
Quality Aspects of Serverless Architecture: An Exploratory Study on
Maintainability

Louis Racicot1, Nicolas Cloutier1, Julien Abt2 and Fabio Petrillo2

1École Polytechnique de Montréal, Montréal, Canada
2Université du Québec à Chicoutimi, Chicoutimi, Canada

Keywords: Function as a Service, Serverless, Software Architecture, Maintainability, Cloud Computing.

Abstract: Serverless architecture is emerging more and more popular as the tools are becoming cheap and more acces-
sible. This way of designing an architecture presents many advantages especially for computing intensive and
event-driven applications. Stateless functions are the foundation for these types of architectures, and it might
cause an impact on the maintainability of the software. In this paper, we statically analyzed 25 open-source
projects using serverless architecture to bring out metrics that applies to the different characteristics of software
maintainability. We found out that some characteristics are positively impacted whilst some other seems to
be negatively impacted. This paper thus provides findings on the current state of the projects’ maintainability
using serverless architecture.

1 INTRODUCTION

Serverless architecture is an execution model where
the provider dynamically manage the resources re-
quested by an application. Despite the name, server-
less computing still require servers. In fact, serverless
computing can be seen as leasing a server for a very
small amount of time before releasing it for another
application to use it. Most modern application use
serverless computing for CPU heavy task and ded-
icate smaller server that they can scale horizontally
for the routing. Typically, theses smaller server are
stateless so that they can send the CPU heavy tasks
to the lambda functions asynchronously and continue
with the execution until the functions return its re-
sults. This create a non blocking pipeline that is very
efficient, very scalable and easily maintainable. A big
promoter of this architecture is Netflix, proving that
the leap of faith is actually fealisable when done cor-
rectly.

Since its inception, consumers have discovered a
growing number of use cases for the serverless archi-
tecture. The most notable use cases are automated
backups, scheduled Cron jobs, processing uploaded
object (ie: on S3), analyzing log or simply processing
and arbitrarily payload. All theses tasks are known to
be CPU extensive, but each one of them already had
one or many solutions in place. The serverless pay-
per-use business model is interesting for all of theses

task. Considering that hosting and compute power
is one of the biggest recurring cost for startup aside
from workforce, it is interesting for them to know the
trade-off of each solution in order to make the most
profitable choices. Given all of the possible services
that can achieve the same results, it can be expensive
to prototype them all to assert which service is the
most suitable for a given problem. Serverless archi-
tecture is gaining popularity due to its interesting pric-
ing model. The growth in popularity of this model
certainly raises concerns as it is used as a replace-
ment for existing service architectures that are at the
moment mature, somehow scalable and maintainable
(Shadija et al., 2017).

In the recent years Amazon along with other big
technology companies have started to offer server-
less options as part of their cloud systems solutions.
Among others, there are known solutions such as
AWS Lambda (Amazon, 2017b), Microsoft Azure
Functions (Microsoft, 2017) and Google Cloud Func-
tions (Google, 2017).

As serverless architecture is fairly new, it is yet
to be proven beneficial as a solution. In this paper,
we analyzed the maintainability of different serverless
project. Our main research questions is:
RQ: Does the strain of creating serverless functions
impact the maintainability?

The purpose of this paper is to identify maintain-
ability aspects in serverless based solutions and to un-

60
Racicot, L., Cloutier, N., Abt, J. and Petrillo, F.
Quality Aspects of Serverless Architecture: An Exploratory Study on Maintainability.
DOI: 10.5220/0007842000600070
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 60-70
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



cover those findings for potential future researches.
Furthermore, we will discuss the current popular
methods for deploying serverless solutions and cur-
rent trends in configuration management for this type
of project. To present our results and discussions, we
first define what is serverless architecture. Then, we
present the related work. After that, present be pre-
sented our methodology along with our results. We
then discuss our findings. Finally, we present our con-
clusion and future work.

2 BACKGROUND

2.1 Serverless and FaaS

Serverless architecture is a model of cloud com-
puting services that cloud providers offer and man-
age dynamically allocated computational resources,
pricing by consumed resources (for example number
of requests) rather than on prepaid units of capac-
ity. Sbarski (Sbarski, 2016) defined five principles of
serverless architectures:

1. Use a compute service to execute code on demand
(no servers).

2. Write single-purpose stateless functions.

3. Design push-based, event-driven pipelines.

4. Create thicker, more powerful front ends.

5. Embrace third-party services.

Function as a service (FaaS) is a type of serverless ar-
chitecture that implies a service written with a set of
individual functions which are all entry points in the
program. These functions are individually deployed
and versioned, and are stateless in the sense that each
public function call is run in a new runtime environ-
ment. Persistence is only available through external
storage solutions such as a database. In fact, Faas is
one way to implement serverless architecture.

In general, theses functions are connected to the
client services with an independent interface like a
REST API. Stateless functions are usually better for
short-run time execution even if it is possible to let
it run longer. It is usually designed to respond to a
query, process some data and give a response. It is
not designed be pending and waiting for other queries.
The figure 1 is an example of a typical function as a
service.

