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Abstract:  This paper presents a review of various techniques for improving the performance of neural networks on 

segmentation task using 3D convolutions and voxel grids – we provide comparison of network with and 

without max pooling, weighting, masking out the segmentation results, and oversampling results for 

imbalanced training dataset. We also present changes to 3D U-net architecture that give better results than the 

standard implementation. Although there are many out-performing architectures using different data input, 

we show, that although the voxel grids that serve as an input to the 3D U-net, have limits to what they can 

express, they do not reach their full potential. 

1 INTRODUCTION 

Convolutional neural networks are foundation for 

many computer vision tasks, e.g. image recognition, 

object classification, semantic segmentation, and 

other. With introduction of consumer-grade RGB-D 

cameras it became important to process 3D data 

efficiently for which 3D convolutions can be used. 

In this paper we focus on the task of part 

segmentation, as it has many uses. However, various 

data representations can serve as input to the 

segmentation. It can be either sparse point cloud, 

depth images, or even mesh. This data can be 

augmented by additional information such as normal 

or colour. All these representations are missing a 

regular structure that could be used with 

convolutions, though extensive research was done to 

overcome this as described in Section 2. Very 

straightforward way is transforming the input data 

into a regular grid, where the 3D convolutions can be 

used fully exploiting the information about locality. 

For this task, 3D U-nets are very effective as they 

learn global structure and local information at the 

same time. 

Segmentation is commonly used for labelling, 

where it can be useful especially in the case of 

augmented reality and work process. The user, given 

a task, has to find a part that should be maintained and 

segmentation could help him to find the correct part 
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he should focus on. This could be used as a guide for 

the maintainer, or as a tool to teach new hires. 

Segmentation can be also used as a postprocessing 

step for object reconstruction from images, where 

often unneeded parts of background can be removed. 

Other use cases are generation of map layers from 

satellite imagery such as (Hofmann and Kowshik, 

2018), or in an asset creation to search for similar 

objects, or components for the artist to get inspired. It 

is also used for biomedical analysis (Milletari et al., 

2016), (Çiçek et al., 2016) like tumour detection. 

In the case of point cloud segmentation, many 

solutions exist and many of these are implemented in 

libraries like PCL (Rusu and Cousins, 2011). These 

solutions are mostly based on clustering, or cuts, 

which often require user input, or provide only 

clusters based on similarity. These clusters are 

usually too detailed and have to be grouped manually. 

Feature-based solutions can be also used, however 

most of the existing features for point clouds are 

handcrafted towards a specific task and it might not 

be trivial to find their optimal combination. In the 

case of biomedical data, the shapes can be hard to 

parametrize, so there was need for more expressive 

solution. As such, we believe the best way to be in the 

direction of data-oriented machine learning like 

neural networks. They can learn almost anything 

given enough annotated data (for supervised training) 

and can be easily extended to new objects or tasks by 

Janovský, R., Sedláček, D. and Žára, J.
On Improving 3D U-net Architecture.
DOI: 10.5220/0007830306490656
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 649-656
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

649



 

 

training them on this new data. Thus, in the rest of the 

paper, we will focus on using the convolutional neural 

networks for segmentation. As the neural networks 

need to be trained, various datasets being made 

publicly available for such tasks, e.g. ModelNet (Wu 

et al., 2015), or ShapeNet (Yi et al., 2016), make the 

training much easier. 

Though we are aware of the shortcomings of 

using 3D convolutions and voxel grids, e.g. feature-

pose correlation as described in (Sabour et al., 2017) 

or the redundant operations on sparse voxels, we 

firmly believe that this approach can still be 

improved. Furthermore, as we focus on the task of 

model segmentation, the required input data will not 

suffer too much from down-sampling the data into a 

regular grid as would be a case of scene segmentation 

from RGB-D frames. In addition, regularizing the 

data into a grid can mitigate some noise, that can be 

introduced in the data. The voxel grid can also be 

easily constructed from mesh, point cloud, or depth 

image. 

