
A Formal Requirements Modeling Approach:
Application to Rail Communication

Steve J. Tueno Fotso1,3, Régine Laleau1, Hector Ruiz Barradas2, Marc Frappier3 and Amel Mammar4

1Université Paris-Est Créteil, LACL, Créteil, France
2ClearSy System Engineering, Aix-en-Provence, France

3Université de Sherbrooke, GRIL, Québec, Canada
4Télécom SudParis, SAMOVAR-CNRS, Evry, France

amel.mammar@telecom-sudparis.eu

Keywords: Saturn Rail Communication Protocol, Requirements Engineering, Formal Models, Domain Modeling,
Railway, SysML/KAOS, B System, Event-B.

Abstract: This paper is about the formal specification of requirements of a rail communication protocol called Saturn,
proposed by ClearSy systems engineering, a French company specialised in safety critical systems. The
protocol was developed and implemented within a rail product, widely used, without modeling, verifying and
even documenting its requirements. This paper outlines the formal specification, verification and validation of
Saturn’s requirements in order to guarantee its correct behavior and to allow the definition of slightly different
product lines. The specification is performed according to SysML/KAOS, a formal requirements engineering
method developed in the ANR FORMOSE project for critical and complex systems. System requirements,
captured with a goal modeling language, give rise to the behavioral part of a B System specification. In
addition, an ontology modeling language allows the specification of domain entities and properties. The
domain models thus obtained are used to derive the structural part of the B System specification obtained from
system requirements. The B System model, once completed with the body of events, can then be verified
and validated using the whole range of tools that support the B method. Five refinement levels of the rail
communication protocol were constructed. The method has proven useful. However, several missing features
were identified. This paper also provides a formally defined extension of the modeling languages to fill the
shortcomings.

1 INTRODUCTION

Refinement-based methods that support proof-by-
construction help to progressively construct the spec-
ification of a complex system while ensuring its cor-
rectness. In recent years, these methods have been
widely used on large scale projects in critical areas
such as railway or aeronautics, thanks in particular to
the emergence of industrial strength formal methods
such as B (Abrial, 2005) or Event-B (Abrial, 2010).
A major difficulty identified in such projects lies in
the construction of the initial formal model, based on
needs identified by stakeholders (Lee and Suh, 2005;
Abrial, 2010). When poorly conducted, this step is re-
sponsible for the vast majority of critical failures (Lee
and Suh, 2005).

Our work focuses on the formal requirements
modeling of critical and complex systems. SysM-

L/KAOS (Fotso et al., 2018b; Laleau et al., 2010),
as a requirements engineering method, is chosen be-
cause it includes an expressive and intuitive goal mod-
eling language (Laleau et al., 2010) to represent sys-
tem requirements extracted from artifacts that de-
scribe stakeholder needs. In addition, SysML/KAOS
includes a domain modeling language (Fotso et al.,
2018b; Tueno et al., 2017d) to represent application
domain entities and their properties using ontologies.
Furthermore, the rules required to generate a B Sys-
tem specification (ClearSy, 2014) from goal and do-
main models are defined and the most relevant ones
have been formally verified (Fotso et al., 2018c). Goal
models give the behavioral part (events) of the spec-
ification (Matoussi et al., 2011) while domain mod-
els provide its structural part (sets, constants and
their properties, variables and their invariant) and the
initialisation of state variables (Fotso et al., 2018c;

170
Fotso, S., Laleau, R., Barradas, H., Frappier, M. and Mammar, A.
A Formal Requirements Modeling Approach: Application to Rail Communication.
DOI: 10.5220/0007809701700177
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 170-177
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Tueno et al., 2017a). Once the event bodies are
specified, the B System model can be formally ver-
ified and validated to assess the requirements. This
can be done using the full range of tools that sup-
port the B method (Abrial, 2005), largely and posi-
tively assessed on industrial projects for more than 25
years (Lecomte et al., 2017).

