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Abstract: Within the scope of the CloudDBAppliance project, we investigate how Apache Spark™ can leverage a many 
cores and large memory platform, with a scale up approach as opposed to the commonly used scale out one: 
that is, the approach is to deploy a spark cluster to few large servers with many cores (up to several hundreds) 
and large memory (up to several tera-byte), rather than spreading it on many vanilla servers, and to stack 
several Spark executor processes per cluster node when running a job. It requires to cope with the non-uniform 
memory access within such servers, so we inculcate NUMA awareness to Spark, that provides a smart and 
application transparent placement of executor processes. We experiment it on a BullSequana™ S series 
platform with the Intel HiBench suite benchmark and compare performance where NUMA awareness is off 
or on. 

1 INTRODUCTION 

Within the scope of the CloudDBAppliance project, 
we investigate how Apache Spark™ can leverage a 
many cores and large memory platform, with a scale 
up approach in mind, as opposed to the commonly 
used scale out one. That is, rather than spreading a 
Spark cluster on many vanilla servers, the approach is 
to deploy it on a few BullSequana™ large servers 
with many cores (up to several hundreds) and large 
memory (up to several tera-byte). Spark jobs 
execution enrols several executor processes – several 
per server, that leverage the many-cores and large 
memory features of the BullSequana server. 

But so large servers are designed with Non 
Uniform memory Access (NUMA) it is necessary to 
cope with in order to achieve the best performance. 
We inculcate NUMA awareness to Spark and 
experiment it on a BullSequana™ S series platform 
in a scale up approach with the Intel HiBench suite 
microbenchmark. 

This document exposes the general issue induced 
by NUMA architectures, then explains how it can be 
addressed for Spark applications. Then it describes 
the test protocol and testbed and compares the 
application performance and efficiency where 
NUMA awareness is switched on versus where it is 
switched off. 

2 NON UNIFORM MEMORY 
ACCESS (NUMA) 

The target hardware platform of CloudDBAppliance 
is a BullSequana S server, a highly scalable and 
flexible server, ranging from 2 to 32 processors (up to 
896 cores and 1792 hardware threads), up to 32 GPUs 
and 48 TB RAM, and 64 TB NVRAM. Our staging 
platform includes a BullSequana S800 server with :8 
Intel® Xeon® Platinium 8158 CPU @ 3 GHz (12 
cores each), and 4 TB RAM (512 GB per CPU). 

 

 

Figure 1: BullSequana S800 NUMA nodes. 

BullSequana S has a Non-Uniform Memory 
Access architecture. Each processor has local 
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memory, that forms what is termed a NUMA node. 
Each NUMA node is linked to other NUMA nodes by 
UPI links, in such a way that all nodes are transitively 
linked, so that the whole server memory can be 
consistently accessed from any node. The 
BullSequana S800 has eight NUMA nodes numbered 
from 0 to 7, which are linked so that there are at most 
two hops between nodes as shown in Figure 1. 

Each node has 3 neighbours at one hop, and four 
nodes at two hops. Obviously, the latency to access a 
portion of memory from a given node varies with the 
distance between the accessing node to the accessed 
node: where there is one hop, the latency is about 
twice the latency of an access to local memory; where 
there are two hops, the latency is about three times the 
latency of a local access, as shown in Figure 2. This 
may dramatically affect the performance of the 
application. 

 

 

Figure 2: Distances between NUMA nodes. 

NUMA awareness aims at maximizing access to 
local memory by the threads that run on every core. 

3 NUMA AWARE SPARK 

A Spark application comprises of: 

 A driver process, that controls the whole 
processing of the application. The application is 
modelled as a direct acyclic graph (DAG). The 
driver understands and interprets this model, and, 
when operating on a given dataset, splits the 
processing in stages and individual tasks that it 
schedules and distributes to executors that run in 
the cluster nodes. 

 Executor processes that perform the actual data 
processing, as instructed by the driver. The 
executor processes hold data parts in their 
memory: a task applies to a data part, and each 
executor receives (and runs) tasks retated to the 
data parts it holds. Executor processes run on 
cluster nodes, the so-called worker nodes. There 
may be one or more executors per worker node. 
Data   processing   may   involve   many   executor 

processus spread on many worker nodes. 
 

