
An Analysis System for Mobile Applications MVC Software
Architectures

Dragoş Dobrean a and Laura Dioşan b

Computer Science Department, Babes Bolyai University, Cluj Napoca, Romania

Keywords: Mobile Applications Software Architecture, Automatic Static Analysis, Model View Controller.

Abstract: Mobile applications are software systems that are highly used by all modern people; a vast majority of those
are intricate systems. Due to their increase in complexity, the architectural pattern used plays a significant
role in their lifecycle. Architectural patterns can not be enforced on a codebase without the aid of an external
tool; with this idea in mind, the current paper describes a novel technique for an automatically analysis of
Model View Controller mobile application codebases from an architectural point of view. The analysis takes
into account the constraints imposed by this layered architecture and offers insightful metrics regarding the
architectural health of the codebase, while also highlighting the architectural issues. Both open source and
private codebases have been analysed by the proposed approach and the results indicate an average accuracy
of 89.6% of the evaluation process.

1 INTRODUCTION

Nowadays there are many companies which are built
around their mobile applications (Instagram, What-
sapp, Uber, etc.) which have large teams of people
working on those projects. These kind of projects
need to be maintained over a long period of time and
they need to be flexible to new Software Develop-
ment Kit (SDK) and hardware features. In order for
a project to be extensible, maintainable and for more
people to be able to work on it in parallel it needs
to have a software architecture which allows it. Mo-
bile applications usually use presentational software
architectures and generally all of the architectural
flavours used descend from Model View Controller
(MVC) Fowler (2002); Reenskaug (2003). Each plat-
form uses a flavour of MVC as their ”default” archi-
tecture, alongside those, other architectural patterns
have been coined such as Model View Presenter Potel
(1996), Model View View Model Garofalo (2011), or
View Interactor Presenter Entity Router MutualMo-
bile (2014) in order to provide extra flexibility and
testability of those applications.

Many of the codebases do not respect the imposed
architecture for various reasons. One of the reasons
is the fact that the developers working on the projects

a https://orcid.org/0000-0001-7521-7552
b https://orcid.org/0000-0002-6339-1622

do not have the right experience and skill set which
result into architectural smells such as Brick Func-
tionality Overloading, Scattered Parasitic Function-
ality, Logical Coupling or Ambiguous Interfaces Le
et al. (2015). Another reason for architectural erosion
is the transition from one architectural pattern to an-
other without doing it all over the codebase and all the
refactoring needed.

An architectural pattern, which can impose the
code to be written in a predefined way or to impose
any strict boundaries can not be created without an
external system which periodically checks it. Taking
into consideration the architectural problems which
appear on the mobile platforms, their increasing pop-
ularity and the fact that most problems are caused by
developers which do not use the pattern correctly and
not by requirements or other external factors, we have
developed a system which statically checks if a mo-
bile codebase is valid from an architectural point of
view, while also highlighting the issues if those ex-
ist. Moreover, this system also provides valuable in-
formation which can be used by the management to
check the architectural health of a codebase and to
see tangible results of the refactoring phases.

The novelty of the proposed system is given by
the usage of information from the mobile SDKs rather
than relying strictly on the information extracted from
the codebase as in other approaches Boaye Belle
(2016); Corazza et al. (2016); Garcia et al. (2013). In

178
Dobrean, D. and Dioşan, L.
An Analysis System for Mobile Applications MVC Software Architectures.
DOI: 10.5220/0007827801780185
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 178-185
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



addition, it uses a simple formalisation of the archi-
tectural rules rather than complex specifications Rum-
baugh et al. (2004),Hussain (2013), which makes it
simply understandable even by less experienced prac-
titioners. Furthermore, by using the proposed system,
the architectural pressure points can be easily iden-
tified and this can be done early in the development
phase by using it in a CI/CD pipeline.

The following section talks about MVC and its
particularities. Section 2 analyses the MVC archi-
tecture and provides a way of detecting violation of
its implementation. In section 3 we present the re-
sult of the validation experiments conducted on pri-
vate and open-source iOS projects with the proposed
method. The final section, states our conclusions and
some ideas that could be tackled in future work.

