A Microservice Architecture for Multimobility in a Smart City

Cristian Lai, Francesco Boi, Alberto Buschettu and Renato Caboni

CRS4, Center for Advanced Studies, Research and Development in Sardinia,
Loc. Piscina Manna, Ed. 1 09050, Pula (CA), Italy

Keywords:

Abstract:

Internet of Things, Smart City, Transportation, Multimobility.

In this paper we present a microservice architecture designed to build IoT services available on the Web. The

high potential of microservice architectures will impact the design of complex systems more significantly
in the coming years. We propose a draft of architecture that we have used to develop an application for
multimobility services in a smart city using an ecosystem of devices. Such application, designed for a real
case study, is extremely heterogeneous in terms of IoT devices and implements a wide range of services for
citizens. It aims to give a contribution to reducing traffic generated by private vehicles in the city and to help
drivers going towards high traffic areas by presenting real-time mobility data from different sources. The
evaluation of the architecture carried out in this study allows to understand how it behaves under an increasing
number of devices and users connected to the platform, particularly in terms of response time alterations

caused by a large number of requests.

1 INTRODUCTION

During the recent years the amount of connected
devices available in everyday life has significantly
grown as crucial part of the Internet of Things (IoT).
ICT is evolving toward more scalable architectures
and those based on microservices are paving the
way for modern applications (Baskarada et al., 2018;
Dragoni et al., 2018; Kalske et al., 2018). This pa-
per presents a microservice architecture specifically
designed and developed for the IoT. This architecture
is capable of integrating both physical and logical de-
vices as well as of managing typical operations such
as device registration, data storage and data retrieval.

Smart cities are more and more enriched with so-
phisticated services (Zanella et al., 2014), especially
for citizens mobility. Multimobility combines differ-
ent modalities of transportation, e.g., private car, bus,
carsharing and bikesharing. The shift from homoge-
neous to multimodal mobility is growing in popular-
ity, especially in urban centers with recurring prob-
lems associated with congestion, parking, and an
overall lack of space (Shaheen et al., 2016). Ev-
eryday, citizens shift among multiple transportation
modalities. Those who move by car may decide to
park and proceed by bus or otherwise. This is why
their main issues are related to finding a parking slot,
catching the bus on time or choosing the suitable al-
ternative. Other sources of information, such as traf-

Lai, C., Boi, F., Buschettu, A. and Caboni, R.
A Microservice Architecture for Multimobility in a Smart City.
DOI: 10.5220/0007830506570664

fic data, are not associated directly to any transporta-
tion service for the citizens but they rather supply data
that users can consult or that can be exploited oth-
erwise. Every single element, i.e., a parking area, a
bus stop, a car or bike sharing station, takes part of
an extremely sophisticated network of miscellaneous
connected IoT devices that can grow incrementally.
Within a scalable system, a single device is handled
by a dedicated microservice.

A real case study has been set up in the metropoli-
tan area of Cagliari. Drivers moving by car in the
city centre have the available information necessary
to elude high traffic intensity areas avoiding time and
fuel wasting and also preventing increase of traffic.

In the IoT the volume of devices can be remark-
able. It should be noted that by 2020 the [oT could
reach 20 billion internet-connected things and it will
increment revenues for products and services suppli-
ers up to $300 billion (Hung, 2017). In light of this,
scalability is a non-functional feature of the software
which requires special attention. Scalable IoT sys-
tems ensure indeed adequate response times for data
delivery to/from devices and data reading (Bondi,
2000). Microservice architectures, by nature, take
into account and handle scalability (Hasselbring and
Steinacker, 2017), but need additional efforts to cal-
ibrate the necessary number of instances of each mi-
croservice, to scale each microservice independently
and to synchronize data among them. We have mea-

657

In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 657-664

ISBN: 978-989-758-379-7

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICSOFT 2019 - 14th International Conference on Software Technologies

sured system performances, under an increasing num-
ber of devices registered to the platform and an in-
creasing number of connected users, to address scala-
bility. We have evaluated the ability of the system to
guarantee adequate performance in case of high data
volume (resilience) and an appropriate SLA (Service
Level Agreements).