Compared to other solutions such as PaaS, SaaS
or IaaS (Infrastructure as a Service), FaaS is the solu-
tion that allows the most control over the code while
allowing no control at all over the infrastructure. That
way, developers are able to focus only on the code

Figure 1: Example of a Stateless Function Generic Archi-
tecture on AWS Lambda (Golden, 2016).

and its deployment when the FaaS provider takes care
of the whole server infrastructure and configuration
(Baldini et al., 2017).

Notably, a serverless architecture is more cost-
efficient than owning or renting a cluster due to the
periods of non-utilization that are not billed to the
consumer. A serverless architecture also make the
code development easier, since the multi-threading
and the scaling is taken care of by the provider.
In counterparts, a serverless architecture suffer from
some latency when a function has to be initiated after
not being used for a long period of time. Also, for
very high CPU intensive task, a serverless architec-
ture might not be suited due to the limited resources
allocated for each function. Finally, the consumer
does not have the control of their server. This can
make the deployment, the monitoring harder. This
also constraint the user to a small subset of languages.

2.2 Maintainability

Software maintainability can be described by “the
ease with which a software system or component can
be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment”
(Committee et al., 1990).

Furthermore, the international standard ISO/IEC
25010:2011 defines maintainability as the “degree
of effectiveness and efficiency with which a product
or system can be modified by the intended main-
tainers ” and breaks it down into five subcategories:
modularity, reusability, analysability, modifiability
and testability (ISO/IEC, 2010). It also states that
maintainability includes the installation of updates
and upgrades, which, in the context of FaaS, can be
interpreted as the deployment.

Multiple definitions of maintainability by differ-
ent software quality models exist. The McCall model

Quality Aspects of Serverless Architecture: An Exploratory Study on Maintainability

61



(Cavano and McCall, 1978) describes maintainability
using four criteria:

• Simplicity

• Conciseness

• Self-descriptiveness

• Modularity

Similarly, the Boehm’s quality model (Boehm
et al., 1976) defines maintainability as a product of
multiple characteristics

• Testability

• Understandability

• Modifiability

Which themselves depends upon multiple
sub-characteristics which are Consistency, Ac-
cessibility, Communicativeness, Structuredness,
Self-descriptiveness, Conciseness, Legibility and
Augmentability.

Finally, ISO 25010 (ISO/IEC, 2010) de-
scribes maintainability as a product of a few
sub-characteristics:

• Analysability

• Modifiability

• Testability

• Modularity

• Reusability

To help up having a better understanding of what
maintainability is, we sum up all the characteristics of
different quality models in Table 1.

Table 1: Relation between maintainability characteristics
and quality model.

Quality model

M
cC

al
l

B
oe

hm

IS
O

25
01

0

Simplicity X
Conciseness X X
Self-descriptiveness X X
Modularity X X
Testability X X
Understandability X
Modifiability X X
Analysability X
Reusability X

Visser (Visser et al., 2016) used ISO 25010 as
quality model to define his metrics. An interesting
part of his work is that even though simplicity and
conciseness are not even part of ISO 25010, two met-
rics (unit complexity and unit size) can account for
these characteristics. The understandability is the
only characteristic not used in Visser’s model. It
can be calculated using the three metrics defined in
Nazir’s paper (Nazir et al., 2010). These metrics are
namely Inheritance, Coupling and Cohesion. How-
ever, most of the projects we analyzed don’t use
classes and therefore the inheritance metric does
not apply. Furthermore, we show in our results that
projects using serverless technologies generally have
a low coupling and are very small, which is a good
sign for a strong cohesion. Because of that, we de-
cided not to analyze understandability in detail, al-
lowing us to use only Visser’s model.

3 MAINTAINABILITY AND FaaS

In this section, we examine how a serverless archi-
tecture can impact the aspects of maintainability. For
each of them, we formulate a hypothesis. This hy-
pothesis will later on be verified based on the relation
between the characteristics of maintainability and the
empirically measurable properties of the system, as
defined by Visser, as presented in Table 2.

Table 2: Relation of sub characteristics and system proper-
ties.

Vo
lu

m
e

D
up

lic
at

io
n

U
ni

tc
om

pl
ex

ity

U
ni

ts
iz

e

U
ni

ti
nt

er
fa

ci
ng

M
od

ul
e

co
up

lin
g

C
om

po
ne

nt
ba

la
nc

e

C
om

po
ne

nt
in

de
pe

nd
en

ce

Analysability X X X X
Modifiability X X X
Testability X X X
Modularity X X X
Reusability X X

Relation of sub-characteristics and system properties
(Visser et al., 2016)

3.1 Modularity

ISO25010 describes modularity as the “degree to
which a system or computer program is composed
of discrete components such that a change to one

ICSOFT 2019 - 14th International Conference on Software Technologies

62



component has minimal impact on other compo-
nents.”(ISO/IEC, 2010) If we assume that most
serverless projects are designed using this guideline,
it should imply that serverless architecture complies
with the modularity aspect of maintainability. Conse-
quently, we can formulate our first hypothesis:

H1: Software that uses serverless technologies have a
low module coupling, their components are well bal-
anced and are independent. Thus, it complies with the
modularity aspect of maintainability.