2 SOFTWARE ARCHITECTURE
CHECKER SYSTEM

The proposed system analyses a mobile application
based on the composing components, it clusters them
in categories based on the implemented architecture
of the codebase and constructs the topological struc-
ture of the codebase, a dependency graph. After the
graph has been constructed, the relationships between
its composing components are analysed and architec-
tural issues are highlighted (Fig 1). By component
we mean one different element of the following kind:
class, struct, protocol, enumeration.

Figure 1: Software architecture checker system phases.

2.1 Detection

The detection phase of the system takes a mobile
codebase and analyses its components. It detects all
the classes, protocols, structs and enums together with
all their instance properties and methods (both private
and public). The result of this detection is an analysis
document in which we have stored all the information
regarding the codebase, paths of the codebase com-
ponents, their properties (methods, variables and the
names and types of those) together with the size of
the files. All of this information is encoded in a struc-
tured file (eg. JSON, XML or other type) which will
be used by the extracting phase.

2.2 Extraction

There are many approaches for extracting an archi-
tecture from a codebase Belle et al. (2013); Corazza
et al. (2016); Garcia et al. (2013), or for specifying
it Hussain (2013); Rumbaugh et al. (2004). However,
none of those approaches are designed specifically for
mobile codebases and they are too complex for the
purpose of our study.

In order to extract the architecture of the codebase
we analyse the file produced by the detection phase.
We are constructing the topological structure of the
implemented architecture based on the information in
that file. The topology is represented by a directed
graph in which every node corresponds to a compo-
nent and has the following informations: name, type,
kind (class / struct / protocol / enum name), inherited
type, instance and class variables (name and type), in-
stance and class methods (together with parameters
names and types), path.

The edges between nodes represent the links in
the code between two components. Unlike a clas-
sic graph, in the architectural topological structure
we can have multiple links between two nodes: a
class has multiple references to another class; each
of them is translated into an edge, allowing to specif-
ically highlight all the individual codebase issues.

2.3 Categorisation

The most sensitive step in the analysis process is the
categorisation one: the previously defined compo-
nents need to be assigned in a certain category. Previ-
ous work has been done in the area of software archi-
tecture clusterisation and it was analysed from various
perspectives: modules Huang and Liu (2016); Paixao
et al. (2018), components Ramı́rez et al. (2018), lay-
ers Belle et al. (2013).

For the purpose of our research we are interested
in the layered one. The components of a codebase
can be distributed on abstract layers by following two
strategies: the responsability-based strategy and the
reuse-based strategy. In our MVC-context, the first
strategy is implemented. MVC has also been analysed
in Chen et al. (2014); Xu and Liang (2014b): an evo-
lutionary algorithm optimises the mapping between
the class responsibilities and the pattern roles. In our
case, we define several heuristics, specific to mobile
applications, that have to be respected by such map-
ping. Our proposed solution is a deterministic one;
the search space is smaller as we are focusing on the
codebase alone. In Mariani et al. (2016) the layered
architectures are analysed, but the focus is on chang-
ing the codebase for avoiding the layered violations.

An Analysis System for Mobile Applications MVC Software Architectures

179



They do not analyse the architectural style used nor
do they specifically focus on mobile platforms. To
the best of our knowledge, the architectural style was
analysed only in Sarkar et al. (2009) and Maffort et al.
(2013), but these approaches are not mobile oriented.

Regarding the architecture conformance, the liter-
ature describes two main techniques: reflexion mod-
els and domain-specific languages that express the de-
pendency rules. The reflexion models compare the in-
tended architecture expressed as a high-level model
created by the architect with the implemented one
extracted from the source code and expressed as a
concrete model. In general, the high-level model re-
quires a set of refinements in order to identify the
architecture violations Koschke (2013). In Maffort
et al. (2013) a lightweight specification of the high-
level model is proposed in order to mine the structural
and historical architectural patterns. Our approach
is somehow similar to Maffort’s approach, but is fo-
cus on mobile applications and integrates information
from the mobile SDKs rather than relying strictly on
the information extracted from the codebase. The
domain-specific languages help the architects to de-
fined the intended architecture by using various con-
straints expressed in a customised and elaborated syn-
tax Terra and Valente (2009). The constraints we pro-
posed to be used can be easily defined and mined in
the checker system.

