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Abstract: In the context of the CloudDBAppliance (CDBA) project, fault tolerance and high-availability are provided in
layers: within each appliance, within a data centre and between data centres. This paper presents the proposed
replication architecture for providing fault tolerance and high availability within a data centre. This layer
configuration, along with specific deployment constraints require a custom replication architecture. In partic-
ular, replication must be implemented at the middleware-level, to avoid constraining the backing operational
database. This paper is focused on the design of the CDBA Replication Manager along with an evaluation,
using micro-benchmarking, of components for the replication middleware. Results show the impact, on both
throughput and latency, of the replication mechanisms in place.

1 INTRODUCTION

CloudDBAppliance aims at delivering a database ap-
pliance (software and hardware), leveraging the capa-
bilities of newer hardware by incorporating NUMA
awareness, terabyte-scale in-memory processing and
high-availability. This paper focuses on how to pro-
vide a highly available configuration using resources
available within a data centre. Simply put, the goal
is to guarantee that if an appliance fails, a standby
is available to take over, powering a transparent ex-
ecution scenario for the client, thus hiding faults
and maintaining the perceived quality of service.
The operational database is the fulcrum of the high-
availability effort, as it holds the data that needs to be
persisted, either if used directly by an external appli-
cation or along with an in-memory many-core analyt-
ics framework (also a part of the project), providing it
with the necessary data.

Replication is often presented as the solution to
achieve highly dependable database services. Exist-
ing database replication architectural models should
then be examined to determine to what extent their as-
sumptions, strengths and weaknesses hold in this type
of scenario. Namely, the consistency guarantees that
can be afforded, the cost to do so in terms of latency
and processing resources, and their implementation
cost, should be analysed. Ensuring high availability
within a datacentre requires defining a replication al-
gorithm that, in case of a failure, enables the failover
of the operational database to a consistent and up-to-
date standby replica, running in a different appliance.

There are a number of different models for database
replication that mainly differ on: whether transactions
are executed at each replica, or just at one while others
apply updates; and how (if at all) replicas are allowed
to diverge.

In this paper we present the architecture of
the replication middleware for CloudDBAppliance
along with the motivating design constraints. Sec-
tion 2 covers background on replication and fault-
tolerance mechanisms. Section 3 introduces the high-
availability middleware, with Section 4 showing the
preliminary results on the selected replication mech-
anisms. Section 5 concludes the paper and overviews
the major takeaways.

2 BACKGROUND

Replication protocols are often divided into two dis-
tinct approaches: active and passive replication. Ac-
tive replication protocols follow the state-machine ap-
proach (Schneider, 1990) where the database is con-
sidered to behave like a state-machine in which each
operation deterministically causes a change in state:
each operation is forwarded to every replica, which
then executes it. In order for this approach to be ap-
plicable, operations must be guaranteed to be deter-
ministic, precluding the usage of current time values
and random numbers, as these would likely differ be-
tween replicas.

In contrast, in passive replication protocols, com-
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monly referred to as primary-backup, only the pri-
mary replica executes the transaction, propagating the
transaction’s write set to other replicas. The primary’s
native database engine concurrency control decides
which transactions to commit or abort, and in which
order. To ensure that replicas remain consistent, these
must know or decide on the same serialization or-
der as the primary. In a multi-primary setting, i.e.,
where, for example, different replicas may have the
role of primary for different parts of the data, each
transaction still executes in a single primary, but hav-
ing several primaries means that these must agree on
a total order for transaction execution, as a transac-
tion might update data owned by multiple primaries.
If replicas apply updates according to that total or-
der, strong consistency is guaranteed. Group com-
munication protocols that guarantee message deliv-
ery with appropriate semantics, which are instances
of the abstract consensus problem (Guerraoui and
Schiper, 2001), can be used for that purpose. In
(Wiesmann et al., 2000), the authors compare differ-
ent approaches for replication as well as the primitives
needed in each case and a survey of atomic broadcast
algorithms can be found in (Défago et al., 2004).