3.2 Reusability

The reusability is the possibility of an asset to be used
by more than one system. Since serverless functions
are available by an HTTP request and that it runs
completely independently from the software that
uses it, we can suppose that serverless architecture
enforce the reusability aspect of maintainability.
As GC. Fox at al. stated, serverless is good for
short-running, stateless and event-driven codes such
as micro-services (Fox et al., 2017). Furthermore,
because of the nature of a serverless function, it only
has one interface available but does not enforce a
maximum number of parameters. However, we still
suppose that most developers keep a small number of
parameters.

H2: Software that uses serverless technologies have
small units of code with a small interface.

3.3 Analysability

The analysability of a project describes how easy it is
to diagnose and test the components of the project.
Visser states that the metrics that have an impact on
the analysability are the size of the code base, the
amount of duplicated code, the size of the units of
code and the balance of the components. Serverless
providers, though they limit the execution time of a
function, do not have any restrictions for its volume.
It is possible to run large pieces of code as FaaS,
but we suppose that most serverless code is quite
small. As said previously, we also suppose that the
unit size should be small. However, we think that
a serverless architecture does not have a positive
impact on the code duplication in the case where a
project uses multiple serverless functions. Because
all functions have to be independent, we expect to
find the duplication of libraries and helper functions.
Finally, we suppose that serverless architecture does
not have an impact on the component balance.

H3: Software that uses serverless architecture has a
small serverless code base and small units of code,
but it has duplicate code.

3.4 Modifiability

The modifiability of a system represents how easy
it is to modify the code without introducing defects
or degrading the quality of the existing product
(Committee et al., 1990). The modularity and the
analysability influence the modifiability because it
includes the coding activities as well as the design,
the documentation and the validation of the new
code. Factors that influence the modifiability are the
amount of duplicated code, the complexity of the
code units and the coupling between the modules.

H4: Software that uses serverless technologies tends
to be easy to modify because it has simple units of
code and low coupling.

3.5 Testability

The testability is the ease to define and execute tests.
We already emit hypotheses concerning the volume
of the code, the complexity of the code units and the
component balance. However, we would like to add
some qualitative details about this aspect. While tests
can be easily defined and executed locally, the local
environment might not behave exactly like the service
provider. It is especially true if we want to test the
execution time or if we have a lot of environment
specific configuration. We can overcome these
problems if the deployment on a test environment
is easy to do. We will talk about this in the next
subsection.

H5: Software that uses serverless technologies are
easy to test because they have a small code base, they
have simple units of code and they are made of inde-
pendent components.

4 ASPECTS OF CODE
MANAGEMENT

4.1 Deployment

The ability to easily deploy or install an update is a
crucial part of the maintainability. We consider that
even if a code is very easy to modify, developers or
release engineers need to be able to deploy their mod-
ifications quickly, without breaking the application or

Quality Aspects of Serverless Architecture: An Exploratory Study on Maintainability

63



introducing deployment-related issues. When we are
talking about deploying a serverless function, things
can become complicated. Multiple functions can re-
quire to be deployed at the same time if their interface
or behaviour changes.

How do you deploy the application in those
cases? Do you have to deploy the function and the
client at the exact same time? What if the function
has multiple clients? Does your provider allow to
have multiple versions of the function at the same
time? And if so, would your application be flexible
enough to allow the coexistence of multiple version
of the function without producing inconsistencies
in your data? These questions cannot be answered
by empirical data from the code so instead, we will
bring what we have found in the literature to verify
our hypothesis.

First of all, there are some tools that can ease
the deployment. For example, the Serverless Frame-
work(Framework, 2017) offers a range of functionali-
ties to quickly put code into production with a variety
of cloud services providers.

Another important part of the deployment is the
management of deployed versions. If multiple clients
are using FaaS, you might not want to upgrade them
all at the same time if you upload a new version of
your function that breaks the backward compatibility.
Some providers such as AWS have a very straight for-
ward versioning system that allow multiple versions
of the same function to coexist. Other providers like
Google Cloud and Microsoft Azure don’t have such
an easy way of managing versions.

In any cases, there seems to have a certain
overhead in the management of versions and thus, we
formulate the following hypothesis:

H6: The complexity of deployment of serverless soft-
ware is harmful for its maintainability.

4.2 Configuration Management

Because the serverless functions are completely inde-
pendent from each other and from the client’s soft-
ware, they can be seen as a different program. They
can also be developed and maintained by different
teams, which makes each serverless function a differ-
ent project. There is also an explicit dependency be-
tween the functions and their clients, and there can be
dependencies between the serverless functions them-
selves. On a large scale, this can lead to complex de-
pendency problems likes the ones that package man-
agers have to handle, and we haven’t found a real so-
lution to that problem yet. The technologies are still

too young to be confronted to this problem, but it
is something that could happen in the future. On a
regular scale projects, however, this leads to a wide
and still unresolved question that is way beyond the
scope of this paper: mono-repository versus multi-
repository (Potvin and Levenberg, 2016; Potencier,
2016; Cavale, 2016).