SysML/KAOS is supported by integrated devel-
opment environments Openflexo (Openflexo, 2019)
and Atelier B (ClearSy, 2014). Openflexo supports
goal modeling while Atelier B supports the specifi-
cation, verification and validation of B System mod-
els based on the semantics of SysML/KAOS model-
ing languages. Domain models, on the other hand,
are constructed and translated to B System using
a tool (Tueno et al., 2017b) implemented on top
of Jetbrains MPS (Jetbrains, 2017) and PlantUML
(Roques, 2015).

Saturn (Technology, 2019) is a rail communi-
cation protocol, proposed by ClearSy, which deals
with exchanges of communication frames between
rail agents through a bus. The protocol was developed
and implemented within a rail product widely used,
without modeling, verifying and even documenting
its requirements. This paper outlines the formal spec-
ification, verification and validation of Saturn’s re-
quirements in order to guarantee the correctness of
its behavior and to allow the definition of slightly dif-
ferent product lines. SysML/KAOS has provided a
methodical and structured way for the formal specifi-
cation of requirements. Furthermore, it ensures a bet-
ter reusability and readability of models and a strong
traceability between models. The specification is de-
composed into five refinements. The use of SysM-
L/KAOS on this case study led us to extend the do-
main modeling language and make it more suitable
for use in system modeling: the language, described
in (Tueno et al., 2017d; Tueno et al., 2017c; Fotso
et al., 2018b) has been adjusted to allow the defini-
tion of associations between associations and to sup-
port variable data items. This completes the defini-
tion of the domain modeling language: associations
have been generalised into concepts and variability
has been extended to individuals. In addition, the
translation rules (Fotso et al., 2018c; Tueno et al.,
2017a) have been updated to match the adjusted lan-
guage and formally verified.

The remainder of this paper is structured as fol-
lows: Section 2 briefly describes the B System formal
method, the SysML/KAOS requirements engineering
method and its goal and domain modeling languages,
and the translation of SysML/KAOS models. Follows
a presentation, in Section 3, of the work done on the
case study and of updates performed on the SysM-

L/KAOS domain modeling language. Finally, Sec-
tion 4 discuss the work done and Section 5 reports
our conclusion and future work.

2 BACKGROUND

2.1 Event-B and B System

Event-B (Abrial, 2010) is an industrial-strength for-
mal method for system modeling. It allows the in-
cremental construction of system specifications, us-
ing stepwise refinement, and the proof of useful prop-
erties. B System is an Event-B syntactic variant pro-
posed by ClearSy, an industrial partner in the FOR-
MOSE project (ANR-14-CE28-0009, 2017), and sup-
ported by Atelier B (ClearSy, 2014). It shares the
same semantics with Event-B.

A B System specification consists of components.
Each component can be either a system or a refine-
ment and it may define static or dynamic elements. A
refinement is a component which refines another one
in order to concretise the system construction: addi-
tion of functionalities or specification of the achieve-
ment of some purposes. Constants, abstract and enu-
merated sets (user-defined types), and their proper-
ties, constitute the static part. The dynamic part in-
cludes the representation of system state using vari-
ables constrained through invariants (first-order pred-
icates that constrain the possible values that the vari-
ables may hold) and updated through events.

2.2 SysML/KAOS Goal Modeling

SysML/KAOS (Laleau et al., 2010) is a requirements
engineering method which combines the traceability
provided by SysML (Hause et al., 2006) with goal ex-
pressiveness provided by KAOS (van Lamsweerde,
2009). It allows the representation of requirements to
be satisfied by a system and of expectations with re-
gards to the environment through a hierarchy of goals.
The goal hierarchy is built through a succession of re-
finements using two main operators: AND and OR.
An AND refinement decomposes a goal into sub-
goals, and all of them must be achieved to realise the
parent goal. An OR refinement decomposes a goal
into subgoals such that the achievement of only one
of them is sufficient for the achievement of the parent
goal.

2.3 SysML/KAOS Domain Modeling

Domain models in SysML/KAOS are represented us-
ing ontologies. These ontologies are expressed using

A Formal Requirements Modeling Approach: Application to Rail Communication

171

the SysML/KAOS domain modeling language (Tueno
et al., 2017d; Tueno et al., 2017c), which is built
based on OWL (Sengupta and Hitzler, 2014) and PLIB
(Pierra, 2004).