Because the total order property guarantees that
all replicas receive the same set of messages and that
messages are delivered in the same order to all repli-
cas, the transaction order can be established simply
by sending the transaction identifier (along with other
relevant metadata) to the group; if transactions are
queued in the same order in which the respective mes-
sages are delivered, the queues at each replica will
be identical and can be considered as instances of a
replicated queue. Because active replication requires
every replica to execute every transaction, if non-
determinism in transactions is allowed and strongly
consistent replication is a requirement, performance
is limited by the slowest replica in the group. While
passive replication protocols do not suffer from this
limitation, transferring large write sets across the net-
work to several replicas can be costly. Protocols that
combine active and passive replication have been pro-
posed (Correia Jr et al., 2007). There have also
been proposals for mitigating the limitations of state-
machine replication, namely by implementing spec-
ulative execution and state-partitioning (akin to par-
tial replication) (Marandi et al., 2011) and eschew-
ing non-determinism by restricting valid execution to
a single predetermined serial execution (Thomson
and Abadi, 2010). Using primary-backup (and multi-
primary), ownership of data partitions must be guar-
anteed to be exclusive. This means that when the pri-
mary fails, the database must block until a new pri-
mary is found, usually through a leader election pro-

tocol. This is costly, particularly in churn-prone envi-
ronments.

Figure 1: Strategies for database replication.

Having stand-by failover replicas might avoid
most runs of the leader election protocol, but at the
cost of increasing the number of replicas that need
to be updated in each transaction, thereby increas-
ing network utilization and generally increasing the
number of nodes in the system without a correspond-
ing improvement in system throughput. Update-
everywhere protocols avoid this issue because all
replicas are equivalent. Again, replicas must apply
updates according to the defined total order to guar-
antee correctness. Database replication protocols can
also be classified in terms of when the client is noti-
fied that the transaction has been committed: in ea-
ger (synchronous) replication protocols, the client is
only replied to after all replicas have committed the
transaction (using, e.g., two-phase commit (2PC)),
which can be costlier in terms of latency but provides
stronger consistency; lazy (asynchronous) replication
protocols reply to the client as soon as the transac-
tion has committed in some replica, later propagating
updates to other replicas, providing weaker consis-
tency because of potential temporary divergence be-
tween replicas. An alternative definition is to consider
whether updates are propagated to other replicas be-
fore the transaction is committed at the primary using
a primitive that guarantees delivery and the appropri-
ate message order properties needed by the protocol.

Figure 1 depicts distinct strategies for a replicated
database system and how replication can be imple-
mented at that level:
• SQL-based, at a middleware layer, above the

database engine layer;
• Log shipping, at the database engine layer; and
• Block Device, at the storage layer, below the

database engine layer.
Active replication can be implemented above the
database engine layer by reliably forwarding SQL
statements from clients to all replicas, handling syn-
chronization/recovery at this level, when needed.
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HA-JDBC (High Availability JDBC) (Paul Ferraro,
2014) is an open source tool that can be used to im-
plement replication at this level, using the JDBC stan-
dard to communicate with the database layer, mak-
ing it generic. At the database engine layer, pas-
sive replication can be implemented by, for example,
recording updates in a transactional log that can then
be shipped to other replicas and replayed. Concep-
tually, leader election can be handled either at this
layer or above. Active replication can be implemented
by sending each operation to other replicas, handling
synchronization/recovery at this level. The imple-
mentations of replication protocols at this level tend to
be tightly coupled to the specific database engine and
its internals. At the storage layer, passive replication
can be implemented by mirroring block devices be-
tween the primary and backup replicas. However, in
current solutions such as DRDB (LinBit) (Ellenberg,
2007), while an underlying protocol guarantees detec-
tion and recovery of lost updates, there is no notion
of transactional context for the blocks, so transaction
atomicity/consistency cannot be enforced at this level.
Leader election would need to be handled above. Ac-
tive replication does not make sense at this level.

3 HIGH AVAILABILITY

In the context of the CloudDBAppliance, appliances
can be defined as the integration of software with high
performance computing hardware to provide a main-
frame analogue for data processing. Providing high
availability within a data centre means, in this con-
text, providing fast failover between consistent repli-
cas. Minimizing any synchronization overhead dur-
ing normal operation is a concern, addressed by im-
plementing replication at the middleware level, which
makes it independent of the operational database.
This decoupling also prevents the design of the opera-
tional database from being constrained by replication.