We propose a novel mobile-inspired approach: the
categories represent the layers of the analysed archi-
tectural pattern. In the case of the current research
those are Model, View and Controller. We can lever-
age the fact that the mobile applications use certain
SDKs for displaying information on the screen. The
interaction with the user, both input and output, is ma-
nipulated by SDKs provided by the creators of mobile
Operating Systems. With this idea in mind, we pro-
pose the following heuristics for deciding which com-
ponent fits in which layer:

• All Controller layer items should inherit from
Controller classes defined in the used SDK

• All View layer items should inherit from a UI
component from the used SDK

• All the remaining items are treated as Model layer
items

2.4 Analysis

MVC has been extensively analysed by practition-
ers DeLong (2017); Kocsis (2018); Orlov (2015) and
academia Garofalo (2011); La and Kim (2010); Ols-
son et al. (2018) on mobile applications and other
software systems. The potential issues highlighted

such as massive view controllers or violation of sin-
gle responsibility principle DeLong (2017) constitute
the base for our research and represent the architec-
tural issues we want to highlight early in the develop-
ment phase. Therefore, the last phase of the process-
ing is the analysis of the dependency graph generated
by the extraction phase, correlated to the clusterisa-
tion on abstract layers. In this study, we are analysing
whether or not one of the rules which dictate the MVC
pattern are violated. Every rule violation is detected
and highlighted. After this step we can say whether or
not the codebase respects the MVC architecture and
which are the pressure points in the codebase, what
should be refactored and which are the components
responsible for those violations.

The dependency relation between two layers, de-
fined as two sets A and B, can be formalised as a set
L⊆ A×B as follows: LB

A = {l = (a,b)|a∈ A∧b∈ B}.
Note that a link is different to a coupling. The link is
unidirectional, while the coupling is bidirectional.

After all the components have been split into
the three categories (Model, View, Controller), each
component is checked against all the other compo-
nents from the other two layers for finding dependen-
cies. The dependencies which are forbidden are high-
lighted and presented to the end user of the system.

In the classic MVC architecture all the depen-
dencies are allowed except for the one between the
Model and the Controller. This rule can be ex-
pressed formally by defining LController

Model , the relations
of Model’s components to components of the Con-
troller layer: LController

Model = {l = (m,c)|m ∈ Model ∧
(c ∈ Controller)}. In order for the application to
respect the classic MVC dependencies, LOther

View = /0

should be true. Based on the MVC flavour used the
allowed dependencies rules can be different.

3 EVALUATION

The aim of the analysis is to inspect whether or not
the MVC architecture is respected in the codebases
of commercially available mobile applications using
our proposed system. The rest of the paper focuses
on the iOS platform and on Swift codebases; how-
ever, the same principles can be applied to other mo-
bile platforms (Android, Window Mobile) and even
on some other ranges of presentational applications
such as desktop applications. The main differences
between iOS and other platforms would be the nam-
ing of the components and frameworks used. In this
part of the study the focus was on answering the fol-
lowing research questions:
RQ1 - How effective is the proposed categorisation

ICSOFT 2019 - 14th International Conference on Software Technologies

180



method compared to manual inspections?
RQ2 - What is the topological structure of mobile
codebases using the proposed approach?
RQ3 - Do mobile codebases respect the architectural
rules?

3.1 Methodology

Since we inspect iOS codebases, for the validation
and analysis of the proposed system we have used the
rules of Apple’s flavour of MVC Apple (2012b):
Controller: LCC

VC = {l = (vc,cc)|vc ∈ ViewControl-
lers ∧ cc ∈ CoordinatingControllers} = /0 meaning
that ViewControllers should not depend on other Co-
ordinator controllers
View: LOther

View = {l = (v,o)|v ∈ View∧ (o ∈ Control-
ler∨ o ∈ Model)} = /0 meaning that all components
in the View layer should only depend on components
within the same layer
Model: LOther

Model = {l = (m,o)|m ∈Model∧ (o ∈Con-
troller∨o∈View)}= /0 meaning that all components
in the Model layer should only depend on components
within the same layer

A codebase respects Apple’s flavour of MVC Ap-
ple (2012b) when all the above rules are respected.
Mobile applications do not always use the Coordina-
tor layer as this is a fairly unknown to the vast ma-
jority of developers, that is why our analysis has two
categorisation approaches:

3.1.1 MVC Approach (SimpleCateg)

Analysing the most common MVC implementation
(classic MVC) by identifying the View objects, the
Controller (without coordinators - meaning that the
code from navigating from a ViewController to an-
other should reside in a child of an SDK defined Con-
troller object) and all the other items were treated as
Models.

