote. According to Guzman et al. (2014),
400 reviews were annotated for each app. However,
from Table it can be seen that the GUZMAN dataset in-
cludes less than 400 reviews in each category. This is
because the GUZMAN dataset8 only contains reviews
with at least one annotated app feature.

The SANGER dataset9 was developed and used by
Sanger et al. (2016). It contains reviews in German
language. The SANGER dataset has the same number
of reviews in each app category. The reviews in each
category come from 10 to 15 different apps but the
origin of each particular review is unknown to us. In
addition to app features, this dataset is also annotated
with subjective phrases and relations between features
and subjective phrases. However, we only use the an-
notated app features and ignore all other annotations.

In addition to the two datasets available from other
researchers, we created the SHAH dataset. The app
reviews included in this dataset were selected by ran-
domly sampling 500 reviews per app from the total
pool of reviews assembled by Guzman et al. (2014)
for their study. The app categories and apps in each
category are the same as in the GUZMAN dataset.
Similar to Guzman et al. (2014), since each app has
its own user rating distribution, we used a stratified
sampling procedure to sample the reviews using the
distribution over ratings as stratum. For measuring the
inter-annotator agreement, we adopted the Dice co-
efficient (Pavlopoulos and Androutsopoulos, 2014),
which ranges between 0 and 1 where 1 means total
agreement and 0 total disagreement. The Dice co-
efficient value between the two annotators was 0.28
which denotes a low agreement between the annota-
tors. Because of that, we decided to treat the annota-
tions of both annotators as different datasets resulting
in two annotated SHAH datasets: SHAH-I and SHAH-
II containing the annotations of the first and the sec-
ond annotator respectively.

Based on the statistics, several differences be-
tween the datasets are visible. Firstly, the GUZMAN
dataset differs strongly from the other datasets by
having multi-word features twice as often as single-

8From the dataset we obtained from the authors of Guz-
man et al. (2014) the reviews without any annotated app
features had been filtered out.

9Available from http://www.romanklinger.de/scare/

word features. In contrast, the SHAH-II and SANGER
datasets have more single-word features than multi-
word features and in the SHAH-I dataset the numbers
are balanced. Several reasons may account for these
differences, including how each annotator interpreted
the AGs given to them, but we believe that this dif-
ference might also characterize the differences in the
AGs themselves.

The second main difference manifests itself in the
average number of app features per review. This
quantity is largest for the GUZMAN dataset and small-
est for both SHAH datasets with the SANGER dataset
falling in-between. We attribute this difference to fact
that the GUZMAN dataset only consists of reviews that
contain at least one annotated app feature while the
other datasets may also contain reviews without a sin-
gle annotated app feature.

Thirdly, also the type-token ratio of app features
is largest for the GUZMAN dataset indicating that the
proportion of distinct app features is largest in this
dataset. This can be explained by the large number
of multi-word app features: the longer the features
the more likely they consist of a unique sequence of
words.

3.3 Modeling Approach

We adopt the Conditional Random Field (CRF) (Laf-
ferty et al., 2001), a supervised learning method to
train the models for all our experiments. CRF is a
sequence tagging model which tags each word in the
app review text with a label. Similarly to Sanger et
al. (2016) we use the BIO labeling scheme, where the
tag B is used to annotate the first word of each app
feature, I labels the rest of the words inside the app
feature and the label O is used to tag all words that are
outside of the app feature. We use an implementation
based on CRFSuite10 which was used as a CRF base-
line by Liu et al. (2015) on LAPTOP and RESTAU-
RANT product review datasets. The hand-crafted fea-
tures used in the CRF model are the same as used by
Liu et al. (2015), they are summarized in Table 2.

The study by Liu et al. (2015) showed that using
word embeddings (Mikolov et al., 2013) as additional
features improves CRF model performance. There-
fore, we included word embeddings as features in our
experiments. For the datasets in English language
(GUZMAN and SHAH datasets), we used SENNA em-
beddings (Collobert et al., 2011) 11. For the SANGER
dataset in German language, we used the embed-
dings12 trained on Wikipedia articles.

10https://github.com/pdsujnow/opinion-target
11https://ronan.collobert.com/senna/
12https://spinningbytes.com/resources/word-

ICSOFT 2019 - 14th International Conference on Software Technologies

388



3.4 Evaluation Procedures

We evaluate all results by computing precision, recall
and F1-score of the predicted app features. Since app
feature annotations themselves may be noisy and am-
biguous, which manifests itself in low agreement be-
tween annotators (for instance (Guzman and Maalej,
2014) reported an agreement of 53% on annotated
app features), we adopt type-based evaluation meth-
ods using both exact and partial matching between
predicted and human-annotated features (see Part 4
in Table 2).

Exact match requires the predicted and annotated
app features to match exactly. For instance, if the
annotated feature is to upload video then in order to
count a match the predicted app feature must consist
of exactly the same words. If the model predicts up-
load video as feature leaving the particle to untagged
the prediction is counted as false positive under the
exact match scheme.

