
DistributedFaaS: Execution of Containerized Serverless Applications in
Multi-Cloud Infrastructures

Adbys Vasconcelos, Lucas Vieira, Ítalo Batista, Rodolfo Silva and Francisco Brasileiro
Departamento de Sistemas e Computação, Universidade Federal de Campina Grande, Brazil

Keywords: Distributed Computing, Cloud Federation, Function-as-a-Service.

Abstract: The adoption of cloud computing is continuously increasing due to the attractiveness of low costs of infrastruc-
ture acquisition and maintenance, as well as having virtually infinite resources available for scaling applica-
tions based on demand. Due to the increasing interest in this topic, there is a continuos search for better, more
cost-effective ways to manage such infrastructures. One of the most recent steps was taken by the definition
and development of Serverless computing, a.k.a. Function-as-a-Service (FaaS). FaaS is a cloud computing
service model where developers can deploy functions to a cloud platform and have them executed based either
on the triggering of events by other services, or by making requests directly to an HTTP(S) gateway, without
having to worry about setting up the underlying infrastructure. In this paper, we propose an architecture for de-
ploying FaaS platforms in hybrid clouds that can be composed by multiple cloud providers. This architecture
aims at enabling privately deployed FaaS platforms to perform auto-scaling of resources (virtual machines)
in a distributed infrastructure, while considering the scenario where the users of such platform are scattered
around the globe. This allows the execution of requests in servers geographically located as close as possible
from the client, with benefits to both the clients and the service providers.

1 INTRODUCTION

Cloud Computing has become one of the pre-
ferred means of hosting Information Technology ser-
vices (RightScale, 2018). In the last decade, multi-
ple deployment models have been proposed for such
infrastructures. Initially, cloud computing was only
possible via the use of services offered by big cloud
providers, namely public clouds. Then, the rise of
new technologies, similar to the ones used by big
cloud providers, enabled the deployment of private
clouds, using companies’ own infrastructures. More
recently, an increasing demand for hybrid cloud de-
ployments has emerged. Such kind of cloud deploy-
ments integrates a number of different public and/or
private providers in a single environment, creating
multi-cloud infrastructures. A recent study conducted
by RightScale indicates that 81% of the respondents
used a multi-cloud approach (10% using multiple pri-
vate clouds, 21% using multiple public clouds, and
51% using a hybrid cloud formed by public and pri-
vate cloud providers).

Likewise, different service models for deployment
in cloud computing infrastructures have been pro-
posed. Initially those models were restricted to SaaS

– Software as a Service, PaaS – Platform as a Ser-
vice, and IaaS – Infrastructure as a Service, but nowa-
days almost anything can be provided as a service and
offered by cloud computing providers. One of those
service models particularly has drawn interest from
a large number of researchers and cloud computing
users, FaaS – Function as a Service.

The main goal of a FaaS provider is to allow de-
velopers to deploy functions in highly scalable and
highly available infrastructures, without having to
deal directly with the underlying physical and virtual
infrastructure that will host and execute such func-
tions. Developers who want to use the FaaS service
can then focus on writing highly-specialized code that
performs a single task. The result is a much shorter
development cycle, due to the fact that the code base
will be very small and much easier and faster to be
tested in such environments. Additionally, this model
also enables the application to adopt the widely used
pay-per-use billing model, using a very fine-grain,
based on the number of individual requests made.

The FaaS service model has been made available
by the big cloud providers since 2014, but it has
gained a lot of interest also in the private clouds sce-
nario. Because of that, multiple initiatives to provide

Vasconcelos, A., Vieira, L., Batista, Í., Silva, R. and Brasileiro, F.
DistributedFaaS: Execution of Containerized Serverless Applications in Multi-Cloud Infrastructures.
DOI: 10.5220/0007877005950600
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 595-600
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

595



FaaS support were created, making it possible to de-
ploy FaaS-based services on private and public cloud
computing infrastructures.