Layers & Components. The Controller layer does
not contain any Coordinating objects. The heuristics
involved in this approach are:
H1 Controllers←CategorisationVCs(Comps.)

H2 Views←CategorisationViews(Comps.\Controllers)

H3 Models←Comps.\ (Controllers∪Views)

Dependencies Rules used for Validation.
R1 LOthers

View = /0 – all View components depend only on other
View components

R2 LOthers
Model = /0 – all Model components depend only on

other Model components

3.1.2 MVC with Coordinators Approach
(CoordCateg)

Analysing the MVC with coordinating objects in
place. Every items which dealt with UIKit defined
Controller object was marked as a coordinator object.
We have also taken all the objects that deal with those
coordinator objects, and put them in the same cate-
gory as well — Coordinating controllers.

Layers & Components. The Controller layer con-
tains Coordinating objects. The heuristics involved in
this approach are:
H4 Controllers←CategorisationVCsAndCCs(Comps.)

H2 Views←CategorisationViews(Comps.\Controllers)

H3 Models←Comps.\ (Controllers∪Views)

Dependencies Rules.
R1 LOthers

View = /0 – all View components depend only on other
View components

R2 LOthers
Model = /0 – all Model components depend only on

other Model components

R3 LCCs
VCs = /0 – all ViewController components should not

depend on Coordinator components

3.2 Evaluation Metrics

With both approaches we were interested in the same
metrics. Our evaluation is two folded: validation of
the categorisation process and analysis of how the ar-
chitectural rules are respected or not.

In the validation stage, to measure the effective-
ness of the categorisation, we compare the results
from manual inspection (that acts as ground truth) to
those of our methods. Three metrics are of interest
in this validation: accuracy, precision and recall. In
the case of multi-class classification problems (in our
case we have a problem with 3 classes) the accuracy
metric could be misleading since it does not take into
account is the analysed data is balanced or not (all the
classes have the same number of examples). Precision
and recall are better-suited metrics.

In the analysis stage, the number of components
(#Comp) from each abstract layer, the percentage of
the Model, View and Controller components from the
overall total and how many MVC rules were invali-
dated in the codebase (based on the analysed flavour)
are computed.

We were also interested in the number of depen-
dencies within a layer (#IntDepends), as well as in the
number of external dependencies (#ExtDepends) of a
layer. The #IntDepends are represented by links in the
architectural topology of the codebase which are done
between components which reside in the same layer.

An Analysis System for Mobile Applications MVC Software Architectures

181



#ExtDepends represent the links between the compo-
nents of a layer and components which reside within
the other two layers of MVC. Moreover, the #Com-
pleteExtDepends include the external links relative to
MVC layers and the links with other SDKs and third
party libraries defined types, as well as Swift prede-
fined types (such as String, Int) or codebase defined
types (such as closures). These numbers denote the
layers which are highly coupled with other layers or
libraries and identifying those can ease the refactoring
process by highlighting to the developers the items
which are too complex and represent an architectural
pressure point in the system, and revalidate the layers
constructed correctly which are loosely coupled and
self contained.

Another important metric is the number of differ-
ent external links (#DiffExtDepend) — the number
of different codebase components on which a certain
component depends. The components with a large
amount of different dependent items which violate the
architectural rules are problematic and represent ar-
chitectural pressure points in the analysed codebase.

Note that architectural change metrics (e.g.
architecture-to-architecture, MoJoFM, cluster-to-
cluster Le et al. (2015)) can not be used in order to
establish which rules are violated, since the concep-
tual/intended architectures of the analysed systems
are unknown.

3.3 Data

In order to test our system we have used some small,
medium and large sized private and open-source iOS
projects written in Swift. All the external libraries
were ignored as well as their codebase are not rele-
vant for the analysed application. In other words, we
have analysed the Swift files defined in the project,
and none of the external ones or the ones written in
another programming language.

