
Performance Analysis of Mobile Cross-platform Development
Approaches based on Typical UI Interactions

Stefan Huber and Lukas Demetz
University of Applied Sciences Kufstein, Andreas Hofer-Straße 7, 6330 Kufstein, Austria

Keywords: Android, Ionic/Cordova, Mobile Cross-platform Development, Performance Analysis, React Native.

Abstract: The market for mobile apps is projected to generate revenues of nearly $ 190 billion by 2020. Besides native
development approaches, in which developers are required to maintain a unique code base for each mobile
platform they want to support, mobile cross-platform development (MCPD) approaches can be used to develop
mobile apps. MCPD approaches allow building and deploying mobile apps for several mobile platforms from
one single code base. The goal of this paper is to analyze the performance of MCPD approaches based on UI
interactions. For this, we developed three mobile apps, one native and two developed using MCPD approaches.
Using an automated test, we measured CPU usage and memory consumption of these apps when executing
one selected UI interaction, that is, swiping through a virtual scrollable list. The results indicate that the CPU
usage of the two apps developed using MCPD approaches is about twice as high compared to the native app,
the memory consumption is even substantially higher than in the native app. This papers confirms results of
previous studies and extends the body of knowledge by testing UI interactions.

1 INTRODUCTION

The market of mobile platforms is dominated by
Google Android and Apple iOS (Statista, 2018). Rev-
enues generated by mobile apps are forecast to reach
nearly $ 190 billion by 2020 (Statista, 2019). De-
velopers who want to develop mobile apps are pre-
sented with several ways for doing so. A common
way to develop mobile apps is to use native devel-
opment approaches. This requires developers to build
and maintain a unique code base for each mobile plat-
form they want to support (e.g., Google Android and
Apple iOS). To circumvent this problem of multiple
code bases, there exists a plethora of mobile cross-
platform development (MCPD) approaches, which al-
low building and deploying mobile apps for several
mobile platforms from one single code base.

These approaches use different techniques that al-
low to deploy the same code base to several platforms
(Majchrzak et al., 2017). Ionic/Cordova, for instance,
uses a native WebView component to display the mo-
bile app, while React Native pursues an interpretive
approach, in which JavaScript is used to render native
user interface (UI) components (Biørn-Hansen et al.,
2018).

Techniques used by these MCPD approaches im-
pose different requirements on mobile devices. When

executed, they put a higher load on mobile devices,
especially when compared to a native implementation
(Dalmasso et al., 2013; Willocx et al., 2016). So far,
research regarding performance of cross-platform de-
velopment approaches, focused mainly on program-
matic performance of rather compute-intensive apps
(Ajayi et al., 2018, for instance, analyzed run-time
differences of sorting algorithms) leaving out the
analysis of typical UI interactions (e.g., swipe ges-
tures). Mobile apps are, however, rather interactive
apps in which users interact with the app via the user
interface (Vallerio et al., 2006). Thus, interactions
with the UI are an important aspect of mobile app
usage and should not be neglected in performance
analyses. To investigate possible differences with
respect to performance and load on mobile devices
when performing UI interactions, this paper strives
to answer the following research question, How do
mobile cross-platform development approaches differ
with respect to performance and load on mobile de-
vices when performing typical UI interactions?

To answer this research question, we present the
results of a quantitative performance analysis of one
typical user interaction based on a common UI com-
ponent: continuous swiping through a virtual scrol-
lable list. The analysis is based on three implementa-
tions, a native mobile app used as a baseline, an app

40
Huber, S. and Demetz, L.
Performance Analysis of Mobile Cross-platform Development Approaches based on Typical UI Interactions.
DOI: 10.5220/0007838000400048
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 40-48
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



using React Native and an app using Ionic/Cordova.
All three apps implement the same UI interaction.
The results indicate that the CPU usage of the two
apps developed using MCPD approaches is about
twice as high compared to the native app, the mem-
ory consumption is even substantially higher than in
the native app. Our results confirm results of previous
studies and extend the body of knowledge by testing
UI interactions. Mobile app developers can use these
results as guidance for selecting MCPD approaches.