Each domain model corresponds to a refinement
level in the SysML/KAOS goal model. The parent
association represents the hierarchy of domain mod-
els. A domain model can define multiple elements.
Concepts (instances of Concept) denote collections
of individuals (instances of Individual) with common
properties. A concept can be declared variable when
the set of its individuals can be updated by adding or
deleting individuals. Otherwise, it is considered to be
constant.

Relations (instances of Relation) are used to cap-
ture links between concepts, and attributes (instances
of Attribute) capture links between concepts and data
sets (instances of DataSet). Predicates (instances of
Predicate) are used to represent constraints between
different elements of the domain model in the form of
Horn clauses.

2.4 Translation of SysML/KAOS
Models

The formalisation of SysML/KAOS goal models is
detailed in (Matoussi et al., 2011). The proposed
rules allow the generation of a formal model whose
structure reflects the hierarchy of the SysML/KAOS
goal diagram: one component is associated with each
level of the goal hierarchy; this component defines
one event for each goal. As the semantics of the re-
finement between goals is different from that of the
refinement between B System components, new proof
obligations for goal refinement are defined in (Ma-
toussi et al., 2011). They depend on the goal re-
finement operator used and complete the B System
proof obligations for invariant preservation and for
event feasibility. For instance, the following proof
obligations formalise the AND refinement of an ab-
stract goal G into two concrete goals G1 and G2 (for
an event G, G Guard represents the guards of G and
G Post represents the post condition of its actions):

• G1 Guard⇒ G Guard

• G2 Guard⇒ G Guard

• (G1 Post ∧G2 Post)⇒ G Post

It should be noted that variables updated by subgoals
must be distinct.

However, the B System specification generated
from goal diagrams does not contain the static part
and the state variables. These elements are provided
by the translation of SysML/KAOS domain models.
The corresponding rules are fully described in (Tueno

et al., 2017a) and their formal verification is described
in (Fotso et al., 2018c). In short, domain models iden-
tify B System components. A concept without a parent
gives a B System abstract set. Each concept C, with
parent PC, gives a formal constant, subset of the cor-
respondent of PC. Relations and attributes give for-
mal relations.

3 SPECIFICATION OF THE
SATURN COMMUNICATION
PROTOCOL

3.1 Main Characteristics of the Protocol

SATURN describes exchanges of communication
frames between different agents connected via a bus
so as to ensure high robustness and availability (Tech-
nology, 2019). It deals with one active gateway
(and possibly seven passive ones), several input/out-
put agents (1-128) and an innovative ring network. In-
put/output agents can be secure or unsecure. Input
agents provide boolean data. The data are periodi-
cally collected by the gateway, transformed and the
result is made available to output agents through the
ring network.

3.2 Goal Modeling

Figure 1: Excerpt from the SATURN protocol goal dia-
gram.

Figure 1 is an excerpt from the SysML/KAOS goal
diagram representing the functional goals of SAT-
URN. The main purpose of the system is to transform
data provided by input agents (in) and make the re-
sult (out=FB(in)) available to output agents: FB is
a boolean function that transforms inputs into out-
puts. The purpose gives the most abstract goal Pro-
cess of the goal diagram. Goal Process is refined us-

ICSOFT 2019 - 14th International Conference on Software Technologies

172

(a) (b)

Figure 2: Saturn 0: root level ontology.

ing the AND operator to introduce a goal Get for input
data acquisition from input agents and a goal Put to
make the result available to output agents. The second
refinement level is a data refinement which refines
goals defined within the first refinement level to take
into account multiplicities of input and output agents.
Thus, input data acquisition (goal S Get) generates a
boolean array, the computation (goal S Compute) be-
comes a transformation between arrays and result de-
livery (goal S Put) transfers the resulting array to out-
put agents.