Having only one repository per lambda can help
to set up continuous integration tools (Amazon,
2017a). On the other hand, it is much easier to man-
age each functions of a project in a single repository,
especially if all functions are only bound to a single
project.

H7: Configuration management for software that uses
serverless technologies is still an open question.

5 STUDY DESIGN

The maintainability of a project has multiple aspects.
The most prominent one is the maintainability of the
code which can be measured (Visser et al., 2016). We
mainly investigated maintainability aspects using the
following strategy:

1. Qualitatively discuss possible maintainability and
management issues, formulating seven hypothesis
(sections 3 and 4)

2. Extract meaningful metrics from FaaS projects to
provide empirical results

3. Compare our discussion with empirical results to
evaluate the state of maintainability

4. Discuss how code source is managed within con-
figuration management system and deployment
tools

To empirically analyze the impacts of FaaS on
the code maintainability, we analyzed open-source
projects from Github (Just Serverless, 2017) using
serverless architecture.

5.1 Practices and Tools

To extract the metrics, we used BetterCodeHub, an
online static analysis service whose criteria ares base
on guidelines for more maintainable code (Visser
et al., 2016). BetterCodeHub test various maintain-
ability aspects of project’s source code. The results
are organized in a way that the issues are shown to
the user of the service with specific reasons why it
failed. It has the limitations of analyzing only GitHub

ICSOFT 2019 - 14th International Conference on Software Technologies

64



projects and the size of the code base is limited to 100
KLOC in the free version. However, it was not a true
limitation because of FaaS projects are usually small
in terms of lines of code.

BetterCodeHub is used to test our hypothesis be-
cause it adopts the same guidelines criteria as SIG
for evaluating the maintainability (Software Improve-
ment Group, 2017; Visser et al., 2016). We can link
our hypothesis to the guidelines using Table 2.

5.2 Analyzed Serverless Projects

To test these hypotheses, we manually inspected a cu-
rated list of serverless projects and we filtered them
based on the following criteria: (1) the project must
be based on the function-as-a-Service pattern; (2) the
project must be of a non-trivial in complexity and in
size; (3) the project must be analyzable by Better-
CodeHub.

With theses criteria, we found 25 projects (table 3)
varying from 1 function to 95 functions. We note that
the project with only one function has been accepted
due to its complexity. It is an SSH certificate author-
ity with test coverage (Netflix, 2017). The projects
are chosen to be as diverse as possible. We need to
use projects from different authors and with different
scope in order to ensure that the results won’t be bi-
ased.

To find the number of functions, a manual inspec-
tion must be done. Depending on the framework and
its version, the information about them is not at the
same place. For example, the serverless framework is
using a yml configuration file after the version 1.0 to
manage every function (Serverless Inc., 2017).

6 RESULTS

All these results have been compiled in Table 3. The
biggest offenders for the guidelines in the selected
projects are the size and simplicity of units, the du-
plication of codes and the size of the parameters. The
modules and components guidelines are nearly com-
plying.

Finally, the sum of all metrics can be reported to
the initial characteristics of maintainability as shown
on Table 4 and discussed in the next section of this
paper.

Our results show that most of analyzed projects
separate concerns in modules, Couple Architecture
Components Loosely, keep architecture components
balanced, keep the codebase small, and Write Clean
Code. However (1) 88% (22/25) of analyzed projects
do not write short units of code; (2) 60% of projects

(15/25) write complex units of code and 52%
(13/25)do not use well automated tests; finaly (3) 60%
(15/25) tend to have complex unit interfaces.

7 DISCUSSION

With theses results in mind, we discuss the aspects of
maintainability and management, evaluating our hy-
potheses.

7.1 Modularity

H1: Software that use serverless technologies have a
low module coupling, their components are well bal-
anced and are independent. Thus, it complies with the
modularity aspect of maintainability.

Serverless Programming is at its core a way to
make services. We expect theses small services to
increase modularity compared to a monolithic multi-
layer application (Shadija et al., 2017). They ensure
a strong separation of the different behaviours with
an interface and that they are all self-contained. Thus
we are not surprised that our results seem to confirm
a good modularity. All the different criteria for the
first hypothesis are validated on the majority of the
projects analyzed.�
�

�
�

Software that use serverless technologies have a
low module coupling, their components are well
balanced and are independent.

7.2 Reusability

H2: Software that use serverless technologies have
small units of code with a small interface.

It seems that serverless projects tend to have big
units of code and the majority of the analyzed projects
do not respect the required criteria. However, we note
that a bigger project, such as MoonMail, does not
mean a greater chance of facing this issue. Server-
less architecture should not prevent code reusability.
It’s still possible to split the code in multiple small
units of code that are reusable. But it doesn’t enforce
or encourage that so it needs to come from within.�
�

�
�Serverless projects tend to have big units of code.