Partial match allows a mismatch when compar-
ing predicted app features with human-annotated fea-
tures in the evaluation set. We allow a difference of
one word. Under the partial match scheme, the pre-
dicted feature upload video will be counted as true
positive even if the human-annotated feature is to up-
load video, whereas the predicted feature video would
be a false positive because it differs from the human-
annotated feature by more than one word. Similarly,
a predicted feature failed to upload video would be
counted as true positive under partial match but an
even longer predicted feature like failed to upload
video to will be counted as false positive.

Type-based evaluation counts and evaluates each
app feature type only once, regardless of how many
times it occurs in the review texts. In order to cluster
together different instances of the same app feature
type, the features are first lemmatized using Snow-
ball13 stemmer available in NLTK library and then
matched based on their lemmas. The type-based eval-
uation procedure is unbiased by the frequencies of the
single app feature types. While the token-based eval-
uation measures can become artificially high when the
annotated training and test set contain a single high-
frequency simple one-word app feature, the type-
based evaluation gives equal credit to all different app
features, regardless of their frequency.

3.5 Data Processing

The data processing steps adopted in our study com-
prise one pre-processing step and three steps for sim-

embeddings/
13http://www.nltk.org/ modules/nltk/stem/snowball.html

ulating the changes in AGs.
The Pre-processing Step is necessary to unify all

experimental annotated datasets to bring them to sim-
ilar starting point. First of all, GUZMAN dataset
can also include annotations of non-consecutive app
features. Because the CRF model can only learn
app features consisting of consecutive words, we re-
move all non-consecutive app features from GUZ-
MAN dataset because leaving them in would put the
GUZMAN datasets and GUZMAN AGs into a dis-
advantaged position compared to the SANGER and
SHAH datasets annotated with SANGER guidelines
where annotated app features always consist of only
consecutive words. After that, we remove all reviews
from the datasets that do not contain any annotated
app feature. We do this because the annotated GUZ-
MAN dataset we obtained from the authors of (Guz-
man and Maalej, 2014) is a subset of all the reviews
originally annotated by Guzman et al. (2014)—the
annotated reviews containing no app features were
left out. Although removing such reviews biases the
datasets, it makes the SANGER and SHAH datasets
comparable to the GUZMAN dataset in terms of app
feature distribution over reviews.

Simulation Step I removes all annotated features
not referring to app functional or non-functional as-
pects but only to app itself either by the app name or
by explicitly using the words such as app or appli-
cation and other similar pseudo-features. This step
simulates the change in the SANGER AGs such that
the command to annotate the references to the app it-
self are removed. Because GUZMAN AGs do not re-
quire to annotate such pseudo-features this simulation
step only changes the annotations of the SANGER and
SHAH datasets. After this step, the reviews without
any annotated app features are removed again to en-
sure that the feature distributions over all datasets are
similar.

Simulation Step II removes all app features that do
not contain a noun. Previous studies (Zamani et al.,
2014; Keertipati et al., 2016) use this simple heuristic
to identify app features from user reviews. This sim-
ulation step ensures that annotated app feature should
be specific enough and this can only be achieved by
requiring the presence of a noun phrase. For instance,
an app feature such as to upload, which consists of
a particle and a verb and does not include a noun, is
too non-specific to understand what kind to function-
ality the feature refers to. Thus, after this simulation
step, these kinds of word sequences are not consid-
ered as app features anymore, whereas a similar word
sequence to upload video, which specifies the action
with a noun, will be kept. This simulation step mostly
removes short generic app features annotated accord-

Simulating the Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews

389



ing to SANGER guidelines.
Simulation Step III removes all app features that

are longer than three words. We believe that useful
features cannot be too long because otherwise they
become too specific and noisy. We attempt to simu-
late the change in AGs that would limit the maximum
length of an app feature to three words with a very
crude heuristic that just removes the longer features
from the dataset. Although a better heuristic would
be to develop a set of rules to shorten the app features
appropriately we opted here for the simplest strategy,
believing that it will be good enough for our purpose
of testing the potential effect of such a guideline.

3.6 Training Procedure

We use a cross-category validation (CCV) training
procedure in our study. The CCV training procedure
assumes that the annotated training data consists of
app reviews belonging to several different app cate-
gories. Then the reviews of each app category are
held out in turn and the model is trained on the re-
views in the other app categories. Finally the trained
model is evaluated on the held-out reviews. We use
cross-category validation instead of cross-app valida-
tion because both in GUZMAN and SHAH datasets,
with one exception we have the reviews of just one
app in each of the app categories. In SANGER dataset,
although each category contains reviews from several
apps, we do not have the app name annotations at-
tached to each review and thus we could not separate
the reviews of different apps into different subsets.

4 RESULTS

In this section, we present the results of our study
and answer the research question (RQ). For better
readability, we only show aggregated results for each
dataset in Table 3. Detailed results at app category
level can be found in the Appendix6 (Tables B to E).

