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Abstract: Surface temperature control of a thin aluminium plate were investigated using closed loop control approach 
implemented using inverse problem. The one-dimensional model with periodic boundary condition was 
solved using the Laplace transform and both direct problem and inverse problem transfer functions were 
obtained. The resulting transfer functions were expanded using Zero-Pole expansion to obtain a finite order 
polynomial transfer function.  Simulation results for closed loop control using fractional controllers (FOPIλ, 
FOPDμ, and FOPIDμ) were evaluated. 

1 INTRODUCTION 

Fractional order controllers start to be used more 
often recently with the purpose to obtain better 
performance of the system. 

A heat conduction modelling for both steady state 
and unsteady state using periodic boundary 
conditions was presented in (Gebhart, 1971). Phase 
angle and magnitude of transfer functions of different 
order were provided (Ogata, 2010).   

Inverse heat transfer problems of a metal plate 
have several solution methods, were presented in 
(Maillet, 2000). A detailed method was formulated 
for the design of FOPI, FOPD, and FOPID controllers 
(Monje, 2010). The heat flux and the temperature 
control on front surface using the measurement on the 
back surface of a finite slab, which is a standard 
problem, was estimated. The Laplace transform was 
used to get a solution of the resulting heat conduction 
equation to obtain the transfer functions, and then was 
expanded using Zero-Pole expansion (Feng, 2010).  

A controller was designed with respect to gain and 
phase margin criteria to satisfy the robustness 
property for PID controller for the case of a ceramic 
infrared heater (Shekher, 2016). A detailed design of 
fractional order PID (FOPID) controller was 
proposed and the parameters of the controller were 
obtained according to the model characteristics and 
design specifications (Zheng, 2018). A stability 
regions study based on specified gain and phase 
margin of the fractional order PI controller to control 
integrating process was presented in (Cokmez, 2018). 

For FOPD controller design, a new tuning method of 
typical class of second order system was proposed 
and can ensure given gain crossover frequency and 
phase margin (Li, 2010 and Li, 2008). Smith predictor 
combined a fractional order controller is proposed to 
control the temperature of a steel slab reheating 
furnace, they introduce a simulation results for a 
fractional order proportional integrator controller 
(Batlle, 2013). 

Laplace transform was used to get a solution for 
the one dimensional heat conduction equation, this 
done to obtain the transfer functions representing both 
problems resulted, direct problem and inverse 
problem of the system. Both Zero-Pole expansion and 
Taylor expansion were investigated using root locus 
plots. The number of terms used in the inverse 
transfer function was investigated to see the effect on 
the ill posedness of the problem. Zero-Pole expansion 
was adopted and simulations were done for a thin 
aluminium plate to control surface temperature of the 
plate on one side using inverse problem in closed loop 
control approach (Necsulescu, 2017). An approach 
was introduced to design a fractional order PI 
controller for controlling a DC motor speed and 
experimental results proved the efficiency of using 
such controller (Muresan, 2013). A fractional order 
controller that is able to deal with non-modelled 
dynamics was proposed for the cooperative cruise 
control (Flores, 2016). Interactive tools like Matlab 
and Labiew are used to teach fractional order control 
methods and how they can introduced in classical 
control course ( Tan,  2016). A hybrid fractional order 
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controller were optimized for a proportional 
derivative controller (Maurya, 2016).  

In the current paper we compare several fractional 
order controller types (FOPIλ, FOPDμ, and FOPIDμ) 
to control the surface temperature of a thin plate on 
one side using the inverse problem in closed loop 
control approach; this was achieved by using the 
Laplace transform to solve the 1D heat conduction 
equation with periodic boundary conditions to get the 
transfer functions for both direct and inverse problem. 
We use periodic boundary conditions because of the 
possibility to represent temperature changing with 
time using Fourier series. 

2 THEORY 

2.1 Transfer Functions 

The 1D heat conduction equation is given by: 

∂2θ

∂z2   =   
1

α

∂θ

∂t
    (1)

where z is the 1D position variable 0 < z < L for a 
plate of thickness L. 

Boundary conditions are the following for this 
study were: 

θ1ሺ0,tሻ=A sin⍵t,               θ2ሺL,tሻ=free (2)

∅1ሺ0,tሻ= free,                 ∅2ሺL,tሻ= 0 (3)

where ߠ  stand for the temperature, ∅  stand for the 
heat flux, α stand for thermal diffusivity, and 
subscript 1 and 2 indicate faces 1 and 2 of the plate. 