The structure of the paper is as follows. First, we 

introduce existing solutions that influenced our work 

in Section 2. Then we explain our network 

architecture and training settings in Section 3 

followed by definition of a baseline, its description, 

and results of our experiments in Section 4. 

2 PREVIOUS WORK 

Neural networks work very efficiently over structured 

data such as 2D images, or 3D voxel grids as it can 

fully and easily utilize the parallelism of the GPU. As 

such, it leads to the use of voxel grids as they are 

compatible with 3D-convolutions. (Qi et al., 2016), 

(Wu et al., 2015), and (Maturana and Scherer, 2015) 

uses binary voxel grids for object classification and 

object segmentation. (Çiçek et al., 2016) and 

(Milletari et al., 2016) use 3D-convolutions for one-

stage part segmentation of medical data via U-net 

architecture.  

As voxel grids suffer from heavy memory 

requirements and too many unneeded multiplications 

by zero in empty voxels, hierarchical approaches 

were introduced. Kd-trees and octrees are good 

candidates with their regular structure as shown by 

Kd-networks (Klokov and Lempitsky, 2017), or O-

CNN (Wang et al., 2017), and OctNet (Riegler et al., 

2017) that uses hybrid grid of shallow octrees. 

Neural networks proved to work well for 2D 

images, so multi-view CNNs (Kanezaki et al., 2018), 

(Qi et al., 2016), (Su et al., 2015) render 3D point 

cloud from multiple angles into 2D images and apply 

2D-convolutions. These networks work really well 

for tasks as object classification, retrieval, or pose 

estimation. However, when the point cloud is 

rendered it loses information in the presence of self-

occlusion. As such, these architectures are not well 

suited for per-point segmentation tasks. 

PointNet (Qi et al., 2017) is the first network that 

uses unordered point cloud as its input data. It uses 

channel-wise max pooling to aggregate per-point 

features into a global feature. Furthermore, this 

operation is permutation invariant and with the 

network shared between every point, the network is 

invariant to the point permutation. However, the 

network does not include spatial information as 

standard convolution does. The new PointNet++ (Qi 

et al., 2017) groups points into a hierarchical 

structure. SO-Net (Li et al., 2018) imposes structure 

to the point cloud using self-organizing map to model 

the distribution of the point cloud. A position of each 

point in respect to the k-nearest neighbours on the 

map is used as an input to the network. PointNet 

architecture is further used in Similarity Group 

Proposal Network (Wang et al., 2018) which learns 

similarity matrix upon PointNet/PointNet++ feature 

vector. 

Recently, architectures simulating convolutions 

over point patches are emerging with the state-of-the-

art segmentation results. PointCNN (Li et al., 2018) 

reports 86.14% on ShapeNetParts. PointCNN 

introduces X-conv operator that first individually lifts 

points to higher dimension, learns transformation 

matrix, and then applies convolution. Similarly, 

effective is SpiderCNN (Xu et al., 2018) that 

parametrizes general convolution filter. 

3 NETWORK 

Although other architectures proved to yield superior 

results, we try to improve 3D U-net for segmentation 

of a point cloud as we believe that the architecture 

could still be improved. We propose the use of 3D 

voxel occupancy grid as it can be constructed simply 

and fast from point cloud, mesh, or depth image. 

Furthermore, 3D-convolution networks can be 

trained on a small dataset and yield good results as 

shown in medical applications by (Çiçek et al., 2016) 

or (Milletari et al., 2016). Our aim is to achieve better 

results by modifying such architectures, applying 

different techniques, and to prove it by a serious 

comparison of results. 
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3.1 Network Architecture 

Our network is a 3D U-net (Çiçek et al., 2016) type 

of neural network with added category classification. 