Unlike common replication scenarios, due to the
considerable amount of resources that each appliance
represents, replicas are limited to two. This precludes
approaches based on quorums, which require at least
3 replicas to function correctly. The solution, feasible
considering a data centre environment, is to assume
the existence of an eventually perfect failure detec-
tor (Chandra and Toueg, 1996). In the following sec-
tions we describe the proposed replication architec-
ture and protocol.

3.1 Architecture Overview

This section discusses the proposed replication archi-
tecture its integration with the operational database.
Replication is implemented at the SQL level, as de-
picted in Figure 2, as a middleware layer, making
it transparent to the operational database and client
applications. The middleware intercepts SQL state-
ments and is able to perform tasks such as removing
non-determinism or imposing a total-order on state-
ments before forwarding the processed statements to
the operational database instances as required. This
simplifies integration in existing systems, as it re-
quires only a configuration change in JDBC drivers
and data sources.

Failure
Detector

Operational
Database

Replication
Manager

JDBC proxy

Failure
Detector

Operational
Database

Replication
Manager

appliance 2appliance 1 primary standby

SQL
data/acks

Application

JDBC proxy

Application

Figure 2: High Availability conceptual architecture.

Figure 2 depicts the proposed architecture for the
intra-data centre replication and fault tolerance pro-
tocol, considering applications running outside the
primary appliance. Appliance components include a
Replication Manager (RM), a Failure Detector (FD)
and the operational database (opDB). Clients connect
to the replication manager through a JDBC proxy. In-
tercepting requests from client applications to the op-
erational database is key as these contain SQL state-
ments, parameters, and a variety of control com-
mands. Replies return data to the application and re-
port various status information. The JDBC interface
provides just that.

3.2 Replication and Fault-Tolerance
Algorithms

The replication and fault tolerance protocol is based
the state machine depicted in Figure 3, which shows
the primary, standby and recovering states, along with
the allowed state transitions.

Normal protocol operation is described in Algo-
rithm 1.
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Figure 3: State machine for the replication and fault-
tolerance protocol.

Algorithm 1: CDBA replication protocol - regular sce-
nario.

1: Applications send SQL statements to the pri-
mary’s Replication Manager (RM).

2: Non-determinism in SQL statements is removed
by the primary’s RM.

3: Statements are logged and reliably sent to the RM
of the standby appliance.

4: RMs push SQL statements to their opDB replica.
5: The primary’s opDB replies are forwarded to the

application via JDBC.

Algorithms 2, 3 and 4 describe how failover and
recovery are handled.

Algorithm 2: CDBA replication protocol - failover.

1: The standby’s Failure Detector (FD) reliably de-
tects the failure of the primary.

2: Standby takes over, becoming primary.

Regarding Algorithm 3, if the other appliance is
offline, the recovering appliance could serve a pos-
sibly stale version of the data. Also, the recovering
appliance cannot become the primary in this situa-
tion to prevent inconsistencies, as the other appliance
may have committed transactions before failing itself.
Also, a process for breaking ties regarding which be-
comes the primary, when both appliances become on-
line, is required.

During state transfer, reads can still be served by
the primary from a consistent snapshot.

4 PRELIMINARY RESULTS

In this section, we evaluate a set of JDBC-based
mechanisms, considering different configurations,
and compare these to a non-replicated baseline. All
tests ran over CDBA’s operational database (opDB)
and none required specific database-level configura-
tion.

Algorithm 3 : CDBA replication protocol - recovery
(restart).

1: Appliance starts in the recovering state.
2: if the other appliance is available then
3: if this appliance is up-to-date then it enters

the standby state.
4: else a state transfer process ensues.
5: else this appliance remains in the recovering

state.
6: When both appliances become online, one be-

comes the primary.

Algorithm 4 : CDBA replication protocol - recovery
(state transfer).

1: The primary pauses transaction processing, queu-
ing requests.

2: The primary sends its state (or missing transac-
tions) to the recovering appliance.