We have analysed 5 applications: mobile Web
browser - Firefox Mozilla (2018), information -
Wikipedia Wikimedia (2018), cryptocurrency wallet -
Trust Trust (2018), e-commerce application - private
and multiplayer game - private.

Table 1: Short description of investigated applications.
Application Blank Comment Code
Firefox 23392 18648 100111
Wikipedia 6933 1473 35640
Trust 4772 3809 23919
E-Commerce 7861 3169 20525
Game 839 331 2113

As can be seen in Table 1. we have analysed
different sized codebase. Blank, comment and code
columns refer to the type of the text written in a line.

In order for the categorisation process to be accurate,
we have identified all the iOS SDK defined ViewCon-
troller and View components types defined in the iOS
SDK, there are 12 different ViewController items and
40 View ones.

3.4 Results

RQ1 - How Effective is the Proposed Categorisa-
tion Method Compared to Manual Inspections?
The first evaluation done was for the categorisation
phase. We have manually analysed each application
and placed each one of its components in one of the
Model, View, Controller layers. After creating the
ground truth, the system was ran over the studied ap-
plications and the results were compared against the
baseline. Table 2 presents our findings for each of the
applications using the precision, recall and accuracy
metrics.

Table 2: The effectiveness of the categorisation process in
terms of Accuracy, Precision and Recall.

Appr Applic Model View Ctrl AccP R P R P R
Simple Firefox 96 99 100 98 98 71 95
Coord. Firefox 96 77 100 96 46 90 82
Simple Wiki 76 99 100 57 98 89 87
Coord. Wiki 72 73 100 57 73 95 78
Simple Trust 78 98 100 67 100 37 82
Coord. Trust 83 88 100 67 64 70 82
Simple E-comm 75 100 100 100 100 54 84
Coord. E-comm 96 78 100 96 78 100 89
Simple Game 100 100 100 100 100 100 100
Coord. Game 100 100 100 100 100 100 100

We start the validation by an important metric, the
accuracy, which denotes how many components were
correctly identified for all the analysed layers. Our ex-
periment shown that by using the SimpleCateg, with-
out the coordinators detection, the proposed system
was able to correctly categorise the components in
layers with an average accuracy of 89.6% on all of
the analysed codebases, while CoordCateg achieved
an average accuracy of 86.2%.

An interesting finding is that in the case of the ap-
plications where the Coordinator concept was consis-
tently used throughout the code (Trust, E-Commerce)
the results were better for the CoordCateg approach,
however on the other applications where this concept
was not used, the results were worst.

The detection of the Coordinator components is
heavily influenced by the way the navigation from one
ViewController to another is implemented in the ap-
plication. If this is scattered all around the codebase
and is not extracted in custom components (Coordi-
nators) the detection process will be affected. While
building the ground truth, we have prioritised inheri-
tance over the links between components – meaning

ICSOFT 2019 - 14th International Conference on Software Technologies

182



that if a component inherits from a View element but
has dependencies to other Controller components we
have marked it as a View component – as we had no
way of knowing what the developers intended.

In the categorisation phase of the CoordCateg ap-
proach we are interested in the behaviour while de-
tecting the Coordinators. It is more important to high-
light that a component has the behaviour of a Coordi-
nator than to leave it as a View or Model component.
Due to how the code was written and the usage of
external libraries of View elements, the accuracy for
the CoordCateg approach is worst in the case of the
Firefox and Wikipedia apps. The difference in the ac-
curacy indicates that in the codebase there is a differ-
ence between the behaviour and the intended type of
a component, which highlights an architectural mis-
conception.

In the case of the simplest application (from an ar-
chitectural point of view), both approaches correctly
identified the components with an accuracy of 100%.
From Precision’s point of view, the best classified
component is the View one (in both approaches) and
no false positive are identified for this layer. From Re-
call’s point of view, the best classified component by
the first approach is the Model, while by the second
approach is the Controller – such result is somehow
correlated with H4, the improved heuristic focused on
Controller layer. In several cases (ECommerce and
Game) a perfect recall is obtained indicating that the
system produces no false negatives.

If we compare the results of the first approach
with those of the second approach we observe how
the second approach improves the Controller’s recall
because it is able to identify more types of compo-
nents that should belong to this layer (not only that
are pure View Controllers).