A Spark application consumes (large) data from 
various sources, processes it, then outputs (smaller) 
results to various sinks. Processing usually 
transforms the input data so that to build a dataset in 
the desired form, caches it in memory, then applies 
algorithms that repeatedly operate on the cached data. 
Unlike Hadoop - that stores intermediate results on 
storage (HDFS), Spark retains intermediate results in 
memory as far as possible, and the more memory it 
gets, the less pressure on the Input/output system. 
This makes Spark less sensitive to the input/output 
system than Hadoop. 

Spark will try to perform initial processing close 
to the input data location to consumes it at the highest 
rate, but further computing will be more dependent on 
the way it (re)partitions and retains data in the 
memory cache of the executors. And as the 
processing time is usually far higher than the 
cumulated input and output times, the distribution of 
data among the executor processes (in their memory) 
is an important factor to consider. 

Spark still writes data to file systems during 
shuffling operation, when data is rebalanced between 
executors, e.g. on sort operations or data 
repartitioning. Shuffling thus may put high pressure 
on both I/O systems and network, the later incurring 
CPU consumption as data has to be serialized before 
being transferred through the network. One way to 
lower it is to use large memory executors: data 
analytics often reduce datasets size from a very large 
input to a far smaller output. The more filtering and 
transformations that lower the size can be done in a 
continuous space, the less the number and size of 
shuffling operations will occur. Large-memory and 
many-core platforms enable few huge executors as 
well as more common approaches with several 
executors, for a single application as well as several 
ones. 

Spark has been designed for scale out and is not 
natively NUMA aware. We have made extensions to 
inculcate NUMA awareness to the worker processes 
of a Spark cluster deployed in standalone mode. A 
worker process manages executor processes in a 
server of a Spark cluster: placement of executors 
within the server is a local concern the worker is 
responsible for. When a worker launches a Spark 
executor process, it binds it to a NUMA node, so that 
the threads running the tasks within the executor 
process access local memory, where the data parts 
reside. Or, if the executor does not fit to a single 
NUMA node, it binds it to a set of NUMA nodes close 
to each other. The worker process manages a table of 
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the running executors, so that to balance the executor 
placement. The placement is fully transparent to the 
application. The placement obey to a configurable 
policy, that can be set at the cluster level or at submit 
time. 

4 THE TEST PROTOCOL 

The test protocol is to run the same benchmark 
against input datasets of various size onto a single 
BullSequana S800 server, with the NUMA awareness 
switched off, then to re-run it with the NUMA 
awareness switched on, then compare results of both: 
a) In terms of performance key indicator(s): 

 duration of the benchmark with NUMA 
awareness: Ton. 

 duration of the benchmark without NUMA 
awareness: Toff. 

 The improvement computed as: (1 – Ton / Toff). 
 The gain computed as: Toff / Ton. 

b) In terms of efficiency, that is, how much resources 
are consumed to fulfil the same work: 
 Average CPU consumption during the bench, 

respectively CPUon and CPUoff. 
 NUMA awareness CPU efficiency computed 

as: CPUoff . Toff / CPUon .Ton. 
 

The system under test comprises of: 
 A BullSequana S800 server with 8x12 cores 

processors and 4 terabytes (TB) RAM 
memory. That is a total of 96 cores and 192 
hardware threads, as hyperthreading is 
activated. 

 a Spark 2.4 platform setup in standalone 
cluster mode, with NUMA awareness 
extension. 

 Input datasets are stored in a Hadoop 
Distributed File System (HDFS). Four dataset 
input profiles of various size have been 
defined, as shown by Table 1. 

 The used microbenchmark workload is 
HiBench/Kmeans (https://github.com/intel-
hadoop/HiBench). 

 HiBench/Kmeans is run with a parallelism of 
128 tasks – where a task is run by a thread, 
spread on 8 executor processes with each 16 
parallel tasks, and a 128 GB Heap size. 

 System metrics are collected by means of a sar 
command, for off Line analysis. 

 Spark metrics are collected by means of the 
Spark history server for off line analysis. 

Table 1: Input dataset profiles. 

Dataset profile Size 

gigantic 37,4 GB 

halfbigdata 112,2 GB 

bigdata 224,4 GB 

gargantua 401,6 GB 

5 ANALYSIS AND RESULTS 

5.1 What a HiBench/Kmeans Run 
Looks like 

Whatever the input dataset size, a HiBench/Kmeans 
run exhibits the following behaviour: it runs N jobs in 
sequence, numbered from 0 to N-1. Job #0 triggers 
the reading of the input dataset and loads it in the 
spark cache, i.e. the executor memory. Further jobs 
from 1 to N-1 mainly operates on the data loaded in 
the cache. Figure 3 – extracted from the Spark web 
console, shows a timeline run of Hibench/Kmeans on 
a gargantua (401,6 GB) input dataset, with NUMA 
awareness on. 