The remainder of this paper is organized as fol-
lows. In Section 2 we present research related to
this study. We start by presenting different MCPD
approaches (Section 2.1). Afterwards, we highlight
related research regarding performance measurement
(Section 2.2) and resource usage (Section 2.3). Sec-
tion 3 presents the applied research procedure. We
start by presenting the tested implementation (i.e., the
mobile app) along with implementation details for
each mobile cross-platform development approach,
the test case, and the measurement. Afterwards, we
present the results of this measurement in Section 4.
These results as well as limitation of this paper are
discussed in Section 5. Finally, Section 6 concludes
this paper and provides possible avenues for future re-
search.

2 RELATED WORK

In this section, we present literature related to this
study. We start with a general overview of MCPD ap-
proaches (Section 2.1). Afterwards, we present liter-
ature analyzing the performance of such approaches.
They fall under two broad categories user-perceived
performance (Section 2.2) and resource usage (Sec-
tion 2.3).

2.1 Mobile Cross-platform
Development Approaches

Mobile cross-platform development approaches help
developers to create and maintain one code base and
to deploy this single code base to multiple mobile
platforms, such as Google Android and Apple iOS.
There is a multitude of such approaches, which can
be broadly divided into five categories: hybrid, in-
terpreted, cross-compiled, model-driven, and progres-
sive web apps (Biørn-Hansen et al., 2018). In the fol-
lowing, we shortly present these categories.
Hybrid. The idea of hybrid approaches is to use
web technologies (e.g., HTML, CSS and JavaScript)
to implement user interfaces and behavior, that is, a
website. Within the mobile app, this website is then

displayed in a WebView component, which is a web
browser (Latif et al., 2016) embedded inside a na-
tive UI component. Apache Cordova, formerly Adobe
PhoneGap, leverages this approach.
Interpreted. In the interpreted approach, develop-
ers also use JavaScript to build an app. In contrast to
the hybrid approach, developers do not build a web-
site, but use JavaScript to render platform native UI
components (Dhillon and Mahmoud, 2015; El-Kassas
et al., 2017). Examples for this category are Facebook
React Native and Appcelerator Titanium.
Cross-compiled. The idea of the cross-compiled ap-
proach is to use a common programming language to
develop a mobile app. This source code is then com-
piled into native code that can be executed on a mobile
platform (Ciman and Gaggi, 2017a). A prominent ex-
ample for this category is Microsoft Xamarin.
Model-driven. When building apps using a model-
driven cross platform approach, developers use a do-
main specific language. The approach then provides
generators that translate the app written in domain
specific language into native code that can be ex-
ecuted on a mobile platform (Heitkötter and Ma-
jchrzak, 2013). An example for this category is MD2.
Progressive Web Apps. Apps of this category are
web apps that are served by a web server and are ac-
cessed by a URL. Compared to standard web apps,
progressive web apps provide more sophisticated
functions (e.g., offline availability). The web app it-
self is developed using standard web technologies,
such as HTML, CSS and JavaScript (Biørn-Hansen
et al., 2018). Web frameworks such as Ionic or Onsen
UI offer progressive web app capabilities.

Although these approaches pursue the same idea,
that is, to allow to deploy one code base to multiple
mobile platforms, they differ with respect to aspects
such as developer focus and end-product focus (Ma-
jchrzak et al., 2017). While some approaches allow
developers more architectural choices, others ease the
development of UI components. These internal dif-
ferences entail performance differences that have al-
ready been investigated.

2.2 User-perceived Performance

Looking at performance perceived by users, previous
studies provide varying results regarding the perfor-
mance of apps developed using MCPD approaches.
Xanthopoulos and Xinogalos (2013) rated different
mobile cross-platform development approaches based
on the user-perceived performance as low, medium
or high. The classification was based on the au-
thors experience and information published on the
web. Andrade et al. (2015) conducted a real-world

Performance Analysis of Mobile Cross-platform Development Approaches based on Typical UI Interactions

41



experiment, with 60 employees of a company in the
Brazilian public sector. A native and a hybrid app
were developed and used by the employees for two
weeks each. Only 13.33% of users noted a perfor-
mance difference between the two approaches. Mer-
cado et al. (2016) investigated user complaints from
app markets of 50 selected apps created either na-
tively or with MCPD approaches. Based on results
of natural language processing the authors conclude
that apps based on MCPD approaches are more prone
to user complaints about performance issues.