The category prediction of the voxel grid is not 

required, e.g. for segmenting out objects in a room, or 

for segmentation of medical data. Thus, the 3D U-net 

in itself does not require prior knowledge about the 

category of the input. However, during the training, 

when using this prior knowledge as an addition to the 

loss function, the network does yield better results. 

The network is composed of two parts: 

classification (down-sampling) and segmentation 

(up-sampling) as depicted in Figure 2. Each part 

consists of three blocks. 

 
     a) Classification block   b) Segmentation block 

Figure 1: Basic building blocks of a) classification on the 

left, and b) segmentation layer on the right. 

The main building block of the classification part 

of our network is shown in Figure 1 a). We apply two 

3D convolutions with zero padding to keep the 

dimensions of the input, which are followed by batch 

normalization. The results are then concatenated, and 

convolution of size 23 with stride 2 is applied to half 

the resolution of the input grid. 

After each convolution, we use batch 

normalization (Ioffe and Szegedy, 2015) and dropout 

(Srivastava et al., 2014). ReLU (Nair and Hinton, 

2010) activation function is used for the classification 

part, and softplus (Zhao et al., 2018) for the 

segmentation (except for the last prediction layers).  

After the third classification block, we use maxout 

(Goodfellow et al., 2013) to convert the grid into a 

one-dimensional vector of size 512, which is fed into 

the classification multilayer perceptron (MLP) and 

softmax layer. We also use the feature vector to 

estimate mask for all possible object parts. 

 

 

Figure 2: Architecture of our U-net neural network with 

category prediction and segmentation. 

The feature vector is tiled into a grid of size 83 which 

is the input into the segmentation part. The 

segmentation part of the network uses blocks as 

depicted in Figure 1 b). The first convolution of 

segmentation block down-samples the number of 

channels to the half of the input voxel grid, i.e. with 

the input number of channels Ci, and Cs channels from 

skip connection we have Ci+Cs filters of size Ci/2. 

The following segmentation block uses the up-

sampled grid from previous block. If not said 

otherwise, we also zero-pad the input grid to keep its 

dimensions. 

As there will always be a loss of information when 

up-/down-sampling, we try to compensate this by 

using skip connections. We add output of the strided 

convolutions right before up-sampling and output of 

13 convolution right after up-sampling. 
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3.2 Implementation Details 

Our network is implemented using TensorFlow 

(Abadi et al., 2015). We use Adam optimization 

(Kingma and Ba, 2014) to minimize sum of softmax 

cross entropies – sum over segmentation, sum over 

possible mask, and sum over category. We also 

multiply the input segmentation by the occupancy 

grid, so that the network focuses on minimizing valid 

voxels. We use the Adam optimization with an initial 

learning rate of 0.0001 and batch size of 16. We 

decrease the learning rate by 0.75 each five epochs. 

The network generally converges around the 10th 

epoch with batch normalization. We also apply 

gradient clipping in range <-1,1>. Each layer is 

followed by dropout layer with keep probability 75%. 

4 EXPERIMENTS 

The performance of our network has been evaluated 

on two different applications – object classification 

and part segmentation. In this chapter, we describe 

data used, our baseline network, changes to the 

architecture, and report how they affect the training 

and network generalization. 

4.1 Metrics 

For comparison of part segmentation results we use 

weighted average Intersection over Union (IoU) as 

provided by (Yi et al., 2016). Per category average 

IoU is computed for each category first by averaging 

across all parts of all shapes with the certain category 

label. The overall average IoU is then computed 

through a weighted average of a per-category IoU. 

The weights are the number of samples in each 

category. To compare ourselves on object 

classification task we use per instance accuracy on 

ModelNet (Wu et al., 2015). 

4.2 Datasets 

For object classification we use two variants of 

ModelNet (Wu et al., 2015), i.e. ModelNet40 and its 

subset ModelNet10. The ModelNet40 contains 

13,834 objects from 40 different categories, where 

9,834 are used as training samples and 3,991 as the 

test samples. ModelNet10 has 2,468 training samples 

and 909 test samples. Since the original ModelNet 

contains models represented by edges and vertices, 

we use pre-generated dataset of point clouds from 

authors of PointNet++ (Qi et al., 2017), where each 

model is uniformly sampled by 10,000 points.  