7.3 Analysability

H3: Software that use serverless architecture has a
small serverless code base and small units of code but
do have duplicate code.

Quality Aspects of Serverless Architecture: An Exploratory Study on Maintainability

65



Table 3: BetterCodeHub guidelines applied on serverless projects.

W
ri

te
Sh

or
tU

ni
ts

of
C

od
e

W
ri

te
Si

m
pl

e
U

ni
ts

of
C

od
e

W
ri

te
C

od
e

O
nc

e

K
ee

p
U

ni
tI

nt
er

fa
ce

s
Sm

al
l

Se
pa

ra
te

C
on

ce
rn

s
in

M
od

ul
es

C
ou

pl
e

A
rc

hi
te

ct
ur

e
C

om
po

ne
nt

s
L

oo
se

ly

K
ee

p
A

rc
hi

te
ct

ur
e

C
om

po
ne

nt
s

B
al

an
ce

d

K
ee

p
Y

ou
rC

od
eb

as
e

Sm
al

l

A
ut

om
at

e
Te

st
s

W
ri

te
C

le
an

C
od

e

microapps/MoonMail 3 3 7 3 3 3 3 3 3 3
jonatasschagas/langadventurebackend 7 7 3 3 3 3 7 3 7 3
craftship/codebox-npm 7 3 7 7 3 3 3 3 3 3
C0k3/session 7 7 7 7 3 7 3 3 3 7
agentmilindu/Serverless-Pre-Register 7 7 7 3 3 3 3 3 7 3
haw-itn/serverless-web-monitor 7 3 7 7 3 3 3 3 7 3
bart-blommaerts/serverless garage 3 3 7 7 3 3 3 3 7 3
michalsanger/serverless-facebook-messenger-bot 7 3 7 7 3 3 3 3 7 3
laardee/serverless-authentication-boilerplate 7 3 3 3 3 3 3 3 3 3
airbnb/binaryalert 3 3 3 3 3 3 3 3 3 3
airbnb/streamalert 7 7 3 7 3 3 3 3 3 3
Netflix/bless 7 7 3 7 3 3 3 3 3 3
apache/incubator-openwhisk 7 7 3 7 3 7 3 3 7 3
fnproject/fn 7 7 3 7 3 3 7 3 7 3
capitalone/cloud-custodian 7 7 3 7 3 7 3 3 3 3
blockstack/blockstack-core 7 7 7 7 3 3 3 3 3 3
adieuadieu/serverless-chrome 7 7 3 7 3 3 3 3 7 7
danilop/LambdAuth 7 7 7 7 3 3 3 3 7 3
serverless-heaven/serverless-webpack 7 7 7 3 3 3 3 3 3 3
bcongdon/corral 7 3 3 7 3 3 3 3 3 3
awslabs/aws-serverless-auth-reference-app 7 3 7 7 3 3 3 3 7 3
open-lambda/open-lambda 7 7 3 7 3 3 7 3 7 7
0x4D31/honeyLambda 7 7 3 3 3 3 7 3 7 3
amplify-education/serverless-domain-manager 7 7 7 3 3 3 3 3 3 3
awslabs/serverless-photo-recognition 7 3 3 3 3 3 7 3 7 3
Successes 3 10 13 9 25 22 20 25 12 22
Failures 22 15 12 16 0 3 5 0 13 3

Table 4: Validation of maintainability characteristics.

Analysability X
Modifiability X
Testability X
Modularity X
Reusability 7
Deployment X
Configuration management 7

As expected, the duplication of code is an issue
encountered in our analysis. Half the projects encoun-
tered this problem. As described in H2, the units of

code are bigger than expected. Analysability may be
an issue for serverless applications.�
�

�
�

Analysability may be an issue for serverless ap-
plications.

7.4 Modifiability

H4: Software that use serverless technologies tends
to be easy to modify because it has simple units of

ICSOFT 2019 - 14th International Conference on Software Technologies

66



code and low coupling. However, there is a lot of
duplicated code.

It does not seem like serverless technologies tend
to be easy to modify. The metric about simple units
of code and code only being written once looses by a
week margin. For example, the small authentication
service done by Coca-Cola has big units of code con-
taining all the logic of a public function. Since the
projects and the use cases are fairly small, it may be
tempting for developers to put everything in the same
unit and not to split the code base correctly. It may
become an issue with small projects which are scal-
ing more than the initial scope.�
�

�
�

It is not clear whether serverless technologies
tend to be easy to modify.

7.5 Testability

H5: Software that use serverless technologies are
easy to test because they have a small code base, they
have simple units of code and they are made of inde-
pendent components.