3: Once up-to-date, the recovering replica enters the
standby state and normal operation resumes with
pending requests.

Each configuration was tested using the YCSB
benchmark with balanced read and write operations
(50/50). It should be pointed out that as the num-
ber of performed operations increases, the number of
records loaded into the database also increases. First,
we present an assessment of the overhead each JDBC
technology introduces without replication. The se-
lected technologies include an implementation that
provides high availability (HA-JDBC) and an imple-
mentation that uses a client-server model that matches
the architecture proposed in Section 3.

Then we evaluate each mechanism in a replicated
setting and compare these with the implementation
proposed in Section 3.

4.1 JDBC Overhead

The baseline configuration consists of accessing a sin-
gle opDB instance directly. HA-JDBC (Paul Ferraro,
2014) enables high-availability by allowing an appli-
cation to use clusters of identical databases through
an embedded client. V-JDBC (Michael Link, 2007),
on the other hand, provides a client-server interface
for remote databases, offering a selection of transport
protocols, but lacks replication awareness. For these
experiments, V-JDBC was configured to use Remote
Method Invocation (RMI) (Pitt and McNiff, 2001) as
the service protocol.

Figure 4 shows throughput for the baseline, HA-
JDBC and V-JDBC over a single opDB instance, as
the number of operations per second [ops/sec]. Ex-
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periments were ran for databases of different sizes:
from ten thousand to three million records. Increas-
ing the size of the database seems to have an impact
on throughput.
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Figure 4: Mean throughput for JDBC proxies under increas-
ing workloads.

Results show that the HA-JDBC middleware,
even without replication, imposes a high penalty on
throughput, when compared to the baseline (41,15%).
V-JDBC imposes an even higher overhead, due to its
client/server architecture.

Latency for read operations is depicted in Fig-
ure 5, considering the same workloads. Results match
those presented for throughput with V-JDBC impos-
ing the highest penalty on latency and still significant
overhead introduced by HA-JDBC. Read latency re-
mains stable even as the number of pre-loaded items
in the opDB increases.
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Figure 5: Mean read latency for JDBC proxies under in-
creasing workloads.

Table 1: Evaluated configurations.

Configurations Description
Baseline Direct access, 1 opDB instance
HA-JDBC 2 HA-JDBC, 2 opDB instances
V-JDBC HTTP V-JDBC using HTTP
V-JDBC AUGEO AUGEO’s V-JDBC (HTTP)
CDBA CDBA with 1 opDB instance
CDBA 2 CDBA with 2 opDB instances

4.2 Evaluation of Replication
Mechanisms

The implementation of CloudDBAppliance’s Repli-
cation Manager merges HA-JDBC with V-JDBC, en-
abling the system to establish clusters with groups
of replicas with the proxy capabilities of V-JDBC.
This enables requests to be marshalled and transmit-
ted across a network, delivering them to a remote in-
stance. In this section, we evaluate each component
along with the integrated version in non-replicated
settings and settings with two replicas. This micro-
benchmarking campaign focuses on evaluating repli-
cation algorithms during normal operation, i.e., in the
absence of faults.

Table 1 provides an overview of the evaluated
replication configurations. The baseline is, as in Sec-
tion 4.1, direct access to a single instance of the
CDBA’s operational database. We evaluated V-JDBC
using HTTP as the transport protocol, including a
vendor-specific implementation over HTTP, that uses
a different serialization mechanism to marshal pack-
ets over the network, Augeo (Augeo Software, 2016).
HA-JDBC was evaluated in a replicated configura-
tion, with two opDB instances (HA-JDBC 2). The
replication protocol proposed in Section 3, realized
in CDBA’s Replication Manager was evaluated both
in a non-replicated setting and a setting with two
opDB replicas (CDBA 1 and CDBA 2, respectively).
In either configurations with 2 opDB instances, no
additional synchronization mechanisms were config-
ured. This ensures that the requests are replicated
solely by the JDBC-based middleware, and does not
take advantage of the synchronization mechanisms of
the underlying opDB instances. Also, request load-
balancing was not enabled, with read requests di-
rected to the primary replica, where applicable. Eval-
uation of the replication mechanisms was conducted
on a scenario with 100K pre-populated records.