Equation (1) can be written in complex domain as: 

d2θ(z,s)

dz2  = 
s

α
θሺz,sሻ      (4)

Boundary conditions in s-domain become: 

θ1ሺ0,sሻ=A
⍵

S2+⍵2
,          θ2ሺL,sሻ=free   (5)

∅1ሺ0,sሻ= free ,              ∅2ሺL,sሻ= 0 (6)

Equations (5) and (6) define the thermal 
quadrupole ends, θଵand	∅ଵ  for input and 
θଶand	∅ଶfor output. 

The solution of (4), is: 

θሺz,sሻ=A1coshሺKzሻ+ A2sinhሺKzሻ (7)

The heat flux is given by 

∅ሺz,sሻ= -Ks
dθ   

ds
 (7.1)

where 

K=ට
s

α   
 (8)

Applying boundary conditions, (5) and (6), to (7), 
gives the following results for A1 and A2 (Gebhart, 
1971 and Maillet, 2000). 

A1=A
⍵

S2+⍵2
 ,        A2=-A

⍵

S2+⍵2
tanhሺKLሻ (9)

For the above	AଵandAଶ,	the solutions become: 

,ݖሺߠ ሻݏ ൌ ܣ
⍵

ܵଶ ൅ ⍵ଶ
ሾ݄ܿݏ݋ሺݖܭሻ

െ ሻܮܭሺ݄݊ܽݐ  ሻሿݖܭሺ݄݊݅ݏ
(10)

∅ሺz,sሻ=-KsA
⍵

S2+⍵2
∗ 

ሾcoshሺKzሻ - tanhሺKLሻ sinhሺKzሻሿ 
(11)

The boundary temperatures θଵand	θଶ are: 

θ1= θሺ0,sሻ= A
⍵

S2+⍵2
 (12)

ଶߠ ൌ ,ܮሺߠ	 ሻݏ ൌ

ܣ(13)
ݓ

ܵଶ ൅ ⍵ଶ ሾ݄ܿݏ݋ሺܮܭሻ െ ሻܮܭሺ݄݊ܽݐ ሻሿܮܭሺ݄݊݅ݏ ൌ 

ܣ
⍵

ܵଶ ൅ ⍵ଶ ሾ1/  ሻሿܮܭሺ݄ݏ݋ܿ

The transfer function of the direct problem linking 
θଶ	to	θଵis 

G1= 
θ2

θ1
= ൤

1

coshሺKLሻ
൨=sech(KL) (14)

The transfer function for the inverse problem is 

G2=
1

G1
= cosh(KL) (15)

Given (8) for K in this formulation, the hyperbolic 
functions G1 and G2 depend on square root of s: 

x=KL=ට
s

α
L (16)

To overcome the computation problem in case of 
square root of s, Zero-Pole expansion is used to obtain 
equations in integer powers of s.   

Zero-Pole expansion Gives the following 
equations: 

G1ሺsሻ= 
p1p2p3p4p5p

6
…

൫s-p1൯൫s-p2൯൫s-p3൯൫s-p4൯൫s-p5൯൫s-p6൯…
 (17)

where 

pn= -[
ሺ2k-1ሻπ

2
*
√∝
L

]2,     n=1,2,3,… pn (18)

and 
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G2ሺsሻ=
ሺs- z1ሻሺs- z2ሻሺs- z3ሻሺs- z4ሻ…

z1z2z3z4…
 (19)

where 

znൌ-ሾ
ሺ2k-1ሻπ

2
*
√∝
L
ሿ2,					nൌ1,2,3,…		zn (20)

The above Zero-Pole expansions (17) and (19) of 
G1=1/cosh(x) and G2=cosh(x) use integer number 
powers polynomials in s for simulation. These 
approximations proved appropriate for real-time 
surface temperature control of a plate. 

Simulations were carried out for a thin 6061T6 
Aluminium plate of thickness L = 12.7 [mm] and 
thermal diffusivity α= 6.9031e-5 [m2/sec].  

Simulations were done with M=4 terms for an 
inverse problem transfer function and N= 6 terms for 
the direct problem transfer function.  
where 

N & M stand for the number of terms for direct 
problem and inverse problem.   