Before we describe the contents of Table 3, we
summarize characteristics of the labeled datasets used
in our study before and after each processing step.
The exact numbers can be found in Figure A of Ap-
pendix6. The annotated datasets at the Baseline, i.e.,
before applying Step 1 (Pre-processing) correspond
to those described in Section 3.2. Several phenom-
ena can be observed when comparing the evolution
of dataset characteristics from before Step 1 to af-
ter Step 4. Due to the nature of the data processing
steps, the numbers of app features steadily decrease
in all datasets, both token-wise and type-wise, and

several of the characteristics of the four datasets con-
verge. For example, at the Baseline, the type-token
ratio of app features varies in the range [0.31, 0.75],
while after Step 4, the variation is reduced to the range
[0.69, 0.79]. In other words, in Step 4, most of the fea-
ture instances occur only once or twice in each of the
datasets. Similarly, the average number of features
per review, which initially varies in the range [0.31,
1.80], reduces to a range of [0.31, 1.06] after the Step
4. For the GUZMAN, SHAH-I, and SHAH-II datasets
the portion of single-word features converges from
variation in range [0.32, 0.71] to variation in range
[0.31, 0.37]. Only for the SANGER dataset, the por-
tion of single-word features stays high (with a small
reduction from 0.84 to 0.76). One explanation for the
high portion of single-word features in the SANGER
dataset could be that the German language allows
for noun compositions replacing multiple-word noun
phrases.

Table 3: Model performance after data processing.

Processing Exact Types Partial Types
Step Prec Rec F1 Prec Rec F1

a) GUZMAN dataset:

Step 1: Pre-processing 45.5 14.6 21.4 68.9 26.2 37.2
Step 2: Simulation I 44.5 14.0 20.7 68.1 25.4 36.1
Step 3: Simulation II 43.3 13.0 19.1 66.5 23.2 33.1
Step 4: Simulation III-3 48.0 15.4 22.5 74.9 29.9 41.8

b) SHAH-I dataset:

Step 1: Pre-processing 60.1 27.6 37.4 80.0 42.3 55.0
Step 2: Simulation I 50.5 13.2 20.5 69.5 22.5 33.6
Step 3: Simulation II 58.6 12.9 20.9 78.8 22.1 34.1
Step 4: Simulation III-3 60.2 15.2 24.1 82.0 25.8 39.0

c) SHAH-II dataset:

Step 1: Pre-processing 46.0 14.3 21.4 64.2 21.3 31.5
Step 2: Simulation I 48.9 12.4 18.8 68.2 17.2 25.9
Step 3: Simulation II 40.4 13.2 19.2 56.6 17.7 25.9
Step 4: Simulation III-3 57.8 14.2 22.3 68.0 18.5 28.4

d) SANGER dataset:

Step 1: Pre-processing 63.5 38.9 47.7 74.7 49.6 59.2
Step 2: Simulation I 60.8 32.1 41.4 71.8 40.7 51.3
Step 3: Simulation II 54.8 32.0 40.0 66.5 40.9 50.3
Step 4: Simulation III-3 57.2 30.6 39.5 68.5 39.0 49.3

In the following, we highlight interesting results
shown in Table 3. For each experiment, the ta-
ble shows precision, recall and F1-measure when
applying the evaluation procedures EXACT MATCH
(TYPE), and PARTIAL MATCH (TYPE) as described
in Section 3.4. The first row in each section of Ta-
ble 3 (Step 1: Pre-processing) shows the performance
after filtering out non-consecutive app features and re-
moving reviews that do not mention app features. For
all datasets precision is consistently better than recall
for both evaluation procedures. Partial matching, as
expected, yields better performance than exact match-
ing. The performance varies largely between datasets.
The models built using the GUZMAN and SHAH-II
datasets clearly perform worse than those built using

ICSOFT 2019 - 14th International Conference on Software Technologies

390



the SHAH-I and SANGER datasets. When looking
at the dataset characteristics, one sees the following
similarities between the datasets on which the models
perform better as compared to the datasets where the
models perform worse:

• The SHAH-I and SANGER datasets have a larger
share of single-word app features (71% and 84%)
than the GUZMAN and SHAH-II datasets (36%
and 49%).

• The SHAH-I and SANGER datasets have a lower
type-token ratio (0.31 and 0.52) than the GUZ-
MAN and SHAH-II datasets (0.74 and 0.62).

After Step 1, it seems that the language used in the
review datasets (German in the case of the SANGER
dataset and English in the case of the SHAH-I dataset)
does not have a distinguishing impact on model per-
formance. The impact of the two AGs seems to be
mixed.