3.3 Domain Modeling

3.3.1 First Attempt

Figure 2 (a) is an attempt to represent the domain
model associated with the root level of the goal dia-
gram of Fig. 1 using the SysML/KAOS domain mod-
eling language previously described. It is illustrated
using the syntax proposed by the SysML/KAOS do-
main modeling tool (Tueno et al., 2017b). For read-
ability purposes, we have decided to hide the repre-
sentation of optional characteristics. The type of input
data is modeled as a concept T IN defining an indi-
vidual in which represents the input data. Similarly,
the type of output data is modeled as a concept T OUT
defining an individual out which represents the out-
put data. The computation function FB is modeled as
a functional relation from T IN to T OUT.

The first difficulty we encountered is related to the
changeability of domain entities. In fact, inputs and
outputs change dynamically. In domain model of Fig.
2 (a), a workaround consisted in considering that con-
cepts T IN and T OUT and relation FB are variables. In
the B System specification, the variability is reflected

through the definition of a variable subset (Fotso et al.,
2018c; Tueno et al., 2017a): for instance, the vari-
able concept T IN gives a B System abstract set T IN
and a variable x T IN⊆T IN which contains, at any
system state, the current value of the input. Thus,
going from a system state where out1 = FB(in1)
to a system state where out2 = FB(in2) is feasi-
ble and goes through: (1) withdrawal of maplet in1
7→ out1 from x FB; (2) withdrawal of individual in1
from x T IN; (3) withdrawal of individual out1 from
x T OUT; (4) addition of individual in2 in x T IN;
(5) addition of individual out2 in x T OUT; and (6)
addition of maplet in2 7→ out2 in x FB. Too many
actions are thus required and the modeling does not
conform to SATURN’s specification. Indeed, from
a conceptual point of view: (1) the input data type
must be constant (corresponds to the set of n-tuples
of booleans, when considering n input agents); (2)
the output data type must be constant; (3) the com-
putation function FB is hard-coded and is therefore
constant. What should change are individuals repre-
senting input and output states. It is thus necessary
to be able to model variable individuals: individual
which can dynamically take any value in a given con-
cept. A similar need appears for relations with rela-
tion maplets, attributes with attribute maplets and data
sets with data values.

Another difficulty has been encountered related
to multiplicities of input and output agents (domain
model associated with the third refinement level of the
goal diagram of Fig. 1). Indeed, the array that repre-
sents input data needs to be modeled by a relation,
ditto for the array that represents output data. Thus,
the computation function needs to be modeled by a
relation for which the domain and the range are rela-
tions, which is impossible with the current definition
of the SysML/KAOS domain modeling language.

The SATURN case study also revealed the need to
be able to:

• define domain and range cardinalities for at-
tributes;

• define a named maplet (instance of Relation-
Maplet or AttributeMaplet) with or without an-
tecedent and image;

• define an initial value for a variable individual,
maplet or data value;

• define associations between data sets and maplets
between data values;

• refine a concept with an association or a data set;

• refine an individual with a maplet or a data value.

We have therefore identified the need to build a
generalisation of the domain modeling language to

A Formal Requirements Modeling Approach: Application to Rail Communication

173

enrich its expressiveness while preserving the funda-
mental constraints identified in (Tueno et al., 2017c;
Tueno et al., 2017d). A major contribution of this new
metamodel is that it merges notions of concept, data
set, attribute and relation as well as notions of indi-
vidual, maplet and data value that have always been
considered distinct by ontology modeling languages
such as OWL (Sengupta and Hitzler, 2014). Addi-
tional constraints are defined to preserve the formal
semantics of the language and to ensure unambigu-
ous transformation of any domain model to a B Sys-
tem specification (Tueno et al., 2018).