2.3 Resource Usage Measurements

Previous research on the usage of resources (e.g.,
CPU, memory) of MCPD approaches show more
consistent results compared to user-perceived per-
formance. Dalmasso et al. (2013) created Android
apps with two MCPD approaches, Titanium and
PhoneGap. The authors measured memory, CPU
and battery usage. Their findings indicate that the
JavaScript framework used inside the WebView
component has a high impact on memory and CPU
consumption. However, their measurement approach
could only provide CPU results for PhoneGap,
not for Titanium. Willocx et al. (2015) measured
several performance properties of two MCPD im-
plementations and compared them respectively to
a native implementation both on iOS and Android
devices. Among measuring time intervals such as
launch time, pause and resume time, time between
page transitions, memory and CPU usage was
measured. The authors repeated their measurements
in Willocx et al. (2016) with 10 different MCPD
approaches including measurements for Windows
Phones. Overall, their findings show that the hybrid
approaches are highest in resource consumption on
all platforms. Non-hybrid based approaches have a
significant lower resource consumption, however,
still higher than native implementations. Ajayi et al.
(2018) analyzed performance of algorithms, such as
quicksort, implemented natively with Android and
a hybrid approach. The results show that the native
app outperforms a hybrid app in terms of CPU and
memory usage.

The results of user-perceived performance studies
provide a good indication that apps developed with
MCPD approaches are inferior in terms of perfor-
mance in comparison to native apps. The studies
on resource usage validate these findings quantita-
tively. Although all measurements give good indica-
tions on differences of the approaches, it is unclear
under which concrete UI interactions the results are

created. Previous research mainly focused on perfor-
mance differences of rather computing intensive mo-
bile apps developed using MCPD approaches. Mobile
apps rather focus on interacting with users through the
UI and not on complex computations (Vallerio et al.,
2006). Thus, when analyzing performance and re-
source consumption of mobile apps, UI interactions
should not be left out. To close this research gap, this
study pursues a different approach to performance
analysis of mobile apps. In doing so, this study an-
alyzes the performance of mobile apps developed us-
ing MCPD approaches when executing one typical UI
interaction, that is, continuous swiping through a vir-
tual scrollable list.

3 PROCEDURE

This section presents the procedure we applied to an-
swer the research question. We start by describing
the selection of MCPD approaches we used to de-
velop mobile apps (Section 3.1). Then, we describe
the mobile apps we developed (Section 3.2). We
also present what UI components we used to imple-
ment the mobile apps using a native approach, and the
two MCPD approaches. Afterwards, the test case we
applied to test performance differences is presented
(Section 3.3). Finally, we conclude this section by
detailing the measurement tool and the mobile device
we used for our test cases (Section 3.4).

3.1 Selection of Approaches

For analyzing the performance of MCPD approaches
we selected two approaches. The selected approaches
allow reusing web development skills for developing
mobile apps. Additionally, they enable transferring
existing code bases (e.g., web application developed
in JavaScript) into mobile apps. We consider the reuse
of existing code bases and of existing skills as a main
advantage of MCPD approaches.

Ionic/Cordova and React Native are two ap-
proaches based on web technologies. Both ap-
proaches are supported by large developer commu-
nities (e.g., visible on GitHub and Stack Exchange).
Many successful apps found in app markets are devel-
oped with one of both approaches.

3.2 Implementation Details

For the evaluation a basic contact app was envisioned.
The app consists of a single screen with a scrollable
list of contacts showing the contact’s name and phone

ICSOFT 2019 - 14th International Conference on Software Technologies

42



number (see Figure 1). The app consists of the two
main building blocks:

• A dataset of 1000 demo contact objects with at-
tributes name and phone number, which is created
at app start up and stored in memory for the life-
time of the app.

• A virtual scrollable list presenting the dataset.