Even though we used the translated SANGER
AGs when annotating the SHAH dataset, the perfor-
mances of SHAH-I-based and SHAH-II-based models
are very different. The performance of the SHAH-II-
based model is even worse than the performance of
the GUZMAN-based model where a different AG was
used. We speculated that one possible reason for the
difference in performance could be that the SANGER
AGs explicitly instruct annotating references to the
app itself as a feature. Following this instruction au-
tomatically increases the number of single-word fea-
tures and lowers the type-token ratio as the repeated
mentioning of the app itself increases the token count
but not the type count. When inspecting the SHAH-II
dataset, we noticed that the annotator seemed to have
ignored this instruction. Since the frequent annota-
tion of references to the app itself in a review seems
to artificially boost the performance of the feature ex-
traction models, while it does not have any practical
value to correctly predict the occurrence of a feature
referring to the app itself, we decided to remove the
annotations of app-references in our datasets.

The second row in each section of Table 3 (Step
2: Simulation I) shows the performance after filtering
out app features referring to the app itself. Apply-
ing Step 2 simulates a change in the AGs, i.e., the
explicit mentioning that references to the app itself
should not be annotated. As can be seen in Figure
A in the Appendix6, in Step 2, all datasets have a
high type-token ratio in the range [0.68, 0.78]. All
English datasets have a low share of single-word fea-
tures in the range [35%, 38%], while the one German
dataset (SANGER) still has a relatively large portion of
single-word features (77%). As expected, all results
on datasets with previously high performance (SHAH-

I and SANGER) drop considerably, especially the re-
call on the SHAH-I dataset.

The third row in each section of Table 3 (Step 3:
Simulation II) shows the performance of our mod-
els after removing app features that do not contain
a noun. This step was motivated by the assumption
that app features not containing a noun (such as run-
ning or runs) are too unspecific to be useful for the
developers. Since the SANGER AGs instruct to anno-
tate implicit features represented by a single verb, we
expected a significant drop of the number of app fea-
tures for the SANGER and SHAH datasets and also an
over-proportional reduction of the number of single-
word app features. Surprisingly, it turned out that
the number of app features dropped equally strongly
for the GUZMAN dataset, and for all datasets the por-
tion of single-word app features also significantly de-
creased but not much as compared to Step 2 (Simula-
tion I), while the type-token ratio slightly increased.
The German dataset SANGER still has a high portion
of single-word app features (now 74%). The average
number of app features per review narrows down after
this step to the range [0.39,1.42] and is decreasing for
all the datasets.

Figure 1: Average f1-score for exact and partial evalua-
tion types when applying different cut-offs to the number
of words in app features.

Overall, compared to the performance obtained
after Step 2 (Simulation I), the recall remains roughly
the same for all datasets. In terms of precision, we ex-
pected it to improve. If the annotated feature set con-
tains short and vague verbal aspects that also would
be used as non-aspect terms in the text (e.g. using
or updating), it might be very difficult for the model
to detect certain instances of these words as features.

Simulating the Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews

391



We expected that removing such features from the an-
notated set would thus improve precision. The re-
sults show, however, that the precision increases only
on the SHAH-I dataset while on all other datasets it
dropped. This can happen if the short and vague-
meaning verbal features share the same characteris-
tics with the self-references—the distinct number of
such features is small but their frequency is high, in
which case it is relatively simple for the model to spot
them and removing these features from the annota-
tions causes the precision to drop.

The performance results shown for Steps 1 to 3
were achieved with annotations of app features (as-
pects) consisting of any number of words. Since
long aspects potentially have a negative effect on
model performance, we investigated whether impos-
ing a maximum length could achieve better perfor-
mance. Figure 1 summarizes the outcomes of our ex-
periments. For the SANGER dataset, the performance
was uniform across all choices of cutoffs. Therefore,
we only show the average performances of the three
English datasets. The two plots shown in Figure 1
show the minimum, maximum, and average F1-score
for app features containing a number of words not
greater than 1, 2, 3, 4 and with infinite length. The
upper plot corresponds to exact type-based evalua-
tion, while the lower plot represents partial type-based
evaluation. In both plots, the best average perfor-
mance is achieved when the app features consisting of
more than three words are removed. The performance
of our models after limiting the number of words in
app features to a maximum of three words is shown in
the last row of each section in Table 3 (Step 4: Simu-
lation III-3). The effect on performance is uniformly
positive for all datasets. The precision for partial type-
based evaluation is in the range [68%,82%].

In summary, we can state that by simulating the
application of modified AGs we achieve a feature pre-
diction precision comparable to that received after the
application of the original GUZMAN and SANGER
guidelines. The advantage of the models created
based on annotated datasets achieved by simulating
the modified guidelines is that the predicted app fea-
tures are more useful for developers since they are
crisper (only one to three words of length) and corre-
late better with actual app features than with pseudo-
features such as references to the app itself. The new
rules included in the modified (improved) guidelines
can be summarized as follows:

• Only annotate app features consisting of consecu-
tive words;

• Do not annotate references to the app itself;

• Only annotate app features containing a noun;

• Restrict the length of the annotated app features to
maximum three words.

5 DISCUSSION

In this section, we first explain the value of our pro-
posed new AGs. Then we discuss limitations of our
study.