3.3.2 The Revised Domain Modeling Language

DomainModel

+ name : string

Concept

+ name : string
+ isVariable : boolean
+ isEnumeration : boolean

Individual

+ name : string [0..1]
+ isVariable : boolean

LogicalFormula

+ assertion : string

GluingInvariant

Association

+ <<opt>> isTransitive : boolean
+ <<opt>> isSysmmetric : boolean
+ <<opt>> isASymmetric : boolean
+ <<opt>> isReflexive : boolean
+ <<opt>> isIrreflexive : boolean

MapletIndividual

DomainCardinality

+ minCardinality : integer
+ maxCardinality : integer

RangeCardinality

+ minCardinality : integer
+ maxCardinality : integer

{:x:Concept\Association=>individu
alOf~[{x}]/\MapletIndividual={}}

QuantVariable

+ name : string

DefaultDataType

DefinedConcept

0..1

parentDomainModel 0..1

1▲
definedIn

*

▲
parentConcept

*

0..1

*1 ◀ individualOf *

▲
initialValue

0..1

*1 ◀ definedIn

1

*

▲
domain

*

1
▲

range

*

0..1

▲
image

0..1

*

▲
antecedent

*

◀ individualOf

1

involves ▶︎ *

*
◀ involves

*
*

1

▲
involves

*

*

▲
definedWith

1..*

1

*

◀ definedIn

Figure 3: Excerpt from the updated SysML/KAOS domain
metamodel.

Figure 3 is an excerpt from the revised SysML/KAOS
domain metamodel. Major updates were made within
the elements in pink. Classes Concept and DataSet
have been merged into class Concept. In addition,
classes Individual and DataValue have been merged
into class Individual. A concept can now be an enu-
meration (isEnumeration=TRUE) if all its individuals
are defined within the domain model. An individual
can be variable (isVariable=TRUE) if it is introduced
to represent a system state variable: it can represent
different individuals at different system states. Other-
wise, it is constant (isVariable=FALSE).

Associations (instances of Association) are con-
cepts used to capture links between concepts. Class
Association is used to merge classes Relation and At-
tribute. Maplet individuals (instances of MapletIndi-
vidual) capture associations between individuals.
Each named maplet individual can reference an an-
tecedent and an image. When the maplet individual is
unnamed, the antecedent and the image must be spec-
ified. Class LogicalFormula replaces class Predicate

to represent constraints between domain model ele-
ments. A defined concept (instance of class Defined-
Concept) is a concept for which the type is provided
by a logical formula.

Additional constraints are required to preserve the
formal semantics of the domain modeling language
and to ensure an unambiguous transformation of any
domain model to a B System specification. The con-
straints are fully defined in (Tueno et al., 2018) using
the B syntax (Abrial, 2010). For instance:

• x ∈ Concept\Association
⇒ individualO f−1[{x}]∩MapletIndividual = /0:
if a concept x is not an association, then no indi-
vidual of x can be a maplet individual.

• x ∈MapletIndividual∩dom(antecedent)
⇒ antecedent(x) ∈ domain(individualO f (x)):
antecedents of a maplet individual must be indi-
viduals of the domain of its association.

• x ∈ Concept\ (Association∪dom(parentConcept))
⇒ Concept isVariable(x) = FALSE: every abstract
concept (that has no parent concept) that is not an
association must be constant. Abstract concepts
that are associations can be variable.

3.3.3 The Saturn Protocol Domain Model

Figure 4: Saturn 1: ontology associated with the first re-
finement level.

Figures 2 (b), 4 and 5 represent domain models asso-
ciated with the refinement levels of the goal diagram
of Fig. 1 using the updated SysML/KAOS domain
modeling language.

In domain model Saturn 0 (Fig. 2 (b)), the type
of input data is modeled as a constant concept T IN
(instance of class Concept of Fig. 3) defining a vari-
able individual in (instance of class Individual of Fig.
3) which represents the input data. Similarly, the type
of output data is modeled as a constant concept T OUT

ICSOFT 2019 - 14th International Conference on Software Technologies

174

Figure 5: Saturn 2: ontology associated with the second refinement level.

defining a variable individual out. Finally, the com-
putation function FB is modeled as a functional asso-
ciation (instance of class Association of Fig. 3) from
T IN to T OUT. In domain model Saturn 1 (Fig. 4)
which refines Saturn 0, a new variable individual
named in r is defined to represent the acquired input
data and another one, out r, is defined to represent
the computed result.