After we get the Transfer function to our plant: 

G1= 
ହ.ଵ଺ଽୣ଼

ୱలାସଶ଼.଻ୱఱା଺.ଷଷ଻ୣସୱరାଷ.଻଼ହୣ଺ୱయା଼.଺ଷ଺ୣ଻ୱమାହ.଻଺ସୣ଼ୱାହ.ଵ଺ଽୣ଼
	  

G2=
s4+122.5s3+3450s2+2.497e4s+2.267e4

2.267e4
   

The resulting transfer function for the system is: 

G=G2*G1=
22805

( S+178.5)( s+127.8)
 (21)

2.2 Control Approach 

The block diagram for closed loop scheme is shown 
in Fig. 1, where   

 

Figure 1: Block diagram for closed loop scheme. 

ଶߠ
ௗ	 is the desired input temperature. 
 ଵ is the temperature output of the inverseߠ

problem. 
 ଶ is the temperature output of the directߠ

problem. 
Gc is the transfer function of the controller. 
G1 is the direct transfer function. 
G2 is the inverse transfer function. 

2.3 Controller Equations 

The first controller is the fractional order proportional 
integral controller (FOPIλ). 

The fractional order PI controller formula is 
(Cokmez, 2018): 

Cሺjωሻ=kp[1+ ki(jω)-λ] 			 (22)

Cሺjωሻ= 

kp[1+ki(ω)-λ cos ቀ
μπ

2
ቁ+jki(ω)-λ sin ቀ

μπ

2
ቁ 

(23)

ArgሾC(jω)ሿ=tan-1[
kI(ω)-λ sin ቀ

μπ
2 ቁ

1+ kI(ω)-λ cos ቀ
μπ
2 ቁ

 ]	 (24)

|C(jω)|=Kp*  

ට[1+ kI(ω)-λ cos ቀ
μπ

2
ቁ ]2+[kI(ω)-λ sin ቀ

μπ

2
ቁ ]2 

(25)

The open loop transfer function is: 

L(݆߱) = C(݆߱)G(݆߱) 

We want to satisfy three conditions to solve for 
variables: 

1 -   Robustness: 

d(ArgሾL(jω)ሿ

dω
ቤ
ω=ωcg

=0 

2 - Gain crossover frequency: 

|L(jω)|dB=0 

3 - Phase Margin: 

ArgሾL(jω)ሿ|ω=ωcg
= -π+ φm 

 
From criteria (3) we get: 

tan-1 ቎
kI(ωcg)-λ sin ቀ

μπ
2 ቁ

1+ kI(ωcg)-λ cos ቀ
μπ
2 ቁ

 ቏ -  

 tan-1 ቈ
2ζωcgωn

ωn
2-ωcg

2 ቉  = -π+ φm 			 

(26)

From criteria (2) we get: 

Kp ට[1+ kI(ωcg)-λ cos ቀ
μπ
2 ቁ ]2+[kI(ωcg)-λ sin ቀ

μπ
2 ቁ ]2

ඨ(1-
ωcg

2

ωn
2 )2+ 4ζ2ωcg

2/ω
n

2

=1  (27)

From criteria (1) we get: 

KI= 
- B ± ටB2- 4A[Aωcg

-2λ+λ(ωcg)-2λ-1]

2[Aωcg
-2λ+λ(ωcg)-2λ-1]

 			 (28)
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where 

A= 
2ζωn൫ωn

2- ωcg
2൯+4ζωnωcg

2

(ωn
2- ωcg

2)2+(2ζωnωcg)2  

and 

B= 2Aωcg
-λ cos ቂ

λπ

2
ቃ+λωcg

-λ-1cos ቂ
λπ

2
ቃ 

The second controller is the fractional order 
derivative controller (FOPDμ). 