FaaS architectures usually rely on the existence of
a main component – API Gateway – that works as
an entry point for the entire platform, i.e., it receives
requests to deploy, update or remove functions and
executes them when an event is triggered or an ex-
ecution request is made to it. The API Gateway is
also responsible for managing the computational in-
frastructure where the functions will be executed and
to increase or decrease the allocated resources for ex-
ecuting the functions, depending on the demand.

Considering the possibility that the user base of
a FaaS-based service is spread around the globe, it
makes sense that the infrastructure that is used for
such service is also distributed around the globe, al-
lowing requests made by users to be handled by in-
stances of the service hosted closer to them.

In this work we analyse the feasibility of imple-
menting distributed platforms that support FaaS, con-
sidering both multi-cloud and federated cloud sce-
narios, that can effectively balance the load between
multiple instances of the service, as well as automati-
cally manage the computational infrastructure capac-
ity available for executing each registered function
(auto-scaling), considering both virtual machines and
containers.

The rest of the paper is structured as follows: in
Section 2, we present work related to this research.
Then, in Section 3 we propose an architecture for
deploying FaaS-based services in geographically dis-
tributed multi-clouds. Thereafter, in Section 4 we
provide a reference implementation of the proposed
architecture. Finally, in Section 6 we present our in-
sights when developing this work.

2 RELATED WORK

Over the course of years, several researches about
cloud computing deployment and service models
have been developed. Such researches aim at pro-
viding cloud-based services that have, among other
characteristics, high availability and scalibility, while
maintaining low operation costs.

Considering the deployment and management
of hybrid multi-clouds, Brasileiro et al. pro-
posed Fogbow – a middleware to federate IaaS
clouds (Brasileiro et al., 2016). This middleware
eases the interoperability of hybrid multi-clouds and
the management of federated cloud resources.

Multiple open source FaaS platforms have been
developed, but they are usually only able to per-

form auto-scaling of function replicas (containers)
and not the auto-scaling of the underlying infrastruc-
ture (Spillner, 2017).

To the best of our knowledge, this is the first time
that the aforementioned technologies or any of their
kind have been combined together to enable the de-
ployment of a FaaS platform in a multi-cloud environ-
ment with auto-scaling of nodes (virtual machines).

3 ARCHITECTURE

In this paper we propose an architecture for deploy-
ing and executing Serverless applications in federated
clouds. This architecture comprises three main com-
ponents: (i) FaaS Cluster, (ii) FaaS Proxy, and (iii)
Multi-Cloud Resource Allocator (MCRA). Such ar-
chitecture is depicted in Figure 1.

The FaaS Cluster, as its name suggests, is a clus-
ter where the actual FaaS platform is deployed. Mul-
tiple instances of the FaaS Cluster are deployed on
geographically distributed cloud infrastructures. This
component receives and processes requests coming
from the FaaS Proxy. It is also responsible for moni-
toring the resources used in each individual cloud, and
request the MCRA to provide more resources when
needed, or release resources when they are no longer
necessary.

The FaaS Proxy is responsible for providing the
same interface that a regular FaaS gateway would.
However, instead of processing the requests directly,
it must choose between either forwarding the request
to a load balancing service or forwarding it to a mul-
ticasting service. This choice depends on the type of
the request received. Requests related to registering
or removing functions available should be sent to a
multicaster service. This service will make sure the
received requests are replicated in all FaaS Clusters
deployed. On the other hand, requests for the execu-
tion of a function are forwarded to a load balancing
service. This service will chose where to execute the
function, based on the geographic location of the user
who made the request and that of the available FaaS
Clusters.

Last but not least, the Multi-Cloud Resource Al-
locator (MCRA) is a component able to allocate or
remove resources in any of the clouds that provide
the infrastructure to the FaaS Clusters. These clouds
may be operated by different providers, and run dif-
ferent orchestrator middleware. The MCRA imple-
ments auto-scaling at the virtual machine level.