The code base is small and the components are
independent. Still, we see a good advantage for testa-
bility in a FaaS application. Another aspect that is
not covered by the results is the nature of a serverless
application. Since every public function is contained
and is run in a new runtime, the tests of a function are
simplified because the combinations of possible states
for a function are reduced. The dependencies are only
coming from the input parameters and from external
sources, like a database or from networking.�




�

	
Serverless technologies are easy to test because
they have a small code base and they are made of
independent components. Although tests are not
always automated

7.6 Deployment

H6: The complexity of deployment of serverless soft-
ware is harmful for its maintainability.

While we have our worries about deployments,
we are seeing solutions implemented by the producers
and the frameworks to mitigate theses issues. For ex-
ample, the serverless framework is offering important
features to ease the deployment. They implemented
a command line which deploy your functions on your
environment. This ease and accelerate the process,
which is important, but it permits automation and the
use of configuration files reduce the possibilities of
human errors during a deployment.

Listing 1: Example of a configuration file used in the
Serverless Framework

s e r v i c e : s e r v i c e−name
p r o v i d e r :

name : aws
s t a g e : b e t a
r e g i o n : us−west−2

Another important aspect is the possibility to
choose a stage target, the targets can be things like
beta, prod, v1, v1 5, v2, etc. This other feature gives
the possibility to manager multiple versions of the
same API and ensure compatibility between services
which are not updated at the same time. (Serverless
Inc., 2017).�
�

�
�

The deployment of serverless software is in gen-
eral simplified by offering features to ease the de-
ployment.

7.7 Configuration Management

H7: Configuration management for software that uses
serverless technologies is still an open question.

As mentioned in the previous section, there is
still a large debate on many-repositories versus mono-
repository. The projects we analyzed always had all
their functions in the same repository. This is in fact
much easier to manage by developers and maintain-
ers. Google argues about the reasons why they are us-
ing a single repository for most of their code and the
specific branching strategy and development work-
flow they are using in order to make it work (Potvin
and Levenberg, 2016). Other companies like amazon
suggest breaking the project repository into smaller
ones for large projects. (Workflow, 2017)

All of this seems to point to the facts that this is
still an open question. Configuration management has
a great impact on the deployment and development
process and thus, on many aspects of software quality
including maintainability.�
�

�
�

Serverless configuration management is an open
question, and there is still a large debate on
many-repositories versus mono-repository.

7.8 Research Opportunities

Serverless is a recent topic, and there are several re-
search opportunities to explore.

Quality Aspects of Serverless Architecture: An Exploratory Study on Maintainability

67



Performance. This paper was mostly about only
one aspect of software quality. Other quality factors
such as performance of FaaS in general and between
different providers could be a good tool to help the
decision-making process of what component to put in
a serverless function and with which provider. To go
even deeper in performance, a cost benefices analysis
(CBA) framework, based on the resources that can be
saved, could be made for serverless function to help
CTOs decide when to use this kind of technology.

Stability. Another important metric beyond the
scope of this paper that could influence maintainabil-
ity is the stability of the serverless functions over
time. Raemaekers, Deursen and Visser (Raemaek-
ers et al., 2012) have developed an interesting frame-
work to analyze the stability of software over time that
could probably be adapted to serverless functions.

Configuration Management. As found previously
in this paper, configuration management for server-
less technologies is still an open question. It would
be interesting to point out the benefits and disadvan-
tages of each configuration management solution for
serverless technologies to guide technical managers
and developers in the design of their solution.

Continuous Integration. Continuous integration
has been made easy for monolithic projects with tools
such as Jenkins. When it comes to serverless projects,
in which multiple functions sometimes written in dif-
ferent languages can be used, it is not that clear on
how to configure and perform continuous integration.
This could be another interesting research question.

8 THREATS OF VALIDITY

One of the biggest issues with our analysis is the lim-
ited number of public projects using a serverless ar-
chitecture. A lot of the projects we found are sim-
ple demos as trivial as an application printing “Hello
World,” which are unusable for research like ours.
The projects that we analyzed for the most part con-
tains fewer than 10 KLOC of code and may not be
a good representation of maintainability on bigger
projects. MoonMail was the biggest one we found,
but probably companies are making bigger applica-
tions which are not open-source. However, this limi-
tation is because an immaturity of serverless domain,
and we are investigate the current state of practice in
serverless domain. Thus, I plan redo this study in the

future to include more mature projects and also in not
only open-source projects.

Another issue in our paper is the absence of em-
pirical data on deployment. In this paper we analyzed
about deployment in a qualitative way, however, no
real data have been found on the subject.

Finally, the quality of your depends of Better-
CodeHub outputs. That threats is mitigated because
the tool is developed by experts in software quality,
but more deep studies should be performed to confirm
that claim.

9 RELATED WORK

Serverless programming is quite new in the program-
ming model world and there is not yet much academic
literature about it and a lot of open questions on the
subject.

Fox et al. (Fox et al., 2017) described server-
less technologies and their evaluation as immature
by pointing out the fact that serverless code is com-
plicated to debug and the serverless debugging tech-
nologies are non-existent. They also stated that most
serverless programs are not easily portable to another
FaaS provider. Despite these drawbacks, serverless
patterns tend to be much more scalable and cost-
effective.