5.1 Usefulness of the New AGs

The main goal of our study was to investigate the im-
pact of AGs and annotated data on extracting app fea-
tures from app reviews and to improve existing AGs
such that (1) the performance of the app feature ex-
traction task gets better in terms of f1 score and (2)
the set of extracted app features is more useful to soft-
ware developers.

Section 4 (Results) presented the step-by-step im-
pact to the performance of the app feature extrac-
tion when simulating the effects of changing the used
AGs. It turned out that with our proposed new AGs,
a small performance improvement over the baseline
situation could be achieved. However, this is not the
only advantage of our new AGs. In the following we
argue that not only the performance of the app fea-
ture extraction task can be improved but that the set
of annotated and extracted app features itself is more
relevant for software developers when using our new
AGs.

We will illustrate what we mean by “more relevant
for software developers” in two steps with the help of
examples. In the first step, we demonstrate that the
simulated application of our new AGs actually pro-
duces an annotated dataset that contains a larger share
of annotated app features that are useful to software
developers. In the second step, we demonstrate that
this positive effect of our new AGs also propagates to
the set of extracted app features.

Table F in Appendix6 shows samples of app fea-
tures in the original labeled datasets and in the anno-
tated datasets after the simulated application of our
new AGs. We randomly picked one app category
from each of the English datasets, i.e., in categories
‘Photography’ (GUZMAN), ‘Social’ (SHAH-I), and
‘Game’ (SHAH-II). We manually classified each app
feature as either ‘useful’ or ‘not useful’ and then com-
pared how the numbers of useful and not useful app
features change after simulated application of our new
AGs. Not useful app features have bold font.

We consider an app feature to be useful when it
seems to be related to actual functionality of an app.

ICSOFT 2019 - 14th International Conference on Software Technologies

392



For example capture full resolution, decorating pic-
tures and online scrapbooking seem to be clearly ref-
erencing to some functionality in the app of categories
‘Photography’ and ‘Social’. Aspects are not useful
when they are too generic to be connected with a
specific functionality (e.g., share or version 1.5.1).
As shown by the study (Groen et al., 2017), non-
functional aspects of an app (e.g, easy to use) can be
identified with high precision using language patterns.
Therefore, our concern in this study is to extract app
functional aspects.

App features in the upper part of Table F in Ap-
pendix6 correspond to a random sample of those app
features that remained in the set of app features after
simulated application of the new AGs. The numbers
behind each app feature correspond to the token count
before and after the simulated application of the new
AGs. In some cases the token number changed. App
features in the lower part of Table correspond to those
app features that were completely removed from the
set of app features after simulated application of our
new AGs.

Table 4: The number of app features (type) manually classi-
fied as either ‘useful’ or ‘not useful’ in app categories Pho-
tography (GUZMAN), Social (SHAH-I) and Game (SHAH-
II).

App Before/after Useful Not useful Total
category simulation features features features

Photography Before 50 77 127
After 37 41 78

Social Before 47 19 66
After 38 8 44

Game Before 57 22 79
After 49 13 62

The ideal impact of the simulated application of
our new AGs corresponds to removing all useless app
features and keeping only the useful app features. We
calculated the impact of our AGs based on the num-
bers of manually classified ‘useful’ and ‘not useful’
app features in three app categories before and after
the simulation of new AGs (see Table 4). The actual
numbers (based on type count) for each of the three
apps are as follows:

• Category ‘Photography’ (GUZMAN): the percent-
age of useful app features kept equals 53%; the
percentage of useless app features removed equals
47%; the ratio between useful and useless app fea-
tures improved from 50/77=0.65 before the appli-
cation of our new AGs to 37/41=0.90 afterwards;

• Category ‘Social’ (SHAH-I): the percentage of
useful app features kept equals 77%; the percent-
age of useless app features removed equals 58%;
the ratio between useful and useless app features

improved from 47/19=2.47 before the application
of our new AGs to 36/18=4.50 afterwards;

• Category ‘Game’ (SHAH-II): the percentage of
useful app features kept equals 86%; the percent-
age of useless app features removed equals 41%;
the ratio between useful and useless app features
improved from 57/22=2.59 before the application
of our new AGs to 49/13=3.77 afterwards.

The data shows for each of the three sample cases
that the ratio between the number of useful and not
useful app features is increasing when applying our
new AGs. We computed the percentages based on
type counts of app features because there can be cases
like, for example, the app feature editing. The app
feature editing occurred 13 times in the app of cat-
egory ‘Photography’ before the simulated application
of our new AGs and five times afterwards. We assume
that eight occurrences of editing were removed due to
the guideline ‘Only annotate app features containing a
noun’, i.e., because after simulating the application of
our new AGs editing was predicted to be an app fea-
ture when it was used as a noun. Note that the word
editing when used as a verb is not helpful for software
developers because it does not provide information
about the purpose or object of editing and thus it is
difficult to decide whether the mentioning of editing
is related to the edit functionality as such or just a spe-
cial situation in which something was edited. On the
other hand, if editing is mentioned in the grammati-
cal form of noun, it is more probable that whatever
is said in the sentence with the word editing refers to
the edit functionality in general. A similar case is pin-
ning mentioned in the reviews of the app in category
‘Social’. Here three of the seven original app feature
predictions disappeared after simulated application of
our new AGs.