This paper is organized as follows. Section II re-
views state of the art service oriented architectures.
Section III describes the microservice architecture de-
signed and developed for mobility services in smart
cities. Section IV illustrates the implementation of a
real case study. In Section V the evaluation of the im-
plemented architecture is described. Finally, Section
VI provides conclusions and future perspectives.

2 STATE OF THE ART

The enormous amount of connected devices has en-
abled a widespread diffusion of large IoT systems.
Infrastructures, platforms and software applications
are offered often as services using cloud technolo-
gies (Perera et al., 2013). In IoT systems a central-
ized architecture is responsible for offering one or
more services to the user while the necessary data
is produced by a set of devices deployed in different
locations. This generates an amount of data easily
available, used to create vertical applications. In the
IoT, a single standard or implementation has not yet
been established, but several competing paradigms
are candidates to become the main reference. There
are several middleware that act as layers of abstrac-
tion between heterogeneous IoT devices and 10T sys-
tems enabling interactions between heterogeneous de-
vices. The cloud-based ThingSpeak platform (Lai
et al., 2018; Abdul-Rahman and Graves, 2016), is
an open source IoT application and API (Applica-
tion Programming Interface) for storing and retriev-
ing data from “’things” using the HTTP protocol. The
ThingSpeak API allows for numeric data process-
ing such as time scaling, averaging, median, sum-
ming and rounding and it is used as a middleware
to manage low-level network operations, data collec-
tion and real-time data annotation/transformation. It
is useful for several real life IoT applications such
as smart home applications and IoT agriculture, but
it is mostly oriented to collect, analyze and trigger
reactions. Xively! allows to connect devices over
MQTT (Message Queuing Telemetry Transport) pro-
tocol. Used mainly in agriculture and domotics, it
supports many data formats and offers fast and re-

Uhttps://xively.com/

658

liable database intelligence. Each source of infor-
mation must be analyzed individually and the pri-
ority of each process must be scheduled individu-
ally. This can generate overloads and bottlenecks.
LinkSmart? (Harlamova et al., 2017; Kostelnik et al.,
2011), a service-oriented middleware, uses the SOA
(Service-Oriented Architecture) architecture to gen-
erate services in home automation, healthcare and
smart agriculture contexts. LinkSmart allows inte-
gration with existing systems and services through
widespread standards and solves security problems
through virtualization. OpenHAB? (Open Home Au-
tomation Bus) is an open-source middleware, born
as an extension of the Eclipse SmartHome project
and designed for smart environments development,
such as smart offices and smart homes. Any Open-
HAB instance contains modules called bundles that
run within a single OpenHAB instance.

Many are successful state of art technologies but
are monolithic applications built as a single unit,
hence not offering the flexibility required to deal with
heterogeneous devices efficiently. Often, they con-
sist of three main parts: a client-side user interface, a
database and a server-side application. Changes to the
system require building and deploying a new version
of each component. On the contrary, microservice ar-
chitectures are divided into a number of small inde-
pendent services, each of which implements a certain
feature. A scalable architecture achieves a more effi-
cient management of available resources by allocating
only to those modules that are actually overstressed,
rather than unconditionally to all the sub-components
(Dragoni et al., 2018; Krylovskiy et al., 2015).

3 MICROSERVICE
ARCHITECTURE

The microservice architecture discussed in this pa-
per combines a variety of IoT devices and services.
Namely CMC-IoT, is a fork and extends CMC-Core?,
our first open source project implementing a general
purpose microservice architecture. CMC-IoT is the
foundation of our first web application designed for
citizen multimobility in a smart city, called SmartMo-
bility.

Zhttps://www.linksmart.eu/
3http://www.openhab.org/
“https://github.com/smartenv-crs4

3.1 CMC-Core

CMC-Core provides independently deployable and
loosely coupled basic services. Each microser-
vice runs in its own process, communicates with
lightweight mechanisms, such as HTTP resource API
(Fowler and Lewis, 2014) and manages significant
operations. The microservices composing CMC-Core
are the following:

e Cmc Auth is a token generator that protects
microservices from unauthorized access using a
token-based authentication technique. Cmc Auth
generates different types of tokens enabling ac-
cess to specific endpoints of a protected microser-
vice. The three types of tokens that can be gen-
erated are: i) Microservice Token, to access any
resource made available by microservices and to
allow communication and exchange data among
them; ii) User Token, to access resources for user-
related services; iii) Application Token, to access
resources from general purpose third-party appli-
cations.