In the same time the Controller’s precision and the
View’s recall decrease (their are some View compo-
nents that, due to the filtering order, are labelled as
Coordinator objects, breaking the mention metrics).
Furthermore, the Model’s recall decreases since some
Model’s components are labelled as Coordinating ob-
jects.

The Model’s precision increases in some cases
(e.g. Trust and ECommerce applications) because
there are fewer false positive cases: some Coordi-
nating objects, labelled as Model by the first ap-
proach, are labelled as Controller by the second ap-
proach. However, the Model’s precision decreases
when the second approach labelled as Coordinators
some Model’s components (that manipulate View-
Controllers), similar to the View’s components wrong
classified. The View’s precision is constant and reach
the maximum, this being a good sign that the pro-

posed system is able to correct recognise all View’s
components. The View’s recall if affected by the us-
age of external libraries for UI components (e.g. Wiki
case).

As a first conclusion, our system is able of cate-
gorising the components on the right layers.

RQ2 - What is the Topological Structure of Mobile
Codebases using the Proposed Approach? Fig.
2 presents clusters composed from three categories
(Model, View, Controller) showing the number of
different components (#Comp) / #IntDepends — the
number of internal dependencies for each cluster. The
first columns from each application refer to the Sim-
pleCateg, while the second columns denote the Co-
ordCateg approach. As can be seen from the analysis
and the sizes of the codebase, a smaller codebase can
have more components even if it has fewer number of
lines. This is due to the granularity of the architec-
ture. Usually a higher granularity indicates a better
architecture.

Figure 2: Codebase components, distribution of compo-
nents on layers.

The #IntDepends are increasing in the case of the
CoordCateg approach for the Controller layer and de-
creasing or keeping their status for the other two lay-
ers. This decrease of internal dependencies in the
View and Model happens due to the migration of var-
ious components in the Controller layer as Coordinat-
ing items; the remaining items have a higher degree
of cohesion among them.

Tables 3 and 4 summarise the analysis of the sep-
aration on each one of the codebases, both #ExtDe-
pends and #DiffExtDepend are presented. The
items highlighted in red represent the dependencies
which violate the MVC rules. While links Model—
Controller and View—Controller should exits, those
should be done trough interfaces and the Model and
View should have no direct knowledge about the Con-
troller; that is why those items were highlighted as
well.

As can be seen from the two approaches, Coord-

An Analysis System for Mobile Applications MVC Software Architectures

183



Table 3: Codebase analysis - SimpleCateg approach.
#ExtDepends / #DiffExtDepend
Dependency Firefox Wiki Trust E-comm Game
View - Model 21/9 7/3 21/14 72/27 1/1
View - Controller 3/1 - - 2/1 -
Model - View 203/19 99/11 49/11 122/11 1/1
Model - Controller 161/11 55/8 146/23 560/69 -
Controller - Model 152/41 78/35 74/37 290/62 38/6
Controller - View 403/46 545/35 146/30 637/47 42/13
#CompleteExtDepends
Model 3001 1393 1745 2018 111
View 598 146 163 274 19
Controller 1615 2212 496 1702 188

Table 4: Codebase analysis - CoordCateg approach.
#ExtDepends / #DiffExtDepend
Dependency Firefox Wiki Trust E-comm Game
View - Model 21/9 7/3 21/14 63/25 1/1
View - Controller 3/1 - - 2/1 -
Model - View 126/14 91/11 35/11 103/8 1/1
Model - Controller - - - - -
Controller - Model 257/41 73/32 264/66 431/62 38/6
Controller - View 448/46 576/35 161/31 674/49 42/13
VC - CC 50/9 8/3 - 49/8 -
#CompleteExtDepends
Model 2129 957 1228 846 111
View 569 146 163 241 19
Controller 2646 2672 1193 2569 188

Categ produces more accurate results and it does not
have any negative side effects on codebases which do
not use coordinators at all (Game). The shift from
Model and View to more Controller components can
be seen in the #CompleteExtDepends section of Ta-
bles 3 and 4, as well as in the Fig. 2, the Controller
has more items, while the Model and sometimes the
View has fewer.