In domain model Saturn 2 (Fig. 5) which refines
Saturn 2, two concepts are defined: MI which rep-
resents the set of input agents and MO which repre-
sents the set of output agents. Concept agents in
(respectively agents out) is a subconcept of MI
(respectively MO) which represents the set of input
(respectively output) agents that are active. Con-
cept VIN, defined as the set of total functions from
agents in to BOOL (V IN = agents in −→ BOOL
where BOOL = {T RUE,FALSE}), represents the
type of input data which are now arrays. Simi-
larly, concept VOUT (VOUT = agents out −→BOOL)
represents the type of output data. Individuals
in, in r, out and out r are refined respectively
by individuals s in, s in r, s out and s out r
using total injective associations vec to in from
VIN to T IN and vec to out from VOUT to T OUT:
in = vec to in(s in), in r = vec to in(s in r),out =
vec to out(s out),out r = vec to out(s out r). Fi-
nally, the computation function is modeled as a func-
tional association named VBF from VIN to VOUT:
V BF = vec to in;FB;vec to out−1 (operator ; is the
association composition operator used in logical for-
mula assertions).

3.4 The B System Specification

3.4.1 B System Specification Constructed from
Domain Models

Updates performed on the SysML/KAOS domain
modeling language have resulted in adjustments on
translation rules defined in (Fotso et al., 2018c). The
adjusted rules are fully described in (Tueno et al.,
2018). They have been formally verified with Event-
B. The corresponding Event-B specification can be
found in (Tueno et al., 2019). The rules are imple-
mented within the SysML/KAOS Domain Modeling
tool (Tueno et al., 2017b).

The specification below represents the B System
specification obtained from the domain model of Fig.
2 (b).

SYSTEM Saturn 0
SETS b T IN b T OUT
CONSTANTS b FB
PROPERTIES
axm1: b FB ∈ b T IN →
b T OUT

VARIABLES b in b out

INVARIANT

inv1: b in ∈ b T IN

inv2: b out ∈ b T OUT

Event INITIALISATION =̂ then

act1: b in :: b T IN

act2: b out :: b T OUT

Concepts T IN and T OUT give abstract sets
b T IN and b T OUT. Variable individuals in and out
give B System variables b in and b out typed (inv1
and inv2) and initialised (act1 and act2) respectively
as items of b T IN and b T OUT (rule 11 of Table 1 of
(Tueno et al., 2018)). Finally, association FB gives a
B System constant named b FB, typed (axm1) as a to-
tal function between b T IN and b T OUT (rule 10 of
Table 1 of (Tueno et al., 2018)).

The B System specification obtained from the
domain model of Fig. 4 defines a refinement

A Formal Requirements Modeling Approach: Application to Rail Communication

175

named Saturn 1 which refines Saturn 0 and intro-
duces variables b out r and b in r with invariant
b out r ∈ b T OUT ∧ b in r ∈ b T IN. The spec-
ification obtained from the domain model of Fig.
5 defines a B System refinement named Saturn 2
which refines Saturn 1. In Saturn 2, concepts
MI and MO are defined as abstract sets. In ad-
dition, Saturn 2 defines agents in, agents out,
VIN, VOUT, vec to in, vec to out and VBF as con-
stants. Properties
axm1: b agents in⊆ b MI
axm2: b agents out ⊆ b MO
define b agents in and b agents out as subsets of
b MI and b MO (rule 5 of Table 1 of (Tueno et al.,
2018)).
axm3: b V IN = b agents in→ BOOL
axm4: b VOUT ∈ b agents out→ BOOL
axm5: b vec to in ∈ b V IN � b T IN
axm6: b vec to out ∈ b VOUT � b T OUT
axm7: b V BF ∈ b V IN→ b VOUT
axm8: b V BF = (b vec to in;b FB;b vec to out−1)

Following rule 10 of Table 1 of (Tueno et al.,
2018), property axm5 defines b vec to in as a
total injection from b VIN to b T IN. Constant
b vec to out is typed in a similar manner by prop-
erty axm6. Finally, the total function b VBF (axm7) is
defined by property axm8 as the composition of func-
tions b vec to in, b FB and b vec to out−1 (prop-
erty axm8 results from the translation of a logical for-
mula defined in domain model Saturn 2). The B Sys-
tem refinement Saturn 2 also defines variables such
as b s in and b s out, along with their invariants
and initialisations.