e Cmc App manages resources and applications
sign-up and the subsequent sign-in phase. When
resources or applications sign-in, Cmc App asks
for an Application Token to Cmc Auth. Cmc
App releases the token to the applicant that con-
sequently can access any protected microservice
(MS, see Fig. 1). Moreover, CMC Auth man-
ages any authorization rule to access a specific mi-
croservice.

e Cmc User manages user access to protected mi-
croservices. Users can sign-in with credentials to
obtain a user token. This token can be used only
by the owner of specific resources related to the
protected microservices.

Cmc \€-=-----3-- SR - -y
A SigniN
P e R R R @
! Application Token _ @
PV A pplcation Token_@ _ _ _
Call To MS R

Microservice Token

CallToMS R

uoneodde Aped-pay |

Figure 1: CMC-Core. A typical use case.

In Fig. 1, the microservices MS1, MS2 and MS3
grant access to a third-party application. The applica-
tion is authorized to call these microservices through

A Microservice Architecture for Multimobility in a Smart City

an Application Token. When the token expires, the
application or user must sign-in again. The same pro-
cedure is used to authenticate and authorize user ac-
cess to one or more microservices.

CMC-Core offers only the presented basic ser-
vices but can be easily extended with new features
using the available plugins. With this approach CMC-
IoT has been developed, starting from the architecture
of CMC-Core, to have a complete system more suit-
able for IoT and smart city applications.

3.2 CMC-lIoT

CMC-Iot is compound of the following additional mi-
croservices:

e Cmc Devices manages the device functionalities
providing the REST CRUD (Create Read Up-
date Delete) operations. Each device must have a
unique id to be unambiguously identified (for ex-
ample the mac-address), a category and a physical
connector. Optionally also its geolocation and a
nickname can be specified. A connector allows di-
rect interaction with CMC-IoT. For those devices
unable to perform HTTP operations, a middle-
ware (see Fig. 2) is required to mediate the com-
munication to CMC-IoT. Devices can read from
and write to Cmc Device using a REST API. Ex-
ternal systems are synchronized with Cmc De-
vices for events such as new available data, ad-
dition of a new device to the platform. The most
common protocols such as MQTT?, COAP (Con-
strained Application Protocol) (Thangavel et al.,
2014) and others are directly supported by Cmc
Devices. In case of user related devices (e.g.,
wearable and home smart objects) User Tokens
guarantee access to Cmc Devices. General pur-
pose devices, not directly associated to any par-
ticular user (e.g., public traffic data, parking, open
data), use Application Tokens.

e Cmc History stores and retrieves historical data
produced by devices. Moreover, it allows to fil-
ter and search data by device id, time, device cat-
egory, type of connector and others. In case of
device failure last available data can be recovered.

e Cmc Persistence is a scheduler for general pur-
pose devices that do not directly provide their data
to CMC-IoT. It performs data reading using Cmc
Devices and data saving through Cmc History.

Once a device has been added to CMC Devices
and a User Token or Application Token has been
released, data can be sent through token authorized

Shttp://mqtt.org/

659

ICSOFT 2019 - 14th International Conference on Software Technologies

MIDDLEWARE

Figure 2: CMC IoT.

write operations and then read by other authorized de-
vices, applications or users. Cmc Devices uses the
core features of CMC-Core to validate tokens and to
authorize queries on registered devices.

4 CASE STUDY

We have considered a real case study in the city of
Cagliari, located in the Sardinia island, Italy. The aim
is to contribute to the reduction of traffic generated by
private vehicles in the city. SmartMobility, the appli-
cation developed during this project, helps drivers go-
ing towards high traffic areas by presenting in a clear
way and on the same platform real-time mobility data
from different sources. SmartMobility is made up by
the following macro components:

e CMC-IoT (see Section 3.2);

e data sources: any piece of hardware or software
(including external services such as Web-APIs
and portals) producing relevant data (see Section
4.2),

e Web portal: the user interface presenting the ac-
quired data in an easy and understandable way to
the user (see Section 4.3). Even though the best
solution is a mobile APP, so far we have decided
to develop a web application. This allows to de-
sign a complete user interface and quickly mock
up a running system. Moreover, the web appli-
cation with responsive capabilities can be used in
mobile devices.