The upper pane shows the launch of the executors 
at the beginning of the run. The lower pane shows the 
19 jobs it runs sequentially, numbered from 0 to 18, 
some of which have been labelled for the sake of 
readability. Each job includes around 3300 tasks, 
distributed to the 8 executor processes, each being 
configured to potentially run 16 tasks in parallel, so 
that there is a potential of 128 parallel running tasks. 
Analysis of the benchmark trace logged by the Spark 
history server, allows to compute the effective 
number of parallel tasks all along the run, as 
illustrated by Figure 4. Jobs appear clearly on the 
graph, with a ramp up, a steady plateau, then a fall to 
zero (the number of task is always zero between two 
jobs). The profile shows that full parallelism is 
effective: for each job, the desired level (128 parallel 
tasks) is reached after a short and steep ramp up, then 
stays at this level during the job, then quickly and 
steeply falls to zero at the end of the job. 

This profile denotes well synchronized executor 
processes, where there are no stragglers, that is the 
best case to expect. 

5.2 Comparing Kmeans Runs 

Figure 6  gives  the  variation  of the benchmark dura-
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Figure 3: Hibench:Kmeans timeline view. 

 

Figure 4: Hibench:Kmeans number of tasks in parallel. 

   

Figure 5: Hibench:Kmeans gain on duration and efficiency of NUMA awareness. 

tion (in seconds), function of the input dataset size: 
gigantic (37,4 GB), halfbigdata (112,2 GB), bigdata 
(224,4 GB), gargantua (401,6 GB). 

HiBench/Kmeans against gigantic, halfbigdata 
and bigdata have been setup with 8 executors of 16 
cores and 128 Gb heap each. For gargantua, it is not 
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possible to keep the same settings. It is necessary to 
increase the heap size to 160 GB (where NUMA 
awareness is on) and even 256 GB (where NUMA 
awareness is off) and to tune the garbage collector: 
indeed, with the original 128 GB heap, there is too 
much pressure on the garbage collector, that causes a 
high CPU overhead saturating the server, so that less 
CPU is given to the application itself, that 
dramatically increases the benchmark duration to 
about 36 minutes. 

CPU consumption is far more intensive where 
NUMA awareness is off and lasts more than twice as 
long. Figure 7 superposes the CPU consumption of 
two runs, one with NUMA awareness on, the other 
one with NUMA aware off. Moreover, the total heap 
is increased from 1,25 TB (NUMA on) to 2 TB 
(NUMA off). NUMA awareness thus increases 
dramatically the efficiency, as the Spark cluster will 
be able to process more job submissions in a given 
time interval. 

 

 

Figure 6: Hibench:Kmeans duration function of input 
dataset size. 

 

Figure 7: Hibench:Kmeans CPU consumption. 

NUMA awareness shortens the benchmark 
duration by a factor of 2.0 (approximately) or even 

more. Moreover, it dramatically increases efficiency 
by dividing by 2.5 or even more the CPU 
consumption to complete a run. Figure 5 show 
efficiency and gain on duration for the various input 
dataset. 

These results apply to HiBench/Kmeans only. 
Other workloads may have a different sensitivity to 
NUMA awareness. 

6 CONCLUSIONS 

Spark leverages High-End servers such as 
BullSequana S, each able to support hundreds to 
thousands Spark parallel tasks and up to several 
terabytes of in memory data, thus enabling to process 
large datasets within a single system or a few systems, 
thanks to NUMA aware scale up placement of spark 
executor processes. 

Beyond the benefits brought by the many-cores 
and large-memory features, the support of Apache 
Pass non-volatile RAM (NVRAM) and GPUs opens 
new perspectives the CloudDBAppliance project is 
yet exploring: 

 Though Spark intensively uses memory, it still 
writes data to file systems during shuffling 
operations, when data is rebalanced between 
executors, e.g. on sort operations or data 
repartitioning. Another case is for some cache 
management policies. The use of Apache Pass is 
expected to relax the high pressure it may put on 
the input/output system, as it exhibits higher 
throughput and lower latency than SSDs or 
NVMe. 

 More and more machine learning and deep 
learning frameworks and libraries support off-
loading to GPU. 
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