IWFCC 2019 - Special Session on Federation in Cloud and Container Infrastructures

596



Figure 1: DistributedFaaS architecture.

4 IMPLEMENTATION

As a proof of concept, we have implemented the ar-
chitecture proposed in this paper based on some of the
most prominent solutions in cloud computing at this
time: Fogbow1, OpenFaaS2, Kubernetes3, HAProxy4

and Asperathos5. Fogbow is used for the provisioning
of virtual machines in a heterogeneous multi-cloud
setting, where the FaaS Clusters will be deployed.
OpenFaaS is used as the FaaS platform of the indi-
vidual FaaS Clusters. It is used for deploying and ex-
ecuting functions, as well as performing intra-cluster
auto-scaling of resources (containers). Kubernetes is
the backend technology used by OpenFaaS to deploy
its infrastrucure. HAProxy, on its turn, is used to im-
plement load balancing at the FaaS Proxy component.
Finally, Asperathos is used for monitoring the usage
of physical resources (memory, CPU, etc.) at each
FaaS Cluster, and perform the auto-scaling of virtual
machines using Fogbow. The implementation of the
FaaS Proxy is complemented with a simple multicas-
ter explained next.

4.1 FaaS Proxy

The FaaS proxy is composed by three subcompo-
nents: (i) an OpenFaaS Gateway Proxy, a (ii) Load
Balancer, and a (iii) Multicaster.

1http://www.fogbowcloud.org/
2https://www.openfaas.com/
3https://kubernetes.io/
4http://www.haproxy.org/
5https://github.com/ufcg-lsd/asperathos

The OpenFaaS Gateway Proxy is an HTTP(S)
server written in Golang that exposes the same API as
a regular OpenFaaS API Gateway. That is, the server
is able to take requests to create, update, and delete
functions, as well as requests for deleting functions
that are no longer needed. When a request for creat-
ing, updating or deleting a function is received, it is
forwarded to the FaaS Proxy Multicaster, so that the
message can then be sent to all FaaS Clusters belong-
ing to the same cloud federation. If a request to exe-
cute a function is received, it is forwarded to the FaaS
Proxy Load Balancer, so that it can choose to which
cloud provider should that request be forwarded.

The FaaS Proxy Multicaster, also developed in
Golang, receives requests from the FaaS Gateway
Proxy and replicates such requests across all FaaS
Clusters currently deployed. If a request fails to be
executed in any of the FaaS Clusters, the Multicas-
ter is responsible for retrying it in background, until
it succeeds. The Multicaster also keeps a history of
all actions performed in time, so that if a new FaaS
Cluster joins the cloud federation, it can replicate the
state of the other FaaS Clusters (deploying the cur-
rently available functions).

The FaaS Proxy Load Balancer, implemented us-
ing HAProxy, receives requests from the FaaS Gate-
way Proxy to execute functions. It then uses a set of
rules configured as Access Control Lists (ACLs) and
the information about the client geographic location
(based on the IP of the sender) to determine to which
FaaS Cluster should it forward the request for execut-
ing a given function.

DistributedFaaS: Execution of Containerized Serverless Applications in Multi-Cloud Infrastructures

597



Table 1: Delay added to messages when sending messages from clients depending on the vLAN used.

Network Source Delay (in ms)
Distributed-faas-main-subnet Client 1 40 ± 5
Distributed-faas-main-subnet Client 2 40 ± 5
Distributed-faas-site-1-subnet Client 1 40 ± 5
Distributed-faas-site-1-subnet Client 2 110 ± 10
Distributed-faas-site-2-subnet Client 1 110 ± 10
Distributed-faas-site-2-subnet Client 2 40 ± 5

4.2 FaaS Cluster

The FaaS Cluster is based on the OpenFaaS platform.
It can be subdivided in two main subcomponents: (i)
FaaS Service, and (ii) Resource Monitor, further de-
scribed in the following.