4.1 Scenario

Before entering the city centre the driver, using the
SmartMobility application, can check available free
parking spots in the monitored parking areas that are
close to his destination. In this way he/she does not
have to drive around the city looking for a free park-
ing spot. Once a parking lot has been identified and
chosen, the user can choose the fastest path to reach it

660

according to real-time traffic information in the main
city roads shown in SmartMobility. The driver can
again check on the application the availability of mo-
bility services around the parking area, such as bus
stops and sharing services, and their reliability so that
he/she can choose the one most suitable for his/her
needs or alternatively walk to the final destination.

4.2 Data Sources

SmartMobility collects data from different data
sources:

e real-time traffic information: the municipality of
Cagliari has created an infrastructure of inductive-
loop traffic detectors (commonly referred to as
traffic sensors) that can detect vehicles passing by.
These sensors are installed in the main roads con-
necting the suburbs to the city center. Data re-
turned by REST APIs contain the flow of vehi-
cles per unite of time and the average speed. This
information is used to estimate traffic flow at the
time the user is supposed to pass so that he/she
have the necessary information to elude high traf-
fic zones;

e parking space vacancy detection system: an au-
tomatic system installed in open-access parking
lots. Our system uses cameras and image pro-
cessing for detecting vacant and occupied parking
spaces. SmartMobility is constantly updated on
parking availability so that users can directly drive
to the area closest to their destination where most
likely they will find a free parking spot, avoiding
in this way time and fuel wasting, and reducing
traffic congestion;

e public transport information: most of the public
transport companies in Cagliari and its extended
area have offered data of their bus services for this
project. Bus service information includes avail-
able bus lines, bus stops, the timeschedule and the
reliability of each line;

e carsharing: a private company offers the fast-
growing carsharing service in the city of Cagliari.
They provide their service data through web ser-
vices. Available information includes the current
status of each carsharing parking area (number
and models of the available cars, booked reserva-
tions etc.);

e bikesharing: data include the geographical posi-
tion of each dock and the number of available
bikes in it. Due to temporarily unavailability, data
have been simulated keeping the same format.

Each data type has its own format and procedure
for being retrieved. To communicate with such het-

erogeneous data sources, CMC Devices uses differ-
ent types of connectors, one for each kind. A single
CMC Devices instance manages many devices in or-
der to avoid computational overhead. CMC Persis-
tence periodically retrieves carsharing data from the
proper endpoint while CMC History stores last month
traffic data to predict the current traffic flow. In our ar-
chitecture, the microservices are deployed in Docker®
containers that provide the needed flexibility and keep
the overhead sufficiently low, compared to traditional
virtual machine solutions.

4.3 Web Portal

The SmartMobility web portal contains all the ele-
ments compounding the UI (User Interface) and cor-
responding to the variety of devices and services man-
aged by CMC-IoT. The UI shows a map containing
the geographical location of the devices (bus stops,
parking lots, traffic. sensors, bike docks and car shar-
ing parkings) composing the different mobility ser-
vices. On the UI, graphic elements of the same kind
are grouped together. The user selects the services
in which he/she is interested from a drop-down menu
(see Fig. 3).

] entando m- aene

Smart Mobility

Figure 3: Available services in SmartMobility.

On the map the relevant elements are shown fol-
lowing a layered approach. Each item presents ad-
ditional information. For example, when selecting a
parking lot not only the overall parking capacity and
current availability, but also further information re-
lated to the other mobility services in the area close
to it is shown in real-time. The bus stop selection pro-
vides the available lines, the timeschedules and ser-
vice reliability information. Clicking on a carsharing
or bikesharing station displays the number of avail-
able vehicles in it. Fig. 4 shows an example in the
case of the carsharing service.

The web interface is developed using the enter-
prise open source software Entando’. Entando is an
open source Digital Experience Platform (DXP) for

Ohttps://www.docker.com
http://www.entando.com

A Microservice Architecture for Multimobility in a Smart City

Via Gloltt - Cagliarl

Figure 4: Additional information, carsharing.

vertical portals. The namesake enterprise is also part-
ner of CRS4 in the project that partially supported this
work (see Section 6). Extensions available in the plat-
form have been exploited to create the software plu-
gin modules needed for the integration with CMC-IoT
and for the web portal development. The web portal
is updated in real-time when new data are available
on CMC-IoT. The result is pleasant visualization of
smart city data on the graphical interface.