For the part segmentation task, we use 

ShapeNetPart dataset (Yi et al., 2016). It contains 

16,881 objects in 16 categories, represented as point 

clouds. Each object consists of 2 to 6 parts with 50 

parts in total, where an object does not need to have 

all category parts. We use the formal split, where 

dataset is split into 12,137 objects for the train set, 

1,870 objects for the validation set, and 2,874 objects 

for the test set. 

4.3 Baseline Network 

We based our network on the standard 3D U-net 

architecture. The baseline network has similar 

structure to network depicted in Figure 2. However, 

each block consists of two 33 convolution layers 

followed by max pooling instead of 23 convolutions 

with stride 2. The baseline also uses convolution 43 

instead of maxout. The filter output size is 

(32,64,128) for the classification blocks and 

(256,128,64) for the segmentation blocks. The 

baseline network has ~13.3M trainable parameters 

and uses only ReLU as activation function. 

With the baseline and no modifications to the 

dataset we were able to reach 78.8% IoU. However, 

the training suffered from category imbalance (Figure 

4) because the network tends to overfit on categories 

with higher number of samples. We discuss the 

problem in the following sections. 

4.4 Removing Max Pooling 

As max pooling can lead to the loss of information, 

we tried to replace max-pooling layers with 

convolution layers of size 23 and stride 2. They halve 

the resolution and double the number of channels. 

This made the training more stable, but increased the 

number of trainable parameters to ~19.5M, where 

most of it was contributed by the 43 convolution, that 

was used instead of the maxout layer in Figure 2. 

Replacing the max pooling raised the IoU to 80.5%. 

Though this increased the overall performance, 

the network still fails at small parts as thin straps, or 

very low-detailed transitions such as gas tank/saddle 

and motorbike body, or transition between the tip and 

the rest of the rocket. Ground truth for these 

categories is shown in Figure 3. 

4.5 Category Imbalance 

As shown in Figure 4, the ShapeNetPart dataset 

suffers from category unbalance, where in the train 

set table category has 100 times more samples than 

the cap category. As such, the network is likely to 
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learn more on these large categories, because the 

accumulated loss will be higher for the large 

categories. The same goes for the test set, where the 

categories table, chair, and airplane contribute to the 

result by 65%. Figure 5 shows how can large 

categories influence the weighted IoU in comparison 

to the average.  

 

Figure 3: Ground truth for problematic categories - bag, 

earphones, rocket, and motorbike. Especially, the red strap 

for the bag (top left), green straps for the earphones (top 

right), green tip of a rocket (bottom right), and motorbike 

parts except the yellow body (bottom left) are often 

misclassified as neighbouring parts. 

We considered simple weighting based on the 

distribution of the data, but given the fact that for 

large categories the value is close to zero and for 

small categories it is evenly distributed, it did not 

significantly change the training. As the simple 

weighting did not help, we tried to apply probabilistic 

weights, which is discussed in the following section. 

4.6 Probabilistic Weights 

Softmax function takes the input vector and 

normalizes the sum of the vector to 1 where each 

element is in range <0,1>. Given these properties, it 

can also be interpreted as a probabilistic distribution 

saying how likely is each part.  

We use these probabilities to weight the output of 

the softmax cross entropy loss function by (2-P), 

where P is the estimated probability of the correct 

label. This way the voxels with lower probability 

have higher impact on the training. Even though it 

improved the overall IoU, it did not solve the problem 

with category imbalance. 