The FaaS Service is an instance of the OpenFaaS
platform. We have chosen to use Kubernetes as the
underlying technology for deploying it, as it eases the
task of auto-deploying and auto-scaling the contain-
ers that compose a given application or service. The
OpenFaaS platform comprises an API Gateway, re-
sponsible for receiving requests to create, update exe-
cute and remove functions, as well as containers of the
functions themselves. Additionally, we have included
a deployment of a Kubernetes Metrics API, that en-
ables us to collect metrics about the resources (CPU,
memory, etc.) used by the OpenFaaS cluster.

The FaaS Cluster Resource Monitor was imple-
mented in Python using Asperathos, which is a plat-
form to facilitate the deployment and control of ap-
plications running in cloud environments. For the
purposes of this work, we have developed three As-
perathos plugins that are responsible for: (i) col-
lecting metrics from the Kubernetes Metrics API,
(ii) analysing the need for new resources (virtual
machines) or releasing resources that are no longer
needed, and (iii) making the actual requests to the
MCRA to allocate or release resources.

4.3 Multi-Cloud Resource Allocator

The MCRA is based on the Fogbow middleware. It
is responsible for receiving requests from the FaaS
Cluster Resource Monitor to allocate and release re-
sources. Upon receiving a request, the MCRA con-
tacts the Fogbow Resource Allocation Service (RAS),
and asks it to make the necessary adjustments (adding
or removing virtual machines) to the appropriate
cloud where the request came from. This component,
together with the FaaS Cluster enables our solution to
achieve the aimed auto-scaling of resources.

5 EVALUATION

To assess the performance of serverless applications
deployed in a DistributedFaaS environment, we per-
formed a series of experiments that compare it to a
regular OpenFaaS deployment model. In this section
we describe the experiments performed, and present a
discussion based on the results obtained.

5.1 Experiments Setup

The experiments were conducted using 5 virtual ma-
chines running Ubuntu Linux 16.04, each with two
virtual CPUs @2.4GHz and 4 GB of RAM. We used
each of the virtual machines to host two clients, two
OpenFaaS sites and an OFGP as depicted in Figure 2.

To emulate different scenarios in our architecture,
we have also created three vLANs, i.e., Distributed-
faas-main-subnet, Distributed-faas-site-1-subnet and
Distributed-faas-site-2-subnet. Such vLANs were
used to simulate multi-cloud platforms, where the
proximity of the clients to the OpenFaaS sites was
emulated by adding a delay to messages sent from
the clients depending on the vLAN it sends messages
to. Table 1 describes the delay added when sending
messages depending on the vLAN used. The posible
communication paths considering all participants and
vLANs is shown in Figure 2.

In our experiments, we measured the latency that
represents the total time taken from the client request-
ing the server to process a function until the client re-
ceives the response from the server. As the sample
function requested to be executed by our clients, we
used the nodeinfo function6, published by OpenFaaS
itself, which retrieves CPU/network information on
the container where the function is executed.

To benchmark the performance of both deploy-
ments we used the widespread Apache Benchmark
tool7, which provides, among other information, a

6https://github.com/openfaas/faas/tree/master/sample-
functions

7https://httpd.apache.org/docs/2.4/programs/ab.html

IWFCC 2019 - Special Session on Federation in Cloud and Container Infrastructures

598



Figure 2: Experiments Network Diagram.

summary of the latency obtained from performing re-
quests to a given server.

5.2 The Experiments

The experiments consisted of three scenarios. In our
first scenario, which is our baseline evaluation, both
clients performed requests directly to the OpenFaaS
sites closest to them. That is, Client 1 sent the re-
quests directly to OpenFaaS-site-1 while Client 2
sent the requests directly to OpenFaaS-site-2, both
using the Distributed-faas-main-subnet.