RQ3 - Do Mobile Codebases Respect the Architec-
tural Rules? Our approach intends to highlight the
architectural problems and to provide meaningful in-
sights regarding the codebase. To this aim we analyse
MVC specific validation rules over different types of
dependencies found in the codebase. Note that the
purpose of this study was not to compare the extracted
architectural topology against a reference one (also
known in literature as the conceptual architecture)
since it not available for the analysed systems. Hence,
in Tables 3 and 4 can be seen that the validation rules
R1 and R2 are violated in both approaches. One rea-
son for this can be the fact that developers tend to re-
spect the classic MVC dependencies rules and ignore
the Apple’s flavour of MVC Apple (2012b) depen-
dency rules. However, in the CoordCateg approach
(Table 4) the rule violation is more mildly as we have
fewer invalidations. This amelioration could be a con-
sequence of the improved heuristic used for identify-
ing Controller layer components (H4).

In the CoordCateg approach, as can be seen in Ta-
ble 4 the rule R3 is violated in 3 of the 5 analysed
codebases; the Game codebase does not use Coordi-

nating controllers, while in the case of Trust applica-
tion the dependency rule is respected. In the case of
applications where the Coordinating controllers are
well understood, they are usually correctly imple-
mented. However in other cases where this sub-layer
appears as a side effect of the complexity in the Con-
troller layer, they are inadequately constructed.

As can be seen in both Tables 3 and 4, the ma-
jority of the architectural problems are encountered
between the Model and the other layers. This shows
that the Model layer is usually wrongly constructed
and it is not clear for developers what should reside
in there. Moreover the analysis also shows that while
mobile projects are split in composing layers, MVC
tries to be followed, the dependencies between those
layers are not correctly constructed.

3.5 Threats to Validity

Internal Validity. In the case of Coordinating Con-
trollers detection there might be mismatches between
the purpose given by the developer to that compo-
nent and our categorisation process. This shift from
Model and View layer might not always be valid as
some components were intended to reside in those
layers, but they simply are wrongly coupled with
ViewControllers. In addition to this this wrong cat-
egorisation heavily affects the analysis phase. More-
over the usage of third party libraries for the UI com-
ponents heavily impacts the categorisation process
which drastically impacts the rest of the analysis as
those are not covered by our proposed heuristics. Fur-
thermore the analysis was conducted on the iOS plat-
form using the Swift language, for other platforms
which use languages which support multiple inheri-
tance some of the heuristics might not apply.
External Validity. The current study focuses on
MVC and its flavours on the most popular mobile
platforms. By using the current approach, custom ar-
chitectural patterns can not be analysed, in order to
overcome this issue the categorisation process should
be enriched with more layers and improving the clus-
tering capabilities.
Conclusion Validity. The study can be ran on more
applications to strengthen our findings. Additional
metrics can be used for analysing the dependencies in
order to give relevant insights regarding the stability,
testability and extensibility of the analysed codebase.

4 CONCLUSIONS

Architectural patterns can not enforce their rules on
developers. In the domain of software architectures,

ICSOFT 2019 - 14th International Conference on Software Technologies

184



the builders — developers, can cross architectural
boundaries fairly easy; that is why an external sys-
tem is needed for enforcing the chosen architectural
pattern. Our research provides a distinct technique
for analysing the mobile codebases, without the need
for using complex ADL languages and validation sys-
tems. The proposed method uses the mobile SDKs
particularities for constructing an easy to use and un-
derstand system which can come in the aid of mo-
bile developers. Discovering the root and sources of
the technical debt and highlighting the architectural
issues of the codebase benefits both developers as
well as management, as they can see the architectural
health of the codebase.

The fact that the codebase is split in well defined
categories represent just part of the benefits obtained
by respecting an architectural pattern. The correct de-
pendencies between layers is what offers all the other
architectural benefits (flexibility, testability, maintain-
ability, etc.) and it is more important than just cate-
gorising the components. Our results show that those
dependencies are not correctly constructed and there
is a need for an architectural checker system on mo-
bile platforms for imposing architectural patterns.

As future steps, we plan to extend the system
to work with custom defined software architectures,
such that it can analyse multiple type of projects. The
system can also be integrated into a CI/CD pipeline,
highlighting architectural issues early in the develop-
ment phase before the code goes into the final prod-
uct.