Weighting also proved to have a regularization 

effect, lowering the variance between test and train 

data. When weighting was not used the cost and 

accuracy on the train set would decrease and increase 

respectively, but the accuracy on the test data was 

decreasing as the network started to overfit. With the 

weighting applied the network tries not to favour any 

voxel and thus slowing the overfitting process. In 

respect to the backpropagation the weighting works 

as additional max term for the correct label whereas  

 
Figure 4: Number of samples per category. ShapeNetPart 

training (blue) and test (red) data sample distribution among 

the 16 categories. 

the loss itself maximizes the difference between 

correct label and the others. 

Though the network learned better on the hard 

categories like cap, rocket, or motorbike, it did not 

improve the weighted average IoU. 

4.7 Oversampling 

When using random permutation of the dataset for 

each training epoch, the final result depends on the 

luck of the draw, i.e. when the small categories are 

not in one of the last batches, their IoU drastically 

drops. This can be seen in Figure 6, where the blue 

line shows weighted average IoU with value of 82%. 

However, the categories with high number of samples 

contribute to the overall IoU the most, and as such 

there is a significant drop in harder categories like 

cap, motorbike, or rocket.  

To prevent this behaviour, we oversample the 

training set so that each category contains the same 

number of samples as the largest category, and each 

batch has exactly one sample from each category. 

We trained the network again but with 

oversampling. For comparison, we took this newly 

trained model and compared it with a network trained 

without oversampling, but having similar IoU. 

The results comparing training with/without the 
oversampling are shown in Figure 6, red without 

oversampling and green with oversampling. Both 
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these networks do clearly overfit less, however with 

oversampling, the network outperforms on the hard 

categories (cap, earphone, motorbike, rocket). 

Oversampling increases the training time and 

prevents the overfitting, but lowers the overall 

accuracy reaching 80.9% IoU. As it repeats some 

samples multiple times, we tried simple data 

augmentation, i.e. rotation and scale of the point cloud. 

 
Figure 5: The influence of largest categories on weighted 

IoU. Case when the three largest categories in test set, as 

can be seen in Figure 4 (table, airplane, chair), keeps the 

weighted IoU on 82% even though the average is lower – 

72% marked in graph by red solid line. 

When compared with weighting, data augmentation 

had better regularization effect, and got the IoU at 

maximum of 82.2%, whereas with the weighting it 

reached its maximum at 80.8%. 

4.8 Segmentation Mask 

Convolutional neural networks are good at finding the 

overall structure of the input data, but do not handle 

well correct placement of each respective parts often 

thanks to the max pooling, i.e. it does not matter 

where the eye in the face is as long as it is there. 

We tried to leverage the category classification 

capabilities by converting the predicted category into 

a mask to remove category misclassifications as the 

network can reach 97.5% category prediction 

accuracy on the test data.  

We tried two different approaches: a) learn the 

mask during training, and b) generate the mask from 

predicted category.  

As for a) learning the mask, we tried to learn two 

different masks – all possible parts for category and 

all possible parts for given sample; does not need to 
have all category parts like standing/hanging lamp. 

Both approaches led to similar results, however 

learning mask for given sample yields slightly better 

results. 

Approach b) gave cleaner results, but category 

misclassifications became more apparent. However, 

when the category is misclassified most of the voxels 

are misclassified as well. Moreover, most of the parts 

are misclassified in its own category, except 

categories like cap, rocket, earphone, and lamp,  

 

Figure 6: Comparison of evaluation on the test set, when 

trained with and without oversampling. For this 

comparison, learned models with similar wIoU are used. 

The network model used is the variant of baseline 

architecture with convolutions instead of max pooling. 

where significant number of voxel misclassifications 

is in different category. As such, masking out the 

segmentation results as postprocess seems like a valid 

strategy that does not introduce too much 

inaccuracies when applied on not-fully trained 

network. 

Though the IoU was not improved, when we 

compared confusion matrices, the misclassifications 

were more focused in the categories themselves.  

4.9 Segmentation Results 

As the network has large number of trainable 

parameters, where most of them are from the last 

down-sampling layers, we replaced the last 

43 convolution with maxout (Goodfellow et al., 2013) 

lowering the number of trainable parameters to 

~11.1M without affecting the performance. 