After convincing ourselves that the simulated ap-
plication of new AGs actually results in more useful
app feature annotations, we checked whether this ef-
fect also propagates to the set of extracted app fea-
tures. Table 5 shows the impact on the number of use-
ful and useless app features in model’s extracted app
features, when training CRF models with the origi-
nal annotated datasets and when training CRF models
using the annotated datasets after the simulated appli-
cation of our new AGs. We picked the same app cat-
egories as before from each of the English datasets,
i.e., from categories ’Photography’ (GUZMAN), ’So-
cial’ (SHAH-I), and ’Game’ (SHAH-II). We manually
classified each app feature as either ’useful’ or ’not
useful’ and then compare how the numbers of use-
ful and not useful app features change when simulat-
ing the application of our new AGs. The actual type
counts for each of the three apps are:

Simulating the Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews

393



• Category ‘Photography’ (GUZMAN): the ratio be-
tween useful and useless app features improved
from 21/25=0.84 before the application of our
new AGs to 17/10=1.7 afterwards;

• Category ‘Social’ (SHAH-I): the ratio between
useful and useless app features improved from
17/18=0.94 before the application of our new AGs
to 8/6=1.33 afterwards;

• Category ‘Game’ (SHAH-II): the ratio between
useful and useless app features improved from
11/21=0.52 before the application of our new AGs
to 13/14=0.93 afterwards.

Table 5: Model’s extracted app features (type) are manu-
ally classified as either ‘useful’ or ‘not useful’ in app cate-
gories Photography (GUZMAN), Social (SHAH-I) and Game
(SHAH-II), before and after the simulation of AGs.

App Before/After Useful Not useful Total
category simulation features features features

Photography Before 21 25 46
After 17 10 27

Social Before 17 18 35
After 8 6 14

Game Before 11 21 32
After 13 14 27

Figure 2 summarizes our results and expectations
with regards to the effectiveness of our new AGs
(based on type-wise analysis of the three selected app
categories). Each of the six rectangles corresponds to
the total set of annotated (upper row) and extracted
(lower row) app features. The blue portion in each
rectangle corresponds to the share of useful app fea-
tures (UFs) while the orange portion corresponds to
the share of useless app features (¬UFs). The calcu-
lated ratios between UFs and ¬UFs clearly show an
improvement for the simulated application of our new
AGs not only in the annotated datasets but also in the
set of extracted features. This strengthens our expec-
tation that a real application of the new AGs, which
presumably yields exclusively useful features in the
annotated dataset (thus an exclusively blue rectangle
on the right in the upper row of Figure 2) would result
in an even further improved ratio between UFs and
¬UFs in the set of extracted app features when com-
paring to the baseline and the simulated application
of our new AGs (as indicated by the small portion of
orange in the rectangle on the right in the lower row
of Figure 2).

5.2 Limitations of the Study

In some cases it is not fully clear why an app fea-
ture was removed or kept. These cases could be due
to inaccuracies of the POS tagger used in Step 2 of

Figure 2: Ratios between useful and not useful app features
(annotated and extracted) for three analyzed app categories.

the simulated application of our new AGs. For exam-
ple, it is unclear why only two out of three occasions
of free were removed in category ‘Photography’ as it
is hard to imagine a context in which free could be
considered to be a noun in a review text. Overall,
our new AGs removed most of the useless app fea-
tures in app categories ‘Social’ (SHAH-I) and ‘Game’
(SHAH-II). When removing the not useful app fea-
tures, the lower performance (53%) on app category
‘Photography’ (GUZMAN) is due to a large number of
annotations referring to mobile devices, app versions,
app updates and non-functional app features.

Note that we only simulated the application of
our new AGs on the labeled datasets. We expect
that the application of the new AGs by actual peo-
ple could have resulted in more useful annotations of
app features in the first place. The application of our
new AGs automatically removes app features that are
longer than 3-words. However, in the direct appli-
cation of our new AGs, a longer app feature might
simply have been annotated with fewer words rather
than completely been removed as we did in Simula-
tion Step 3. For instance, a 5-word app feature sorting
functionality in board section annotated in app cate-
gory ‘Social’ of the SHAH-I dataset could be labeled
as an admissible 2-word app feature sorting function-
ality.

Our study is restricted to the use of the CRF model
which limits app features to be annotated as consec-
utive words. Therefore, when limiting annotations to
a maximum 3-word app features, it might be impos-
sible to annotate app features consisting of consecu-
tive words; in such cases CRF (or any other sequences
tagging model) cannot be applied or we would have to
drop those app features (or soften the rule of having
maximum 3-words app features). For instance, a 5-
word app feature edit pictures in a high quality can
be reduced to the following two meaningful represen-
tations of 3-word app features: edit high quality or
edit picture quality. However, both 3-word app fea-
ture representations are not consecutive.