In the second scenario, used to evaluate the over-
head of adding the OFGP components, to a regular
OpenFaaS deployment, both Client 1 and Client 2
sent their requests via the OFGP components also us-
ing the Distributed-faas-main-subnet.

In the third scenario, we simulated the overhead
of having geographically distributed multi-clouds by
considering two situations: (i) both Client 1 and
Client 2 sending requests directly to OpenFaaS-site-
1 using the Distributed-faas-site-1-subnet, and (ii)
both Client 1 and Client 2 sending requests directly
to OpenFaaS-site-2 using the Distributed-faas-site-
2-subnet.

In all scenarios of the experiment each client sent
one request to execute the nodeinfo function in the
designated OpenFaaS site and using the described
vLAN. In total, 100 runs of each scenario were ex-
ecuted.

5.3 Results Obtained

Table 2 shows the results obtained from our experi-
ments. From the results obtained, we can show that
the addition of the OFGP components only generates
an overhead of 2.2% when compared with our base-
line deployment model, which uses the OpenFaaS ref-
erence implementation. That overhead is negligible
when compared to the overhead resulting from the use
of geographically distributed multi-clouds which is of
27.1%.

With that being said, we demonstrated that the ar-
chitecture proposed in this paper can be used to en-
able the deployment of serverless applications in dis-
tributed multi-clouds without adding much overhead
to it.

DistributedFaaS: Execution of Containerized Serverless Applications in Multi-Cloud Infrastructures

599



Table 2: Delay added to messages when sending messages from clients depending on the vLAN used.

Latency (in ms) Requests/sec Relative overhead
Scenario 1 (baseline) 290.910 3.44 -
Scenario 2 (OFGP overhead) 297.303 3.36 2.2%
Scenario 3 (Distributed multi-cloud overhead) 369.683 2.81 27.1%

6 CONCLUSIONS

In the first implementation of the proposed architec-
ture we were able to deploy and execute a FaaS plat-
form distributed across federated clouds. This was
done by implementing a new component (FaaS Gate-
way Proxy) that acts as an interface between the users
of the distributed FaaS platform and the actual FaaS
Clusters that are deployed in the federated clouds.

The availability and scalability of functions was
achieved by the use of OpenFaaS and Kubernetes
clusters. By using such technologies, replicas of the
functions are automatically deployed and removed in
virtual machines belonging to a same FaaS Cluster.
We were also able to achieve auto-scaling of virtual
machines in a distributed multi-cloud environment, by
using the Asperathos framework in conjunction with
the Fogbow middleware. This allowed our system to
allocate and release both containers and virtual ma-
chines seamlessly.

The third goal of this work, distributing the load
across the multiple FaaS Clusters based on the ge-
ographic location of users who make the requests
was achieved by writing ACLs to an HAProxy server
proxy.

We have also shown that the use of the OFGP
components only contribute to a small overhead
of 2.2% in latency when compared to a regular
OpenFaaS deployment.

As a future work, we intend to better evaluate the
performance of FaaS-based applications deployed in
such platform, as well as to assess the overall benefits
regarding resources utilisation.

ACKNOWLEDGEMENTS

This work was partially funded by CAPES and Dell
EMC.

REFERENCES

Brasileiro, F., Silva, G., Araújo, F., Nóbrega, M., Silva, I.,
and Rocha, G. (2016). Fogbow: A middleware for the
federation of iaas clouds. In 2016 16th IEEE/ACM

International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 531–534. IEEE.

RightScale (2018). Rightscale
2018 state of the cloud report.
https://assets.rightscale.com/uploads/pdfs/RightScale-
2018-State-of-the-Cloud-Report.pdf. Last access
12/06/2018.

Spillner, J. (2017). Practical tooling for serverless comput-
ing. In Proceedings of the10th International Confer-
ence on Utility and Cloud Computing, pages 185–186.
ACM.

IWFCC 2019 - Special Session on Federation in Cloud and Container Infrastructures

600