5 EVALUATION

We have identified a pattern of actions the user is sup-
posed to perform on the web portal according to the
scenario in Section 4.1.

1. Identify the parking lots.

2. Find the traffic sensors close to a chosen parking
lot.

3. Find the bus stops, carsharing and bikesharing sta-
tions around the identified parking lot.

The supposed actions generate requests to CMC-
IoT, referred to as user requests.

Tests simulating the pattern have been defined
and performed to understand how CMC-IoT behaves
when the number of devices and user requests in-
crease. During these tests we have measured the re-
sponse time of user requests and the number of failed
requests. CMC-IoT has been run on a virtual machine
with 8 GB of RAM memory, 4 cores and Ubuntu
18.04 as operating system.

5.1 Pattern of User Actions

The pattern detailed in the Algorithm 1 simulates hu-
man interaction with the SmartMobility application
according to the scenario of Section 4.1.

First, the algorithm simulates the user destination
by randomly choosing a point in the city centre. Then
it proceeds with looking for the parking lots close to
the destination within a given radius. After randomly

661

ICSOFT 2019 - 14th International Conference on Software Technologies

Algorithm 1: Algorithm simulating human interaction
with the SmartMobility application according to the
scenario described in Section 4.1.
generate requests to CMC-IoT to retrieve data of the
desired mobility services. r is the searching radius. The

User’s actions

. R
notation el; < [; means randomly choose an element
el; from the list of sensors /; of type i.

p < random point in the city centre;
r < 500m;
[1 < get from CMC-IoT the parking areas
around p within r;
if /; # 0 then
R
el 1 < l];
read el; most recent data from CMC-IoT;
p < (el geographical position);
Iy <+ get from CMC-IoT the traffic
sensors around p within r;
if I # 0 then
R
612 — 12;
read el, current data from CMC-IoT;

end
r < 200m;
I3 < get from CMC-IoT the bus stops
around p within r;
if /3 # 0 then
R
el < I3;
read el3 data from CMC-IoT;
end
r < 500m;
l4 + get from CMC-IoT the bikesharing
docks around p within r;
if 14 # 0 then
R
614 — 14;
read ely current data from CMC-IoT;

end
r < 300m;
Is < get from CMC-IoT the carsharing
stations around p within r;
if /s # 0 then
R
els < Is;
read el5 current data from CMC-IoT;

end
end

choosing a parking lot from the retrieved ones, the al-
gorithm detects all the other mobility services, includ-
ing traffic sensors around it and within a maximum
distance. As already explained in the scenario, this
allows the driver to choose the fastest path to reach
the parking area and the best alternative to move from
the parking lot where the driver’s car has been parked
to the final destination of the user.

662

The searching radius has been empirically chosen
for each device type in order to prevent the pattern
from returning empty lists: the larger the radius, the
more likely it is to find a sensor of that type around
the given geographical point. However it still might
happen that no device of that type is found: in this
case the pattern will skip the next requests depending
on this result and continue with the others, if any, or
terminate.

5.2 Test Configuration

Starting from a basic test configuration compound of:

e 440 data sources (5 parking lots, 300 bus stops,
100 traffic sensors, 30 carsharing parking areas
and 5 bikesharing docks);

e 10 users;

we perform four rounds of tests, each one consist-
ing of four test runs (see table 1). Within the same
round the number of devices is kept constant while
the number of users is increased ten times at each test
run. In the next round the number of devices is in-
creased ten times and the number of users starts back
from 10 as in the basic test configuration. At each test
run each user performs the pattern 50 times.

Table 1: Table summarizing the number of devices and
users for each test run. Each row is a single round of tests
having the same number of devices. Columns are test runs
with the same number of users.