We only found two published AGs associated with
publicly available annotated app review datasets. The

ICSOFT 2019 - 14th International Conference on Software Technologies

394



problem we encounter is that either annotated datasets
were not published or when they had been pub-
lished it is unclear what annotation rules/guidelines
were applied. In other domains, e.g., LAPTOP and
RESTAURANT, the standard guidelines and bench-
mark datasets are contributed by the research com-
munity SEMEVAL to perform the task of product
feature extraction and its evaluation. Similar to the
SEVEMAL research community, the app review min-
ing research community could contribute standard-
ized guidelines and benchmark datasets to help re-
searchers in the development of systems performing
fine-grained sentiment analysis at app feature-level.

We created two new labeled datasets SHAH-I and
SHAH-II in English, using the English translated ver-
sion of the German SANGER AGs. The translation
from German to English of SANGER guidelines is
performed using Google translation service. In or-
der to make sure that the translated guidelines have
sufficient quality to be used for the annotation of re-
views in English language, one of the author of this
paper, who is a native German speaker and have a full
command of the English language, read the English
translated version of the AGs and found it adequately
accurate for the annotation task.

The validity of our results depends partly on
the reliability of the annotations of the SHAH-I and
SHAH-II datasets. In addition, the assessment of the
usefulness of the results produced when using our
simulated AGs depends on the reliability of the sub-
jective classification of annotated and extracted app
features into ‘useful’ and ‘not useful’. Since each
of these tasks was performed by one person, relia-
bility might be limited. However, since we not only
used our own annotations (i.e., datasets SHAH-I and
SHAH-II) but applied our analyses also to datasets
published in the literature and the trend of our results
was similar for all our used datasets, we believe that
the existing limitations of reliability for the mentioned
tasks is not a major threat to validity of our results.

6 CONCLUSION

Previously, several techniques have been used for
automatic app feature extraction from app re-
views, including (a) unsupervised topic modeling,
(b) rule-based methods, (c) supervised machine learn-
ing approaches. While unsupervised and rule-based
approaches only require annotated data for evaluation
purposes, supervised machine learning methods also
need it for training the model. In either case, the qual-
ity of the annotations can considerably affect the eval-
uation results. When the annotations contain many

complex app features that are difficult to extract, then
model performance will be artificially low, especially
when these features are infrequent and thus not of
much actual interest for app developers. On the other
hand, when the annotations contain many short and
frequent app features that are easy to detect but not
informative for developers then model performance
will be artificially high.

In this paper, we study the impact of AGs by con-
trolling other design parameters as much as possi-
ble. We used four different labeled datasets annotated
with two different AGs. For the app feature extraction
technique we adopted the supervised CRF method. To
our best knowledge, this is the first study that explores
the impact of AGs and labeled datasets for app fea-
ture extraction from user reviews. As a result of our
study, we propose several changes to the existing AGs
to avoid the annotation of useless app features.

Our research question RQ started from the obser-
vation that the app feature annotations and thus subse-
quently also automatic feature extraction results var-
ied considerably on different datasets, even though
they used the same AGs to annotate the app features
and even when the annotated app reviews themselves
were identical (SHAH-I vs SHAH-II). We hypothe-
sised that these differences are at least partly due to
the AGs that were used to label these datasets. We
proposed several changes to the AGs and evaluated
the effect of their simulated application using the eval-
uation results of the CRF modeling. The proposed
changes in AGs include (a) instructing to annotate
only consecutive words as app features, (b) discour-
aging the annotations to the references of the app it-
self, (c) instructing to annotate only noun phrases as
app features, i.e. every app feature must contain a
noun, and (d) instruct to annotate app features with
the length of maximum three words. When simulat-
ing the application of our AGs, we were able to retain
the precision of the app feature extraction. Moreover,
the annotated features in both training and test sets
become more informative and less noisy.

The main limitation of our study is the simulation
of the new AGs on the labeled review datasets which
resulted in removing a number of app features rather
than reformulating them according to the new guide-
lines. Regardless of that, we believe that the real ap-
plication of the new AGs by human annotators would
have produced a set of app features that are useful and
refer to the functional aspects of an app. However,
this hypothesis is yet to be confirmed by evaluating
the proposed AGs by giving them to real human an-
notators for labeling app features in user reviews.

Simulating the Impact of Annotation Guidelines and Annotated Data on Extracting App Features from App Reviews

395



ACKNOWLEDGMENTS

We are grateful to Emitza Guzman and Mario Sanger
for sharing their review datasets. This research was
supported by the institutional research grant IUT20-
55 of the Estonian Research Council and the Estonian
Center of Excellence in ICT research (EXCITE).

REFERENCES

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning re-
search, 3(Jan):993–1022.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (slmost) from scratch. Journal of
Machine Learning Research, 12(Aug):2493–2537.