The system transfer function formula is (Ogata, 
2010): 

G= 
ωn

2

s2+2ζωns+ωn
2			 (29)

we get: 

|G(jω)|=
1

ඨ(1-
ω2

ωn
2 )2+ 4ζ2ω2/ωn

2 

 
(30)

ArgሾG(jω)ሿ=- tan-1 ൤
2ζωωn

ωn
2- ω2൨ 

(31)

The fractional order PD controller formula is 
(Monje, 2010 and Li, 2010): 

Cሺjωሻ=kp[1+ kd(jω)μ]					 (32)

Cሺjωሻ= 

kp[ 1+ kd(ω)μ cos ቀ
μπ

2
ቁ+jkd(ω)μ sin ቀ

μπ

2
ቁ ] 

(33)

ArgሾC(jω)ሿ= 

tan-1[
sin ൤

ሺ1- μሻπ
2 ൨+kd(ω)μ

cos ൤
ሺ1- μሻπ

2 ൨
]- 
ሺ1- μሻπ

2
 

(34)

|ܿሺ݆߱ሻ| ൌ ௣ܭ ∗ 

ටሺ1 ൅ ௗ߱ఓܭ cos ቀ
ߨߤ
2
ቁሻଶ ൅ ሺ1 ൅ ௗ߱ఓܭ sin ቀ

ߨߤ
2
ቁሻଶ 

(35)

were: 
Kp  is the proportional gain. 
Kd  is the derivative gain. 
The open loop transfer function is: 
L(݆߱) = C(݆߱)G(݆߱) 
We want to satisfy three conditions to solve for 

variables: 
1 - Robustness: 

d(ArgሾL(jω)ሿ

dω
ቤ
ω=ωcg

=0 

2 - Gain crossover frequency: 

|L(jω)|dB=0 

3 - Phase Margin: 

ArgሾL(jω)ሿ|ω=ωcg
= -π+ φm 

From criteria (3) we get: 

tan-1 ൦
sin ൤

ሺ1- μሻπ
2 ൨+kd(ωcg)μ

cos ൤
ሺ1- μሻπ

2 ൨
൪ - 

ሺ1- μሻπ
2

-  

tan-1 ቈ
2ζωcgωn

ωn
2-ωcg

2 ቉  = -π+ φm			 

(36)

From criteria (2) we get: 

௣ܭ ටሾ1 ൅ ௗ߱௖௚ܭ
ఓ cosሺ

ߨߤ
2 ሻሿ

ଶ ൅ ሾܭௗ߱௖௚ఓsin	ሺ
ߨߤ
2 ሻሿ

ଶ

ඨሺ1 െ
߱ଶ

߱௡ଶ
ሻଶ ൅ ଶߞ4

߱ଶ

߱ ௡

ଶ

ൌ 1

(37)

From criteria (1) we get: 

μKdωcg
μ-1cos ൤

ሺ1- μሻπ
2 ൨

cos2 ሺ1- μሻπ
2 +[sin

ሺ1- μሻπ
2 +Kdωcg

μ ]2
 - 

2ζωn൫ωn
2- ωcg

2൯+4ζωnωcg
2

(ωn
2- ωcg

2)2+(2ζωnωcg)2 =0					 

(38)

From criteria (3) we can get a relation between ܭௗ 
and ߤ as follows: 

Kd= 
- B ± ටB2- 4A2ωcg

2μ

2Aωcg
2μ 			 (39)

where:  

A= 
2ζωn൫ωn

2- ωcg
2൯+4ζωnωcg

2

(ωn
2- ωcg

2)2+(2ζωnωcg)2  

B= 2Aωcg
μ sin ቈ

ሺ1- μሻπ
2

቉ - μωcg
μ-1cos ቈ

ሺ1- μሻπ
2

቉ 

The third controller is the fractional order 
proportional derivative controller (FOPIDμ). 

The fractional order PID controller formula is 
(Shekher, 2016 and Zheng, 2018): 

Cሺsሻ=kp[1+
ki

ሺsሻλ
+kd(s)μ]			 (40)

For the current controller we have ߣ ൌ 1, we get: 

ሺ݆߱ሻܥ ൌ ݇௣ሼ1 ൅݇ௗሺ߱ሻఓ cos ቀ
ߨߤ
2
ቁ 

൅݆ ሾെ݇௜߱ିଵ ൅ ݇ௗሺ߱ሻఓsin ቀ
ߨߤ
2
ቁሿሽ			 

(41)

Let: 
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Pሺωሻ=1	  +kd(ω)μ cos ቀ
μπ

2
ቁ   

and 

Q(ω)=- kiω
-1+kd(ω)μsin ቀ

μπ

2
ቁ   

Then 

ArgሾC(jω)ሿ=tan-1[
Q(ω)

P(ω)
]			 (42)

|ሺ݆߱ሻܥ| ൌ ݇௣ඥܲଶሺ߱ሻ ൅ ܳଶሺ߱ሻ (43)