3.4.2 B System Specification Constructed from
Goal Model

The root level of the goal diagram of Fig. 1 gives the
B System event Process specified as:
Event Process =̂ then b out := b FB(b in) END

Furthermore, the first refinement level of the goal
diagram gives the following B System specification:

Event Get ref and Process =̂ then b in r := b in END;
Event Compute ref and Process =̂ then b out r := b FB(b in r)

END;

Event Put ref and Process =̂ then b out := b out r END

Each refinement level goal is translated into an
event for which the body has been manually speci-
fied: event Get reads the input data, event Compute
computes the output data and event Put outputs the
result. The keyword ref and is used to specify that
concrete events Get, Compute and Put refine abstract
event Process, in accordance with SysML/KAOS goal
refinements, through the AND operator. This allows
the automatic generation of proof obligations related

to usage of the AND operator between abstract and
concrete refinement levels (Matoussi et al., 2011) by
the Atelier B tool:

(po1) Get Guard⇒ Process Guard
(po2)Compute Guard⇒ Process Guard
(po3) Put Guard⇒ Process Guard
(po4) (Get Post ∧Compute Post ∧Put Post)⇒ Process Post

For instance, the full specification of proof obligation
(po4) is:
(b in r = b in∧b out r = b FB(b in r)∧b out = b out r)
⇒ b out = b FB(b in).

It expresses that when the input data is read and
the output data is computed, the output data is the re-
sult of applying b FB to the input data.

The keyword ref or is used when the OR operator
appears between an abstract and a concrete refinement
levels.

4 DISCUSSION

The specification of the Saturn protocol includes five
refinement levels. It has been built, in a methodical
and structured way, thanks to SysML/KAOS. Table
1 summarises the key characteristics related to proof
obligations. Discharged using Atelier B, they allow
the detection of omissions, ambiguities, redundancies
and contradictions within requirements, while consid-
ering domain constraints. Furthermore, the domain
modeling language has been extended in order to be
more suitable for use in system modeling.

Table 1: Key characteristics related to the formal specifica-
tion.

Refinement level L0 L1 L2 L3 L4 Summary
Invariants 2 6 8 1 1 18
Events 1 4 3 5 9 22
Proof Obligations (PO) 1 3 10 9 25 48

5 CONCLUSION AND FUTURE
WORK

This paper focusses on assessment of the SysM-
L/KAOS method through the formal modeling of re-
quirements related to Saturn, a rail communication
protocol proposed by ClearSy (Technology, 2019).
SysML/KAOS goal and domain modeling languages
have been used to specify Saturn’s requirements and
application domain entities and properties. Transla-
tion rules, supported by tools (Matoussi et al., 2011;
Tueno et al., 2017b), have then been used to obtain a B
System specification. The SysML/KAOS method has

ICSOFT 2019 - 14th International Conference on Software Technologies

176

proven its usefulness for the specification of the pro-
tocol and has been enhanced, especially the domain
modeling language, to make it more suitable for use
in system modeling.

Work in progress is aimed at (i) integrating the
updates within the open-source platform Openflexo
(Openflexo, 2019), which federates the various con-
tributions of FORMOSE project partners (ANR-14-
CE28-0009, 2017), (ii) at studying the impact of pro-
posed revisions on the back propagation rules (Fotso
et al., 2018a), and (iii) at assessing the updated SysM-
L/KAOS method on further case studies.

REFERENCES

Abrial, J. (2010). Modeling in Event-B - System and Soft-
ware Engineering. Cambridge University Press.

Abrial, J.-R. (2005). The B-book: assigning programs to
meanings. Cambridge University Press.