Round Test run
1 2 3 4
devices ‘ users devices ‘ users devices ‘ users devices ‘ users
1 440 | 10 440 | 10° 440 | 10° 440 | 10
2 4400 | 10 4400 | 102 4400 | 10 4400 | 10*
3 44000 | 10 44000 | 10? 44000 | 10° 44000 | 10*
4 440000| 10 440000 102 440000 103 440000| 10*

5.3 Measures

At each test run we collect the following data:

e average CPU usage of the virtual machine running
CMC-IoT;

e average memory usage of the virtual machine run-
ning CMC-IoT;

e number of failed requests;

e response time of user requests: the average of
time intervals between the moment the client per-
forms a request and the time it gets a response, ac-
cording to the technique explained in (Hoxmeier
and Dicesare, 2000).

The operations depicted in the Algorithm 1 are
performed by the Apache JMeter® testing tool . It

8https://jmeter.apache.org

allows to perform the requests to CMC-IoT and to
store for each request the desired response informa-
tion, such as response code and response time, on
the user-side hardware. The average CPU usage and
average memory usage are monitored with NetData’
on the server-side (the virtual machine running CMC-
IoT).

5.4 Results

Average request response time

10 users 100 users 1000 users 10000 users
440x1 devices N 440x10 devices NN 440x100 devices I 440x1000 devices

Figure 5: Average response time of user requests for each
test run.

According to JMeter all requests are successful
and no failure occurs. Fig. 5 shows the average re-
sponse time of user requests for each test in logarith-
mic scale. Each bar is the average response time of
user requests for the corresponding test run. Results
of runs having the same number of users are grouped
together, while results of test runs with the same num-
ber of devices have the same color. It is clear from
the graph how the average response time of the re-
quests increases with the number of users and with the
number of devices. However in the group with 10000
users, we have an unexpected behaviour: within this
group the test run with 440x1000 devices (the green
bar in the last group) has an average response time
smaller than the test runs (within the same group) with
440x10 (the blue bar) and 440x100 (the red bar) de-
vices. Furthermore compared to the group of 1000
users, the test runs having a number of devices equal
to 440x1, 440x10 and 440x1000 have a smaller av-
erage response time even of they have a larger num-
ber of users. Additional investigations will be carried
out in future works to understand this behaviour but
the hypothesis is that more computational power is
needed to simulate such a large number of users.

As for the server, used memory is around 4 GB
and it remains constant among all the tests. This indi-
cates more instances of the microservices can be cre-
ated even with this hardware configuration. The graph
for the CPU percentage usage is reported in Fig. 6.

9https://my-netdata.io

A Microservice Architecture for Multimobility in a Smart City

CPU

804

70

60

50 4

30 4

104

10 users 100 users 1000 users 10000 users
440x1 devices ~ EEE 440x10 devices EEEN 440x100 devices EEE 440x1000 devices

Figure 6: Average CPU usage percentage for each test run.

6 CONCLUSIONS

IoT in smart cities is becoming pervasive and will in-
crease even more in the coming years. The network of
connected devices requires more efficient infrastruc-
tures, platforms and services in the IoT ecosystem.
Microservices, in contrast to aged monolithic archi-
tectures, have been proved to be a valid and robust so-
Iution for modern complex scenarios, and have been
recognized to accelerate the evolution of software ap-
plication models.

Our application is a demo validating the effec-
tiveness of the drafted microservice architecture in a
real case study. All the devices and services included
in this specific implementation compound a compre-
hensive miscellaneous system. The potential of the
adopted microservice architecture allows to design
modular systems that can grow incrementally without
continuous redesign, development and deployment of
the entire application. The system is divided into
small and lightweight services, purposely built to per-
form a very cohesive business function. Every sin-
gle element, i.e., a parking area, a bus stop, a car
or bike sharing station could be added as well as re-
moved independently, while the system can be fur-
ther enriched with new services. Both these actions
can be performed by modifying only the directly in-
terested modules without affecting the others. Ser-
vices independence allows to reach for an extremely
sophisticated network of connected IoT devices. On
the contrary, in monolithic applications scaling highly
demanded services requires a comprehensive effort in
the whole system. All services are scaled at the same
time, with resources allocated even for services barely
used. Presently SmartMobility has been developed as
a web portal. In the future we intend to design a more
suitable APP for mobile devices that will perfectly fit
the user experience.