Figure 1: Performance demo app screenshot (Ionic/Cordova
implementation).

Virtual scrollable lists are common UI compo-
nents found in many mobile apps. Smart phones have
only limited screen space available and thus only a
small part of data presented inside a list is visible for
a user. All hidden entries do not need to be processed
and rendered before actually visible. The scrolling
feature is simulated and new entries in the list are
created at runtime while scrolling down or up a list.
We selected this kind of app, and UI interaction, as it
is frequently found in mobile apps, as there are effi-
cient ways to implement it using various MCPD ap-
proaches and can be easily tested using an automated
script. Additionally, this app is not computing inten-
sive meaning that no complex computations need to
be done. The focus of this app is on interacting with
the user.

To answer our research question, we developed
three instances of this app. One instance was devel-
oped using native Google Android development tools,
two instances using MCPD approaches (React Native
and Ionic/Cordova). All three apps were packaged
and signed for release on Google Android. Thus, any

performance degradation caused by debugging build
features could be eliminated to minimize the creation
of incorrect results. Table 1 provides an overview of
the three apps showing the used version and the UI
component for implementing a virtual scrollable list.
These approaches are detailed in the following sub-
sections.

3.2.1 Native Android App

For the native app the RecyclerView (Google, 2019b)
component was used. This component is the de-
fault approach for realizing a virtual scrollable list on
Android. An adapter component has to be imple-
mented to provide an app specific binding to a data
source. The adapter design pattern allows for dissolv-
ing any dependency between the data and the display
logic. The demo data was generated on app start up
and stored in memory. It was provided to the Recy-
clerView component through the adapter.

3.2.2 React Native App

React Native offers the FlatList (Facebook, 2019)
component. This UI component is an abstraction over
the native implementations of virtual scrollable lists,
such as the RecyclerView on Android. Within a Re-
act component the demo data was generated at app
start up and stored in memory. The data was directly
referenced by the FlatList for actual display.

3.2.3 Ionic/Cordova App

Ionic is a JavaScript web-framework which aims to
provide reusable UI components styled like Android
or iOS native components. Ionic offers the ion-
virtual-scroll (Ionic, 2019) component, which is a vir-
tual scrollable list implementation for the web. The
UI component emulates virtual scrolling within a We-
bView or web browser. The demo data for the list was
generated at start up and stored in memory. The data
was directly referenced by ion-virtual-scroll for ac-
tual display. The Ionic build was packaged inside a
Cordova app for release.

3.3 Test Case

To test the three apps, we created a fully automated
test case, which is independent of the specific apps.
We could use the exact same test case for all three
apps. This allowed a direct comparison of the test
results.

Each step of the test case was exactly timed and
the whole case could be executed repeatedly for one
of the developed apps on a connected Android device.

Performance Analysis of Mobile Cross-platform Development Approaches based on Typical UI Interactions

43



Table 1: Overview of apps.

Approach Version UI component

Android native Compiled Android API Level 28, Minimum Android API Level 23 RecyclerView
React Native React Native 0.58 FlatList
Ionic/Cordova Ionic 4.0.1, Cordova Android 8.0.0 Ionic Virtual Scroll

In the following a detailed step by step description of
the test case is given. All of these steps were executed
without human intervention.

• Install the app on the connected Android device.

• Start the measurement tool (Section 3.4) with a
total recording time of 40 seconds and wait 2 sec-
onds.

• Start the app by triggering an intent on the con-
nected Android device and wait for 12 seconds.
The different development approaches have dif-
ferent loading times, therefore a long waiting time
is required. The apps were always loaded under
12 seconds of waiting time on the test device.

• Execute three bottom-to-top swipe gestures, cen-
tered on the device screen and wait three seconds
between gestures.

• After the last swipe gesture wait for the end of
the 40 second recording time of the measurement
tool.

• Close the app and uninstall it from the device.

For all device management tasks the Android De-
bugging Bridge (adb) was used. The user interactions
on the device could be simulated with the monkeyrun-
ner library (Google, 2019a), which is part of the An-
droid SDK. The test script with all device interactions
was written as a python script. For each developed
app, this test case was executed 50 times.