Figure 6 shows the throughput achieved by the
configurations in Table 1. Comparing results for V-
JDBC RMI (Figure 4), V-JDBC HTTP and V-JDBC
AUGEO shows a slight improvement for V-JDBC
HTTP over V-JDBC RMI, with V-JDBC AUGEO per-
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Figure 6: Mean throughput for configurations in Table 1.

forming even better. CDBA achieved a throughput
of approximately 250 operations per second, lower
than that of HA-JDBC and V-JDBC HTTP and V-
JDBC AUGEO, but practically on par with V-JDBC
RMI. Regarding replicated setups, HA-JDBC 2 and
CDBA 2 achieved similar throughput, of approxi-
mately 100 operations per second. As CDBA’s repli-
cation management derives from HA-JDBC this is to
be expected. Impact on throughput is justified by
the need to maintain two state machine instances:
one per opDB instance. Moreover, because an ac-
tive replication mechanism is being used, to ensure
consistency, an answer to the client is only provided
once both opDB instances have successfully applied
all changes.

Figure 7 shows the mean latency of read and write
operations, for the configurations in Table 1.

The impact of marshalling and sending requests
across the network is visible both in write and read
latencies for V-JDBC HTTP but, to a lesser extent,
on V-JDBC AUGEO, when compared to the base-
line. This is a consequence of the more efficient seri-
alization mechanism in V-JDBC AUGEO, as, in fact,
mean read latency for V-JDBC AUGEO is on par with
HA-JDBC 2. Capitalizing on V-JDBC AUGEO’s ef-
ficiency, mean read latency for the CDBA 2 configu-
ration is also on par with HA-JDBC 2. For more de-
manding workloads, the ability to use load balancing
for read requests will likely yield better read latency
in the replicated scenarios, when compared to single-
replica scenarios.

The impact of replication is most visible on writes
as mean latency for HA-JDBC 2 and CDBA 2 is
significantly higher than for single replica configura-
tions. Regarding HA-JDBC 2, several factors con-
tribute to the increase in latency: (1) execution on
the standby replica takes place only after the success-
ful execution on the primary; (2) a result is only re-
turned to the client after comparing results from the
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Figure 7: Mean latency of read and write operations for
configurations in Table 1.

standby to the primary’s. Regarding CDBA 2, over-
head is due to: (1) preprocessing the query to remove
non-determinism; (2) serialization and network com-
munication (3) ensuring queries are guaranteed to be
delivered to both the primary and the standby and in
the same order; (4) waiting for both replicas to ac-
knowledge the write was successful before notifying
the client.

This benchmarking campaign exposed the over-
head imposed by each feature of the replication proto-
col. First, we showed how using a client-server model
for JDBC adds overhead and the impact of different
transport protocols, when compared to other JDBC
models (HA-JDBC) and the direct access baseline.
Second, we showed the performance penalty for intro-
ducing replication to the client-server JDBC model.
The penalty is most noticeable on write requests,
as evidenced by results on write latency. Neverthe-
less, performance largely follows what is observed
for other high-availability providers, notwithstanding
CDBA’s additional ability to forward JDBC objects
across the network. This ability endows CDBA’s
Replication Manager with extended flexibility in ex-
ploring different replication configurations, namely
based on multiple communication patterns, as it de-
couples the client from the operational database in-
stances.

5 CONCLUSION

This paper introduced CloudDBAppliance’s replica-
tion architecture for high-availability within a data
centre, along with a proposed replication protocol.
Moreover, it provides a set of micro-benchmarks that
evaluate the performance of each component with dif-
ferent configurations, as well as the impact of each

ADITCA 2019 - Special Session on Appliances for Data-Intensive and Time Critical Applications

640



feature. Results show the penalty on throughput and
latency of decoupling clients from database instances
by leveraging a client-server implementation of JDBC
and, particularly for writes, of introducing a replica-
tion mechanism for high-availability.

The proposed replication mechanism, that pro-
vides high-availability while still decoupling clients
from database instances, performs with minimal over-
head regarding other proposals for implementing
high-availability at the SQL level, namely HA-JDBC.
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