We want to satisfy four conditions to solve for 
variables: 

1 -   Robustness: 

d(ArgሾL(jω)ሿ

dω
ቤ
ω=ωcg

=	0 

2 - Gain crossover frequency: 

|L(jω)|dB=0 

3 - Phase Margin: 

ArgሾL(jω)ሿ|ω=ωcg
= -π+ φm 

4 - Noise rejection: 

ቤTሺjωሻ=
CሺjωሻG(jω)

1+CሺjωሻG(jω)
ቤ
dB

≤A dB 

were A is a designed value. 
According to specification (2) we get: 

kpටP2(ω)+Q2(ω)

ඨ(1-
ωcg

2

ωn
2 )2+ 4ζ2ωcg

2/ω
n

2

=1 (44)

From specification (3) we get: 

tan-1 ቈ
Qሺωሻ

Pሺωሻ
቉ -	tan-1 ൤

2ζωωn

ωn
2- ω2൨  = -π+	φm			 (45)

From specification (1) we get: 

Pሺωሻ*aa-Qሺωሻ*pp

P(ω)2+Q(ω)2 - 

2ζωn൫ωn
2- ωcg

2൯+4ζωnωcg
2

(ωn
2- ωcg

2)2+(2ζωnωcg)2 =0			 
(46)

From criteria (4) we get: 

 

 

 

|CሺjωሻG(jω)|
|1+CሺjωሻG(jω)|

= 

ටP2(ω)+Q2(ω)

ඩ
[

(1-
ωcg

2

ωn
2 )2

Kp
+Pሺwሻ]2+[Qሺwሻ+2ζ

ωcg

ωnKp
]2

≤A (47)

3 RESULTS AND DISCUSSION 

For the design purpose, the crossover frequency was 
set to be 20 (rad/sec) and the phase margin is set to be 
65 degrees, all results had a one second of step time 
to see a clear step response away from Y-axis. 
After we solve (26, 27, and 28) for the fractional order 
PI controller parameters, we get controller formula as 
follows:   

FOPI=  1.3862 + 25.993(s)-1.486 

From Fig. 2, we see that the system reaches the 
desired response after 1.5 seconds, but it has an 
overshoot of 20%.  
After we solve (37, 38, and 38) for the fractional order 
PD controller parameters, we get controller formula 
as follows:   

FOPD=  1.5622 + 0.0086842(s)1.832 

 

Figure 2: Step response using fractional order proportional 
controller (FOPIλ). 

 

Figure 3: Step response using fractional order proportional 
derivative controller (FOPDμ). 
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From Fig. 3, we can see that the controller can't reach 
the desired steady state value no matter how long time 
we give the system. 
After we solve (44, 45, 46, and 47) for the fractional 
order PID controller parameter we get the controller 
formula as follows: 

FOPID=  0.9639 + 
2.9379

ݏ
-	0.0862(s)0.713 

From Fig. 4, we can see that the system reaches the 
desired response after 2.5 seconds, also with no 
overshoot. 
From Fig. (2, 3, and 4), we see that the best controller 
is the fractional order proportional derivative 
controller (FOPIDμ), since it achieves the desired 
response without overshoot. 
Now we compare the results with the integer order 
controller (IOPID). From Fig. 5, we can see that the 
response is slower with an overshoot of about 8%, 
and this favours the fractional order proportional 
derivative controller (FOPIDμ) over all other 
controllers, this is due to the fact that for this 
controller we have four parameters to change which 
gives a better design over all other controllers were 
only three parameters are available to change for 
design. The results for integer order controller were 
obtained by using Automatic Tuning Criteria in 
MatlabTM. 

 

Figure 4: Step response using fractional order proportional 
derivative controller (FOPIDμ). 

 

Figure 5: Step response using integer order proportional 
derivative controller (IOPID). 

4 CONCLUSIONS 

The fractional order controller has an advantages over 
integer order controller with respect to overshoot 
time, the fractional controller results show that we can 
get a response without overshoot. Fractional order 
controller design gives us more flexibility to choose 
five controller parameters compare to three controller 
parameters for integer order, which helps in control 
response time, overshoot and system stability. 
Surface temperature control for a metal thin plate has 
still to be further investigated and verified 
experimentally. 
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