REFERENCES
Ameller, D. and Franch, X. (2011). Ontology-based archi-

tectural knowledge representation: structural elements
module. In CAiSE, pp. 296–301. Springer.

Apple (2012a). Controller. link.
Apple (2012b). Model-view-controller. link.
Belle, A. B. et al. (2013). The layered architecture revisited:

Is it an optimization problem? In SEKE, pp. 344–349.
Boaye Belle, A. (2016). Recovering software layers from

object oriented systems: a formalization as an opti-
mization problem. PhD thesis, École de technologie
supérieure.

Chen, X. et al. (2014). A replicated experiment on archi-
tecture pattern recommendation based on quality re-
quirements. In ICSESS, pp. 32–36. Citeseer.

Corazza, A. et al. (2016). Weighing lexical information for
software clustering in the context of architecture re-
covery. Empirical Software Engineering, 21(1):72–
103.

DeLong, D. (2017). A better MVC. link.
Fowler, M. (2002). Patterns of enterprise application ar-

chitecture. Addison-Wesley Longman Publishing Co.,
Inc.

Garcia, J. et al. (2013). A comparative analysis of software
architecture recovery techniques. In ICASE, pp. 486–
496. IEEE Press.

Garofalo, R. (2011). Building enterprise applications
with Windows Presentation Foundation and the Model
View View Model Pattern. Microsoft Press.

Huang, J. and Liu, J. (2016). A similarity-based modular-
ization quality measure for software module cluster-
ing problems. Information Sciences, 342:96–110.

Hussain, S. (2013). Investigating architecture description
languages (ADLs) a systematic literature review. PhD
thesis, Linkapings Universitet.

Kocsis, K. (2018). Architectural patterns, MVC, MVVM:
What is the hype all about? link.

Koschke, R. (2013). Incremental reflexion analysis. Journal
of Software: Evolution and Process, 25(6):601–637.

La, H. J. and Kim, S. D. (2010). Balanced mvc architecture
for developing service-based mobile applications. In
ICEBE, pp. 292–299. IEEE.

Le, D. M. et al. (2015). An empirical study of architectural
change in open-source software systems. In IEEE
MSR, pp. 235–245.

Maffort, C. et al. (2013). Mining architectural patterns using
association rules. In SEKE, 2013, pp. 375–380.

Mariani, T. et al. (2016). Preserving architectural styles in
the search based design of software product line archi-
tectures. J. of Systems and Software, 115:157–173.

Mozilla (2018). Firefox iOS application. link.
MutualMobile (2014). Meet VIPER: Clean architecture for

iOS apps. link.
Olsson, T. et al. (2018). Towards improved initial map-

ping in semi automatic clustering. In ECSA, page 51.
ACM.

Orlov, B. (2015). iOS architecture patterns: Demystifying
MVC, MVP, MVVM and VIPER. link.

Paixao, M. et al. (2018). An empirical study of cohesion
and coupling: Balancing optimization and disruption.
IEEE TEC, 22(3):394–414.

Potel, M. (1996). MVP: Model-View-Presenter the taligent
programming model for C++ and Java. Taligent Inc,
page 20.

Ramı́rez, A. et al. (2018). Interactive multi-objective evolu-
tionary optimization of software architectures. Infor-
mation Sciences.

Reenskaug, T. (2003). The model-view-controller (MVC)
its past and present. University of Oslo Draft.

Rumbaugh, J. et al. (2004). Unified modeling language ref-
erence manual, the. Pearson Higher Education.

Sarkar, S. et al. (2009). Discovery of architectural lay-
ers and measurement of layering violations in source
code. J. of Systems and Software, 82(11):1891–1905.

Terra, R. and Valente, M. T. (2009). A dependency con-
straint language to manage object-oriented software
architectures. Software: Practice and Experience,
39(12):1073–1094.

Trust (2018). Trust wallet iOS application. link.
Wikimedia (2018). Wikipedia ios application. link.
Xu, Y. and Liang, P. (2014b). A cooperative coevolution

approach to automate pattern-based software architec-
tural synthesis. IJSEKE, 24(10):1387–1411.

Zhang, M. (2018). Photoshop coming to the iPad. link.

An Analysis System for Mobile Applications MVC Software Architectures

185