3.4 Measurement Tool and Device

As Android is a Linux-based operating system, it of-
fers many of Linux’ command-line utilities. vmstat
(Henry and Fabian, 2009) is a Linux tool for execut-
ing continuous performance measurements. All per-
formance measurement results produced by the pro-
posed test case were recorded with vmstat.

vmstat was running for 40 seconds during the au-
tomated test cases and among other measurements,
we recorded CPU usage and free memory of the mo-
bile device. The recording interval was set to one sec-
ond and each test run produced a time series of 40
measurement results.

The mobile device used for the measurement was
the LG Nexus 5, which is a mid-range smart phone.
The Android version of the device was updated to the

maximum supported version of the manufacturer. In
table 2 details of the device specification are listed.

Table 2: LG Nexus 5 specification.

CPU Quad-core 2.3 GHz

Memory 2 GB RAM

Display resolution 1080 x 1920 pixels

Display size 4.95 inches

Android Version Version 6.0.1, API Level 23

4 RESULTS

This section is devoted to the results of this study. We
start by presenting our results with respect to CPU us-
age (Section 4.1). Afterwards, we describe the mea-
sured memory consumption of the developed apps
(Section 4.2). The results were produced by execut-
ing the test case 50 times for each app in alternating
order.

4.1 CPU Usage

Throughout the execution of the test case presented in
Section 3.3 the CPU usage has been measured peri-
odically every second. The topmost plot in Figure 2
shows a comparison of the CPU usage of the three
apps. The vertical axis shows the averaged CPU us-
age in percent. That is, for each app, we averaged the
CPU usage over the 50 test cases. On the horizontal
axis the time in seconds is represented. The solid line
shows the CPU usage of the Android native app, the
dashed line shows the React Native app and the dotted
line shows the Ionic/Cordova app.

Overall, we can see that the native development
approach has the lowest CPU usage. Apps developed
with MCPD approaches always come with a perfor-
mance overhead compared to native development, as
also others have found (Willocx et al., 2015; Dal-
masso et al., 2013; Ajayi et al., 2018). React Na-
tive has the highest CPU usage peaks of more than
sixty percent, followed by the Ionic/Cordova app with
peaks of around fifty percent.

ICSOFT 2019 - 14th International Conference on Software Technologies

44



Figure 2: CPU usage comparison of different apps.

The app start up was happening roughly between
second 5 and second 18. For the Android native app
a single steep usage spike is visible. In comparison,
the MCPD apps have broader plateau-like shaped us-
age peaks. Approximately between second 19 until
second 34 the swipe gestures were executed. For all
approaches three consecutive usage peaks are visible
with a delay of about 3 seconds between each peak.
The native app again produced steep usage spikes,
which are contrasted by plateau-like shaped peaks for
the MCPD approaches.

Table 3: Cumulative average of CPU usage.

Second Native Ionic/Cordova React Native

5-18 10.0% 20.3% 18.8%
19-34 13.2% 26.6% 35.3%

For the average CPU usage it can be said that dur-
ing app start up roughly twice as many resources are
required by MCPD approaches. As this stays the
same for Ionic/Cordova during the user interaction
phase, React Native requires around 2.5 more CPU
usage as the Android native app. In table 3 the cumu-
lative results of the average CPU usage between the
two time intervals (second 5 to 18 for app start up,

and second 19 to 34 for user interaction) are summa-
rized.

The additional three plots in Figure 2 show the
variance of the 50 test cases. That is, they show a
spread visualization between the 5%-quantil and the
95%-quantil around the average CPU usage of the dif-
ferent apps.

Table 4: Average variance in CPU usage.

Second Native Ionic/Cordova React Native

5-18 3.7% 5.5% 4.0%
19-34 2.3% 6.2% 8.1%

During the start up phase the average CPU usage
variance is almost similar for Android native and Re-
act Native. The average variance for Ionic/Cordova is
slightly higher within the start up phase. Throughout
the user interaction phase the Android Native imple-
mentation is almost negligible around 2%. However,
React Native has a high spread mainly during the first
swipe gesture. On average React Native has a vari-
ance of 8.1% and Ionic/Cordova 6.2% during the user
interaction phase. Table 4 gives an overview of these
results.