Several tests have been performed to determine
performances under an increasing number of requests
per unit of time. Goals of these tests are to under-

663

ICSOFT 2019 - 14th International Conference on Software Technologies

stand how many concurrent requests the presented
microservice architecture can handle given limited
hardware resources and how scalability should be ad-
dressed. Regarding the scalability, as a follow up, ad-
ditional tests will aim at finding out which services are
more stressed and according to the results a proper al-
gorithm for managing scalability will be studied and
implemented. In future works scalability will be prop-
erly automated according to these results and each mi-
croservice will be instantiated according to its work-
load and independently from the others. When mul-
tiple instances are present, workload distribution and
data synchronization among different instances must
be addressed too.

ACKNOWLEDGEMENTS

This work has been partially supported under the
ERDF (European Regional Development Fund), PO
Sardegna FESR 2007-2013, PIA 2013 (project: n.295
PIA ENTANDO).

REFERENCES

Abdul-Rahman, A. I. and Graves, C. A. (2016). Internet
of things application using tethered msp430 to things-
peak cloud. In SOSE, pages 352-357. IEEE Computer
Society.

Baskarada, S., Nguyen, V., and Koronios, A. (2018). Ar-
chitecting microservices: Practical opportunities and
challenges. Journal of Computer Information Sys-
tems, pages 1-9.

Bondi, A. B. (2000). Characteristics of scalability and their
impact on performance. In Proceedings of the 2Nd In-
ternational Workshop on Software and Performance,
WOSP ’00, pages 195-203, New York, NY, USA.
ACM.

Dragoni, N., Lanese, 1., Larsen, S. T., Mazzara, M.,
Mustafin, R., and Safina, L. (2018). Microservices:
How to make your application scale. In Petrenko,
A. K. and Voronkov, A., editors, Perspectives of Sys-
tem Informatics, pages 95-104, Cham. Springer Inter-
national Publishing.

Fowler, M. and Lewis, J. (2014). Microservices.

Harlamova, M., Kirikova, M., and Sandkuhl, K. (2017). A
survey on challenges of semantics application in the
internet of things domain. Applied Computer Systems,
21(1):13-21.

Hasselbring, W. and Steinacker, G. (2017). Microservice
architectures for scalability, agility and reliability in
e-commerce. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages
243-246.

664

Hoxmeier, J. A. and Dicesare, C. (2000). System response
time and user satisfaction : An experimental study of
browser-based applications.

Hung, M. (2017). Leading the iot. Technical report, Gart-
ner.

Kalske, M., Mikitalo, N., and Mikkonen, T. (2018). Chal-
lenges when moving from monolith to microservice
architecture. In Garrigés, I. and Wimmer, M., edi-
tors, Current Trends in Web Engineering, pages 32—
47, Cham. Springer International Publishing.

Kostelnik, P., Sarnovsky, M., and Furdik, K. (2011). The
semantic middleware for networked embedded sys-
tems applied in the internet of things and services do-
main. Scalable Computing: Practice and Experience,
12(3):307-315.

Krylovskiy, A., Jahn, M., and Patti, E. (2015). Designing
a smart city internet of things platform with microser-
vice architecture. In 2015 3rd International Confer-
ence on Future Internet of Things and Cloud, pages
25-30.

Lai, C., Pintus, A., and Serra, A. (2018). Using the web
of data in semantic sensor networks. In Barolli, L.
and Terzo, O., editors, Complex, Intelligent, and Soft-
ware Intensive Systems CISIS 2017. Advances in In-
telligent Systems and Computing, vol 611. Springer,
Cham, pages 106-116.

Perera, C., Zaslavsky, A., Christen, P., and Georgakopou-
los, D. (2013). Sensing as a service model for
smart cities supported by internet of things. Transac-
tions on Emerging Telecommunications Technologies,
25(1):81-93.

Shaheen, S., Stocker, A., and Bhattacharyya, A. (2016).
Multimobility and sharing economy. Technical Report
E-C120, Transportation Research Board, 500 Fifth
Street, NW, Washington, DC 20001.

Thangavel, D., Ma, X., Valera, A., Tan, H.-X., and Keng-
Yan Tan, C. (2014). Performance evaluation of mqtt
and coap via a common middleware.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., and
Zorzi, M. (2014). Internet of things for smart cities.
IEEE Internet of Things Journal, 1(1):22-32.