Groen, E. C., Kopczyska, S., Hauer, M. P., Krafft, T. D.,
and Doerr, J. (2017). Users the hidden software prod-
uct quality experts?: A study on how app users re-
port quality aspects in online reviews. In 2017 IEEE
25th International Requirements Engineering Confer-
ence (RE), pages 80–89.

Guzman, E., Aly, O., and Bruegge, B. (2015). Retrieving
diverse opinions from app reviews. In Proceedings of
ESEM’15, pages 1–10. IEEE.

Guzman, E. and Maalej, W. (2014). How do users like
this feature? a fine grained sentiment analysis of app
reviews. In Proceedings of RE’14, pages 153–162.
IEEE.

Johann, T., Stanik, C., B., A. M. A., and Maalej, W. (2017).
Safe: A simple approach for feature extraction from
app descriptions and app reviews. In Proceedings of
RE’17, pages 21–30. IEEE.

Kang, Y. and Zhou, L. (2017). Rube: Rule-based methods
for extracting product features from online consumer
reviews. Information & Management, 54(2):166–176.

Keertipati, S., Savarimuthu, B. T. R., and Licorish, S. A.
(2016). Approaches for prioritizing feature improve-
ments extracted from app reviews. In Proceedings of
EASE’16, page 33. ACM.

Kurtanović, Z. and Maalej, W. (2017). Automatically clas-
sifying functional and non-functional requirements
using supervised machine learning. In Proceedings
of RE’17, pages 490–495. IEEE.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings
of ICML’01, pages 282–289.

Liu, P., Joty, S. R., and Meng, H. M. (2015). Fine-grained
opinion mining with recurrent neural networks and
word embeddings. In Proceedings of EMNLP’15,
pages 1433–1443.

Lu, M. and Liang, P. (2017). Automatic classification
of non-functional requirements from augmented app
user reviews. In Proceedings of EASE’17, pages 344–
353. ACM.

Luiz, W., Viegas, F., Alencar, R., Mourão, F., Salles,
T., Carvalho, D., Gonçalves, M. A., and Rocha,
L. (2018). A feature-oriented sentiment rating for
mobile app reviews. In Proceedings of WWW’18,
pages 1909–1918, Republic and Canton of Geneva,
Switzerland. International World Wide Web Confer-
ences Steering Committee.

Maalej, W., Nayebi, M., Johann, T., and Ruhe, G. (2016).
Toward data-driven requirements engineering. IEEE
Software, 33(1):48–54.

Malik, H., Shakshuki, E. M., and Yoo, W.-S. (2018). Com-
paring mobile apps by identifying hot features. Future
Generation Computer Systems.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Proceed-
ings of NIPS’13, pages 3111–3119.

Pagano, D. and Maalej, W. (2013). User feedback in the
appstore: An empirical study. In Proceedings of
RE’13, pages 125–134. IEEE.

Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C. A.,
Canfora, G., and Gall, H. C. (2015). How can i im-
prove my app? classifying user reviews for software
maintenance and evolution. In Proceedings of IC-
SME’15, pages 281–290. IEEE.

Pavlopoulos, J. and Androutsopoulos, I. (2014). Aspect
term extraction for sentiment analysis: New datasets,
new evaluation measures and an improved unsuper-
vised method. In Proceedings of the 5th Workshop on
Language Analysis for Social Media, pages 44–52.

Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopou-
los, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub,
M., Zhao, Y., Qin, B., De Clercq, O., et al. (2016).
Semeval-2016 task 5: Aspect based sentiment anal-
ysis. In Proceedings of SemEval’16, pages 19–30.
ACL.

Poria, S., Cambria, E., and Gelbukh, A. (2016). Aspect ex-
traction for opinion mining with a deep convolutional
neural network. Knowledge-Based Systems, 108:42–
49.

Sänger, M., Leser, U., Kemmerer, S., Adolphs, P., Klinger,
R., Calzolari, N., Choukri, K., Declerck, T., Grobel-
nik, M., and Maegaard, B. (2016). Scare-the senti-
ment corpus of app reviews with fine-grained annota-
tions in german. In Proceedings of LREC’16.

Shah, F. A., Sabanin, Y., and Pfahl, D. (2016). Feature-
based evaluation of competing apps. In Proceedings of
the International Workshop on App Market Analytics,
pages 15–21. ACM.

Vu, P. M., Nguyen, T. T., Pham, H. V., and Nguyen,
T. T. (2015). Mining user opinions in mobile app re-
views: A keyword-based approach. In Proceedings of
ASE’15, pages 749–759. IEEE.

Zamani, S., Lee, S. P., Shokripour, R., and Anvik, J.
(2014). A noun-based approach to feature location us-
ing time-aware term-weighting. Information and Soft-
ware Technology, 56(8):991–1011.

Zhang, L. and Liu, B. (2014). Aspect and entity extraction
for opinion mining. In Data Mining and Knowledge
Discovery for Big Data, pages 1–40. Springer.

ICSOFT 2019 - 14th International Conference on Software Technologies

396