Performance Analysis of Mobile Cross-platform Development Approaches based on Typical UI Interactions

45



4.2 Memory Consumption

Similar to the CPU usage, the consumption of free
memory on the device was measured periodically ev-
ery second throughout the execution of the test cases.
The topmost plot in Figure 3 shows a comparison of
the different apps. The vertical axis shows the aver-
aged memory consumption in percent. That is, for
each app, we averaged the memory consumption over
the 50 test cases. On the horizontal axis the time in
seconds is represented. The solid line shows memory
consumption of the Android Native app, the dashed
line shows the React Native app and the dotted line
shows the Ionic/Cordova app.

In comparison to the MCPD approaches the An-
droid native app has an almost negligible memory
footprint. The Ionic/Cordova app has a memory re-
quirement of around 50% of the freely available mem-
ory throughout the test case. Although during the start
up phase React Native has a requirement of around
15% of memory, the amount rises to above 30% dur-
ing the user interaction phase.

Table 5: Cumulative average of memory consumption.

Second Native Ionic/Cordova React Native

5-18 3.0% 32.7% 14.4%
19-34 1.8% 51.7% 26.5%

Cumulatively, for the average memory consump-
tion it can be said that during application start up
Ionic/Cordova requires around 10-times more mem-
ory and React Native 5-times more memory than
the native counterpart. During the user interac-
tion phase this rises to even 28-times more for
Ionic/Cordova and 14-times more for React Na-
tive. Overall Ionic/Cordova consumes approximately
twice as much memory than React Native. In table 5
the cumulative results of the average memory usage
between the two time intervals are presented.

The additional three plots in Figure 3 show the
variance of the 50 test cases. That is, they show a
spread visualization between the 5%-quantil and the
95%-quantil around the average memory consump-
tion of the different apps.

Table 6: Average variance in memory consumption.

Second Native Ionic/Cordova React Native

5-18 7.8% 15.2% 8.6%
19-34 7.7% 20.2% 11.2%

Throughout the execution of the test cases, the av-
erage variance stays at around 7.7% to 7.8% for the
native approach. For the MCPD approaches the av-
erage variance rises during the user interaction phase.

In table 6 a summary of the different average memory
consumption variances is given.

5 DISCUSSION

Prior work has documented that MCPD approaches
consume more resources (e.g., CPU and memory)
than native implementations (Dalmasso et al., 2013;
Willocx et al., 2016). In this study a detailed view is
put on the CPU usage and memory consumption dur-
ing a typical UI interaction. The interaction with a
common UI component, namely a virtual scrollable
list was investigated more thoroughly. The results
provide some guidance to mobile app developers in
selecting a suitable MCPD approach. Even though
developing mobile apps using such approaches has
valid reasons, these advantages come at some costs,
for instance, higher CPU load and memory consump-
tion.

The selection of a mobile development approach
highly influences mobile app projects. As prior re-
search has shown, users perceive a difference between
a native implementation and an implementation based
on an MCPD approach (Andrade et al., 2015). Al-
though this difference is acceptable if high-end de-
vices are considered (Willocx et al., 2016), especially
the market of Android smart phones is highly dis-
persed between low-end and high-end devices.

The reusability of existing code bases or the main-
tenance of a single code base are common argu-
ments for using MCPD approaches. Both examined
approaches are based on web-technologies. Thus,
JavaScript code bases can be reused or shared. Ad-
ditionally, both MCPD approaches leverage existing
skills of web-developers, that is, HTML, CSS and
JavaScript. Therefore, MCPD approaches are highly
recommended for reducing development and mainte-
nance costs for applications used in different settings
(e.g., mobile and web version of an application).

However, the performance of a mobile app can be
a competitive advantage in certain contexts. The in-
creased resource usage of MCPD approaches has neg-
ative effects on the battery lifetime of smart phones
(Ciman and Gaggi, 2017b). Also a lower user-
perceived performance can lead to user complaints
(Mercado et al., 2016). Thus, for apps which have
a necessity for frequent user interactions, a native
implementation should be considered. Users might
switch to competing apps in favor of lower battery
drainage or an increased user-perceived performance.