The network can be trained in 16 hours with inference 
time of 20ms per sample. We use 

augmentation, oversampling, and learn the 

segmentation mask, though we don’t apply the mask. 

We also tried various activation functions for the  
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Table 1: Object part segmentation results on ShapeNetPart dataset. 

segmentation part with softplus function (Zhao et al., 

2018) yielding best results. 

We present our results in Table 1, where we 

compare our results with the state-of-the-art methods 

for object part segmentation. It can be seen that our 

network falls behind most of the architectures. Our 

network suffers from having not enough local 

information. However, simply increasing the 

resolution of the input voxel grid doesn’t improve the 

results: doubling the resolution slightly lowered the 
accuracy. To improve the local information, we tried 

to change the input to a vector per voxel, where the 

vector is composed from directions from the voxel 

mean to k-nearest points. Though not yielding notable 

results, the voxel grid could serve as a look-up table 

for other methods struggling with global structure 

encoding. 

4.10 Classification Results 

The network used for tests on ModelNet10 and 

ModelNet40 was the same network as depicted in 

Figure 2 although we stripped the network of all parts 

that are required for segmentation. Resulting network 

has ~2.2M trainable parameters. With oversampling 

and augmentation, the training time per sample is 

25ms and inference time is 3ms. We trained the 

network on ModelNet10/40 with batch size of 40. The 

network can be trained in 12 hours on ModelNet40. 

As shown in Table 2, we compare ourselves with 
other approaches also used for segmentation. 

Moreover, we include 3DShapeNets (Wu et al., 2015) 

since they use a voxel grid as an input and 

RotationNet (Kanezaki et al., 2018) as the best 

reported result on Princeton ModelNet. 

To the best of our knowledge, we outperform or 

match most of the existing solutions for object 

classification using voxel grids, although each 

network was fine-tuned on different type of 

application. However, in comparison with 

architectures working on other data structures our 

approach does not reach notable results.  

Table 2: Object classification results on ModelNet10 and 

ModelNet40 for methods using point cloud, voxel grid, Kd-

tree, octree, or self-organizing map as an input. Networks 

using voxel grids are listed under the dashed line. 

5 CONCLUSION 

In this paper, we had presented modifications to 

3D U-net architecture and in the series of experiments 

shown their influence on the training process and 

ability to generalise. We show improvements from 

the baseline architecture by 3% on the segmentation 

task. As voxel grids provide hierarchical global 

information, we see a promising way to further 

improve the voxel-based architectures by combining 

it with approaches focused more on local features, or 

with refinement methods. 
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Method 
Intersection over Union (IoU) 

Mean air. bag cap car chair ear. gui. knife lamp lap. motor mug pistol rocket skate table 

Kd-Net 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3 

PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6 

SO-Net 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0 

PointNet++ 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6 

SpiderCNN 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8 

SGPN 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4 

O-CNN+CRF 85.9 85.5 87.1 84.7 77.0 91.1 85.1 91.9 87.4 83.3 95.4 56.9 96.2 81.6 83.5 74.1 84.4 

PointCNN 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0 

Ours 82.2 77.7 84.4 84.2 76.6 88.7 76.0 88.1 82.3 81.4 94.6 68.0 95.1 81.5 52.5 70.9 78.7 

Method 

ModelNet40 

Classification 

Accuracy 

ModelNet10 

Classification 

Accuracy 

PointNet 89.2 - 

PointNet++ 91.9 - 

Kd-Net 91.8 94.0 

O-CNN 90.6 - 

SO-Net 93.4 95.7 

SpiderCNN 92.4 - 

PointCNN 84.5 91.0 

RotationNet 97.3 98.5 

3DShapeNets 77.0 83.5 

binVoxNetPlus 85.5 92.3 

VoxNet 83 92 

ORION - 93.8 

Ours 88.8 93.0 
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