ANR-14-CE28-0009 (2017). Formose ANR project.
ClearSy (2014). Atelier B: B System.
Fotso, S. J. T., Frappier, M., Laleau, R., and Mammar,

A. (2018a). Back propagating B system updates on
SysML/KAOS domain models. In ICECCS, pages
160–169. IEEE.

Fotso, S. J. T., Frappier, M., Laleau, R., and Mammar, A.
(2018b). Modeling the hybrid ERTMS/ETCS level 3
standard using a formal requirements engineering ap-
proach. In ABZ, volume 10817 of LNCS, pages 262–
276. Springer.

Fotso, S. J. T., Mammar, A., Laleau, R., and Frappier, M.
(2018c). Event-B expression and verification of trans-
lation rules between SysML/KAOS domain models
and B System specifications. In ABZ, volume 10817
of LNCS, pages 55–70. Springer.

Hause, M. et al. (2006). The SysML modelling language. In
Fifteenth European Systems Engineering Conference,
volume 9. Citeseer.

Jetbrains (2017). Jetbrains mps.
Laleau, R., Semmak, F., Matoussi, A., Petit, D., Ham-

mad, A., and Tatibouet, B. (2010). A first attempt
to combine SysML requirements diagrams and B. In-
novations in Systems and Software Engineering, 6(1-
2):47–54.

Lecomte, T., Déharbe, D., Prun, É., and Mottin, E. (2017).
Applying a formal method in industry: A 25-year tra-
jectory. In SBMF, volume 10623 of LNCS, pages 70–
87. Springer.

Lee, D. G. and Suh, N. P. (2005). Axiomatic design
and fabrication of composite structures-applications
in robots, machine tools, and automobiles. Oxford
University Press, page 732.

Matoussi, A., Gervais, F., and Laleau, R. (2011). A goal-
based approach to guide the design of an abstract
Event-B specification. In ICECCS, pages 139–148.

Openflexo (2019). Openflexo project.

Pierra, G. (2004). The PLIB ontology-based approach
to data integration. In IFIP 18th World Computer
Congress, volume 156 of IFIP, pages 13–18. Kluw-
er/Springer.

Roques, A. (2015). Plantuml: Open-source tool that uses
simple textual descriptions to draw uml diagrams.

Sengupta, K. and Hitzler, P. (2014). Web ontology language
(OWL). In Encyclopedia of Social Network Analysis
and Mining, pages 2374–2378.

Technology, R. (2019). SATURN: SIL2-
Certified Fail-safe Remote I/O System Ar-
chitecture for Trains, https://www.railway-
technology.com/contractors/computer/leroy-automa
tion/pressreleases/presssaturn-certified-fail-safe/ .

Tueno, S., Frappier, M., Laleau, R., Mammar, A., and Bar-
radas, H. R. (2018). The Generic SysML/KAOS Do-
main Metamodel. ArXiv e-prints, cs.SE, 1811.04732.

Tueno, S., Laleau, R., Frappier, M., and Mammar, A.
(2019). Event-B specification of the updated trans-
lation rules from ontology-based domain models
to B System specifications, https://github.com/
anonym21/SysML KAOS Domain Model Parser/bl
ob/master/SysMLKAOSNewDomainModelRulesFor
malisation 20190301.zip.

Tueno, S., Laleau, R., Mammar, A., and Frappier, M.
(2017a). Formal Representation of SysML/KAOS
Domain Models . ArXiv e-prints, cs.SE, 1712.07406.

Tueno, S., Laleau, R., Mammar, A., and Frappier,
M. (2017b). SysML/KAOS Domain Model-
ing Tool, https://github.com/anonym21/SysML
KAOS Domain Model Parser.

Tueno, S., Laleau, R., Mammar, A., and Frappier, M.
(2017c). The SysML/KAOS Domain Modeling Ap-
proach. ArXiv e-prints, cs.SE, 1710.00903.

Tueno, S., Laleau, R., Mammar, A., and Frappier, M.
(2017d). Towards using ontologies for domain model-
ing within the SysML/KAOS approach. In RE Work-
shops, pages 1–5. IEEE Computer Society.

van Lamsweerde, A. (2009). Requirements Engineering -
From System Goals to UML Models to Software Spec-
ifications. Wiley.

A Formal Requirements Modeling Approach: Application to Rail Communication

177