It should be noted, that there is a possibility to mix
native development with MCPD approaches. There-
fore, frequently used parts of an app can be im-

ICSOFT 2019 - 14th International Conference on Software Technologies

46



Figure 3: Memory consumption comparison of different apps.

plemented natively to reduce resource consumption.
Other parts of an app with lesser importance (e.g.,
settings menu) can be implemented with MCPD ap-
proaches.

A number of caveats need to be noted regarding
the present study. First, we only used an Android
native implementation to compare the performance
results of the two MCPD approaches. A native im-
plementation for Apple iOS was not tested. Such a
native implementation could shed more light on per-
formance differences. Likewise, we only tested one
typical UI interaction pattern, scrolling through a vir-
tual list. Although this is a frequently found UI pat-
tern, additional UI pattern need to be considered as
well. Furthermore, the automated tests were con-
ducted on only one device. Finally, we only consid-
ered two approaches for MCPD approaches, hybrid
and interpreted. However, there are three other types
of approaches Biørn-Hansen et al. (2018). To have an
in depth analysis of MCPD approaches, all five cat-
egories of approaches should be included. Clearly,
all these limitations reduce the generalizability of our
results. Nevertheless, these results confirm results
of previous studies. They also provide first insights
into performance with respect to UI interactions and
thus expand the current body of literature. Addition-

ally, the automated test of implemented UI interaction
show a novel approach of performance testing.

6 CONCLUSION

In this paper, a performance analysis of three imple-
mentations (2 MCPD approaches and 1 native ap-
proach) of one and the same UI interaction was con-
ducted. We found that MCPD approaches use more
than twice as much CPU than a native implementa-
tion when performing a typical UI interaction. Addi-
tionally, the memory consumption during the UI in-
teraction was 28-times higher for Ionic/Cordova and
around 14-times higher for React Native compared to
the native app. These results are in line with results of
previous studies. Nevertheless, in this study, we pur-
sued a different approach to test the performance of
mobile apps as we focus on interactions with the UI.
Previous studies focused mainly on rather computing
intensive apps.

The use of MCPD approaches for app develop-
ment has substantial consequences for CPU usage and
memory consumption. Mobile app developers face a
difficult decision on the choice of the development ap-

Performance Analysis of Mobile Cross-platform Development Approaches based on Typical UI Interactions

47



proaches as performance can be a competitive advan-
tage. We conclude that a mixture of a native devel-
opment approach with a MCPD approach within the
same app is plausible. For frequently used parts of an
app a native implementation can increase the battery
lifetime and the user-perceived performance.

As we only tested two MCPD approaches, future
work should extend this research by increasing the
number of MCPD approaches for the performance
analysis of typical UI interactions. Also an iOS na-
tive implementation should be included as well as dif-
ferent UI interaction patterns. This would provide
a broader picture of the performance of MCPD ap-
proaches.

REFERENCES

Ajayi, O. O., Omotayo, A. A., Orogun, A. O., Omomule,
T. G., and Orimoloye, S. M. (2018). Performance
evaluation of native and hybrid android applications.
Performance Evaluation, 7(16).

Andrade, P. R., B.Albuquerque, A., Frota, O. F., Silveira,
R. V., and da Silva, F. A. (2015). Cross platform app
: A comparative study. International Journal of Com-
puter Science and Information Technology, 7(1):33–
40.

Biørn-Hansen, A., Grønli, T.-M., and Ghinea, G. (2018).
A survey and taxonomy of core concepts and re-
search challenges in cross-platform mobile develop-
ment. ACM Computing Surveys (CSUR), 51(5):108.

Ciman, M. and Gaggi, O. (2017a). An empirical analysis
of energy consumption of cross-platform frameworks
for mobile development. Pervasive and Mobile Com-
puting, 39:214 – 230.

Ciman, M. and Gaggi, O. (2017b). An empirical analysis
of energy consumption of cross-platform frameworks
for mobile development. Pervasive and Mobile Com-
puting, 39:214–230.