A more recent paper (Baldini et al., 2017) brings
up about the current trends and opened problems of
serverless computing. At the moment, serverless plat-
forms tend to limit developers to their specific ecosys-
tem. This may change in the future as open source
solutions such as OpenLambda(OpenLambda, 2016)
appears and offer a framework which can deploy the
solution of multiples cloud services. According to the
article, the best use cases of FaaS are CPU intensive
and event-driven applications. The best programming
model for FaaS would be very similar to functional
reactive programming, with small, stateless and idem-
potent functions. Finally, that paper pointed out some
of interesting challenges that may influence the main-
tainability of serverless based solutions. These chal-
lenges include deployment, composability and code
granularity.

Being relatively recent, serverless computing is
just starting to see get some attention by the research
community. A lot of the research has been trying
to define what is serverless computing and Function-
as-as-Service (FaaS) (Jonas et al., 2017)(Spillner,
2017)(Varghese and Buyya, 2017). Some work has
been done to benchmark the performance of server-
less architectures. It has been shown by (Jonas et al.,
2017) that it is possible to build a model that is general

ICSOFT 2019 - 14th International Conference on Software Technologies

68



enough to implement a number of distributed com-
puting model such as Bulk synchronous parallel. In
fact, they show that highly parallelizable operation,
such as matrix multiplication, can be parallelized us-
ing lambda with very low bottleneck. More precisely,
they built their own framework to serialize any highly
parallelizable task and send them to an arbitrary num-
ber of workers on lambda. They show that the ag-
gregates TFLOPS scale linearly with the number of
workers. They also show that the read/write through-
put scale also linearly with the number of workers. Fi-
nally, they break down the time taken for each phase
of the lambda function. They show that the initial-
ization bottleneck of the lambda is 15%. In certain
application this bottleneck can be considerable.

Malawski et al. (Malawski et al., 2018) they com-
pare the serverless architecture with the HyperFlow
architecture and evaluate their benchmark on AWS,
Google Cloud and IBM OpenWhisk. They execute
their benchmark on Mersenne Twister and Linpack.
They compare the CPU resources allocated with re-
spect to the memory allocated. They observe that the
CPU resources allocated on AWS scale linearly with
the memory allocated, where the CPU resources al-
located does not scale linearly with the memory allo-
cated on Google cloud framework. They also observe
that AWS achieve over 30 GFLOPS where Google
cloud tops at 17 GFLOPS. This difference is due to
the hardware used on each platform.

10 CONCLUSION

The goal of this paper was to determine whether or
not the efforts of using serverless functions is worth
in terms of software maintainability. We think that
we have achieved this goal by providing an empiri-
cal analysis on metrics we could calculate on static
code. While taking account of the threats to the valid-
ity of this study, we still see a tendency for an increase
of maintainability in Function-as-a-Service architec-
tures. We also wanted to promote more research on
the subject and thus gave many ideas on possible fu-
ture researches.

Our results show that more than 100% (25/25) of
analyzed projects separate concerns in modules, Cou-
ple Architecture Components Loosely, keep architec-
ture components balanced, keep the codebase small,
and Write Clean Code. However (1) 88% (3/25) of
analyzed projects do not write short units of code; (2)
60% of projects (15/25) write complex units of code
and do not use well automated tests.

In fact, we found that (1) software that use server-
less technologies have a low module coupling, their

components are well balanced and are independent;
(2) serverless projects tend to have big units of code;
(3) analysability may be an issue for serverless appli-
cations; (4) it is not clear serverless technologies that
tend to be easy to modify; (5) serverless technolo-
gies are easy to test because they have a small code
base and they are made of independent components;
(6) the deployment of serverless software is in gen-
eral simplified by offering features to ease the deploy-
ment; and (7) serverless configuration management is
an open question, and there is still a large debate on
many-repositories versus mono-repository.

We also mentioned about deployment and config-
uration management, which are in many ways related
to maintainability. We discussed on how deployment
can be a challenge and what seems to be the possible
solutions. We also found out that configuration man-
agement is still a debate.

Our major concerns for maintainability are on
reusability and on configuration management. In the
project we analyzed, there seems to have a lot of du-
plicated code and heavy units of code with big inter-
faces. It would be interesting to know if these bad
tendencies are also seen in commercial projects that
might make a heavier use of FaaS technologies.

We hope that more research will be done in the
future on the subject to analyze subsequent, large-
scale applications that exist in a serverless way and
in a regular way to compare our results. This way, we
could really compare what the advantages and disad-
vantages brought by serverless architecture are in a
more meaningful and precise way.

REFERENCES

Amazon (2017a). Continuous integration deployment for
aws lambda functions with jenkins and grunt. https:
//aws.amazon.com/blogs. (Accessed on 10/17/2017).

Amazon (2017b). Serverless computing - amazon web ser-
vices. https://aws.amazon.com/serverless/. (Accessed
on 09/20/2017).

Baldini, I., Castro, P. C., Chang, K., Cheng, P., Fink, S. J.,
Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah,
R. M., Slominski, A., and Suter, P. (2017). Serverless
computing: Current trends and open problems. CoRR,
abs/1706.03178.

Boehm, B. W., Brown, J. R., and Lipow, M. (1976). Quan-
titative evaluation of software quality. In Proceedings
of the 2Nd International Conference on Software En-
gineering, ICSE ’76, pages 592–605, Los Alamitos,
CA, USA. IEEE Computer Society Press.

Cavale, A. (2016). Our journey to mi-
croservices and a mono repository.
https://www.shippable.com/index.html.

Quality Aspects of Serverless Architecture: An Exploratory Study on Maintainability

69



Cavano, J. P. and McCall, J. A. (1978). A framework for
the measurement of software quality. SIGSOFT Softw.
Eng. Notes, 3(5):133–139.

Committee, I. S. C. et al. (1990). Ieee standard glossary
of software engineering terminology (ieee std 610.12-
1990). los alamitos. CA: IEEE Computer Society, 169.

Fox, G. C., Ishakian, V., Muthusamy, V., and Slominski, A.
(2017). Status of serverless computing and function-
as-a-service (faas) in industry and research. arXiv
preprint arXiv:1708.08028.

Framework, S. (2017). https://serverless.com/. (Accessed
on 11/19/2017).

Golden, B. (2016). The roadmap to serverless computing:
Are you prepared? https://techbeacon.com/roadmap-
serverless-computing-are-you-prepared. (Accessed
on 11/18/2017).

Google (2017). Cloud functions - serverless environment
to build and connect cloud services. https://cloud.
google.com/functions/. (Accessed on 11/17/2017).

ISO/IEC (2010). Iso/iec 25010 system and software quality
models. Technical report.

Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., and Recht,
B. (2017). Occupy the cloud: Distributed computing
for the 99%. In Proceedings of the 2017 Symposium
on Cloud Computing, SoCC ’17, pages 445–451, New
York, NY, USA. ACM.

Just Serverless (2017). Github - justserverless/awesome-
serverless: Curated list of resources related to
serverless architectures and the serverless frame-
work. https://github.com/JustServerless/awesome-
serverless#projects--services. (Accessed on
09/23/2017).

Malawski, M., Figiela, K., Gajek, A., and Zima, A.
(2018). Benchmarking heterogeneous cloud func-
tions. In Heras, D. B. and Bougé, L., editors, Euro-
Par 2017: Parallel Processing Workshops, pages 415–
426, Cham. Springer International Publishing.

Microsoft (2017). Azure functions—serverless archi-
tecture. https://azure.microsoft.com/en-ca/services/
functions/. (Accessed on 11/17/2017).

Nazir, M., Khan, R. A., and Mustafa, K. (2010). A met-
rics based model for understandability quantification.
arXiv preprint arXiv:1004.4463.

Netflix (2017). Netflix/bless: Repository for bless, an ssh
certificate authority that runs as a aws lambda func-
tion. https://github.com/Netflix/bless. (Accessed on
10/17/2017).

OpenLambda (2016). https://open-lambda.org/. (Accessed
on 09/23/2017).

Potencier, F. (2016). A monorepo vs manyrepos.
Potvin, R. and Levenberg, J. (2016). Why google stores

billions of lines of code in a single repository. Com-
munications of the ACM, 59(7):78–87.

Raemaekers, S., van Deursen, A., and Visser, J. (2012).
Measuring software library stability through historical
version analysis. In Software Maintenance (ICSM),
2012 28th IEEE International Conference on, pages
378–387. IEEE.

Sbarski, P. (2016). Serverless Architectures on AWS. Man-
ning Publications Co.

Serverless Inc. (2017). Serverless - the serverless ap-
plication framework powered by aws lambda and
api gateway. https://serverless.com/. (Accessed on
10/17/2017).

Shadija, D., Rezai, M., and Hill, R. (2017). Towards an
understanding of microservices. In 2017 23rd Inter-
national Conference on Automation and Computing
(ICAC), pages 1–6.

Software Improvement Group (2017). Better code
hub. https://bettercodehub.com/. (Accessed on
09/23/2017).

Spillner, J. (2017). Snafu: Function-as-a-service
(faas) runtime design and implementation. CoRR,
abs/1703.07562.

Varghese, B. and Buyya, R. (2017). Next generation
cloud computing: New trends and research directions.
CoRR, abs/1707.07452.

Visser, J., Rigal, S., van der Leek, R., van Eck, P., and Wi-
jnholds, G. (2016). Building Maintainable Software,
Java Edition: Ten Guidelines for Future-Proof Code.
” O’Reilly Media, Inc.”.

Workflow, S. F. G. (2017). https://serverless.com/
framework/docs/providers/aws/guide/workflow/. (Ac-
cessed on 11/19/2017).

ICSOFT 2019 - 14th International Conference on Software Technologies

70