Dalmasso, I., Datta, S. K., Bonnet, C., and Nikaein, N.
(2013). Survey, comparison and evaluation of cross
platform mobile application development tools. In
2013 9th International Wireless Communications and
Mobile Computing Conference (IWCMC). IEEE.

Dhillon, S. and Mahmoud, Q. H. (2015). An evaluation
framework for cross-platform mobile application de-
velopment tools. Software: Practice and Experience,
45(10):1331–1357.

El-Kassas, W. S., Abdullah, B. A., Yousef, A. H., and
Wahba, A. M. (2017). Taxonomy of cross-platform
mobile applications development approaches. Ain
Shams Engineering Journal, 8(2):163 – 190.

Facebook (2019). FlatList. https://facebook.github.io/
react-native/docs/flatlist.html. [Online; accessed 11-
February-2019].

Google (2019a). monkeyrunner. https://developer.
android.com/studio/test/monkeyrunner/. [Online; ac-
cessed 11-February-2019].

Google (2019b). RecyclerView. https://developer.
android.com/reference/android/support/v7/widget/
RecyclerView. [Online; accessed 11-February-2019].

Heitkötter, H. and Majchrzak, T. A. (2013). Cross-platform
development of business apps with md2. In vom
Brocke, J., Hekkala, R., Ram, S., and Rossi, M., ed-
itors, Design Science at the Intersection of Physical
and Virtual Design, pages 405–411, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

Henry, W. and Fabian, F. (2009). man page for
vmstat. https://www.unix.com/man-page/linux/8/
vmstat/. [Online; accessed 11-February-2019].

Ionic (2019). ion-virtual-list - Ionic documentation. https://
ionicframework.com/docs/api/virtual-scroll. [Online;
accessed 11-February-2019].

Latif, M., Lakhrissi, Y., Nfaoui, E. H., and Es-Sbai, N.
(2016). Cross platform approach for mobile applica-
tion development: A survey. In 2016 International
Conference on Information Technology for Organiza-
tions Development (IT4OD). IEEE.

Majchrzak, T. A., Biørn-Hansen, A., and Grønli, T.-M.
(2017). Comprehensive analysis of innovative cross-
platform app development frameworks. In Proceed-
ings of the 50th Hawaii International Conference on
System Sciences. Hawaii International Conference on
System Sciences.

Mercado, I. T., Munaiah, N., and Meneely, A. (2016). The
impact of cross-platform development approaches for
mobile applications from the user’s perspective. In
Proceedings of the International Workshop on App
Market Analytics, pages 43–49. ACM.

Statista (2018). Global smartphone sales by oper-
ating system from 2009 to 2017 (in millions).
https://www.statista.com/statistics/263445/global-
smartphone-sales-by-operating-system-since-2009/.
[Online; accessed 11-February-2019].

Statista (2019). Worldwide mobile app revenues
in 2015, 2016 and 2020 (in billion U.S. dol-
lars). https://www.statista.com/statistics/269025/
worldwide-mobile-app-revenue-forecast/. [Online;
accessed 11-February-2019].

Vallerio, K. S., Zhong, L., and Jha, N. K. (2006). Energy-
efficient graphical user interface design. IEEE Trans-
actions on Mobile Computing, 5(7):846–859.

Willocx, M., Vossaert, J., and Naessens, V. (2015). A quan-
titative assessment of performance in mobile app de-
velopment tools. In 2015 IEEE International Confer-
ence on Mobile Services, pages 454–461. IEEE.

Willocx, M., Vossaert, J., and Naessens, V. (2016). Com-
paring performance parameters of mobile app devel-
opment strategies. In Mobile Software Engineering
and Systems (MOBILESoft), 2016 IEEE/ACM Inter-
national Conference on, pages 38–47. IEEE.

Xanthopoulos, S. and Xinogalos, S. (2013). A comparative
analysis of cross-platform development approaches
for mobile applications. In Proceedings of the 6th
Balkan Conference in Informatics on - BCI '13. ACM
Press.

ICSOFT 2019 - 14th International Conference on Software Technologies

48


