
Situation-Aware Management of Cyber-Physical Systems

Kálmán Képes, Uwe Breitenbücher and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

Keywords: Application Management, Cyber-Physical System, Situation-Aware System, TOSCA.

Abstract: The current trend of connecting the physical world with the so-called cyber world resulted in paradigms such
as the Internet of Things or the more general paradigm of Cyber-Physical Systems. The wide range of do-
mains applicable results in a heterogeneous landscape of software and hardware solutions. To benefit of the
paradigm, developers must be able to integrate different solutions from a range of different domains. How-
ever, these systems must therefore be able to change components, configurations and environments, hence, be
adaptable at runtime. We present an approach that is based on the combination of Situation-Aware Adaptation
concepts and Deployment Models. The general idea is to start processes that can change application structure
and configuration when a certain situation in the context of applications occur. We validated the technical
feasibility of our approach by a prototypical implementation based on a Smart Home scenario.

1 INTRODUCTION

The current trend of connecting the physical world
with the so-called cyber world results in applica-
tions that depend on integrated software and hardware
components that created paradigms such as the Inter-
net of Things (IoT) (Atzori et al., 2010) or the more
general paradigm of Cyber-Physical Systems (CPS)
(Gunes et al., 2014). There is a wide range of possi-
ble scenarios for applying CPS, such as the domains
of health care (Haque et al., 2014; YIN et al., 2016),
mobility (Guo et al., 2017; Zorzi et al., 2010) and
energy (Andr et al., 2011; Shrouf and Miragliotta,
2015), that promise a seamless integration within our
everyday life. To benefit of the CPS paradigm, de-
velopers must be able to integrate different CPS solu-
tions either by using single or a whole set of software
and hardware components. A CPS that controls cer-
tain aspects of a Smart Home must be able to adapt to
changes at runtime, enabling a home owner to contin-
uously extend the system with new functionality.

However, achieving adaptability, i.e., reconfigura-
bility in CPS is a complex challenge. The chang-
ing of CPS has to regard aspects, such as, changes
to infrastructures, system configuration, components
and users, therefore CPS must be aware of their con-
text. The research field of Context-Aware Systems
(CAS) investigates the challenge of making applica-
tions aware and adaptable to their context. According
to Dey context can be defined as ”..any information

that can be used to characterize the situation of an en-
tity.” (Dey, 2001) which can be categorized into, e.g.,
spatial-, temporal-, device- and environmental context
(Knappmeyer et al., 2013). Therefor applying con-
cepts of CAS to CPS is a promising way to achieve
high adaptability, as already identified by Perera et al.
(Perera et al., 2014). The execution of management
logic at the right time in and state of the context of
a CPS enables it to be situation-aware and therefore
enable the Situation-Aware Management of CPS.

In this paper our approach is to use Manage-
ment Process that are able to execute various tasks,
such as, storing backups, scale up or update compo-
nents. These processes are combined with situations
(Häussermann et al., 2010; Wieland et al., 2015) that
can occur for physical or virtual ’things’ and are ob-
served in separated applications with the sole purpose
of the observing situations occurring to things. Based
on the occurred situations it is possible to execute
logic at runtime, therefore, enabling Situation-Aware
Management of running CPS applications. We proto-
typically implemented our approach in the language
TOSCA with a Smart Home scenario.

This paper is structured as follows: In Section 2
we describe a motivating scenario and background.
We describe our approach on integrating Situations
and Management Processes in Section 3. Section 4
describes our prototypical implementation of the ap-
proach. Related work is discussed in Section 5. We
conclude and outline future work in Section 6.

Képes, K., Breitenbücher, U. and Leymann, F.
Situation-Aware Management of Cyber-Physical Systems.
DOI: 10.5220/0007799505510560
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 551-560
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

551



Light	Control
Version:	1.0

..0
11
0…

Update	Light	Control	
to new Version

Update	only when the
update	files are available

Update	when the device
has enough energy

Update	only when the
owner is not	at	home

IoT Device

Light	Control
Version:	1.1

IoT Device

..and..

..and..

Figure 1: Motivating example scenario, depicting the need for CPS to adapt according to the current context.

2 MOTIVATION &
BACKGROUND

This section describes our motivational scenario for
Situation-Aware Management of CPS and a short
overview of the SitOPT project that researched the
adaptation of Workflows based on situations.

In industry and research the current trend of in-
tegrating physical entities that are not in the do-
main of IT with software components emerged to
be paradigms such as IoT (Atzori et al., 2010;
Gubbi et al., 2013) or the more general paradigm of
CPS (Gunes et al., 2014). These paradigms are at the
core a combination of software and hardware systems
that monitor their physical and virtual environment
based on sensors and act with the help of actuators
connected. There is a wide range of scenarios to ap-
ply CPS, such as, healthcare (Haque et al., 2014; YIN
et al., 2016), mobility (Guo et al., 2017; Zorzi et al.,
2010) and energy (Andr et al., 2011; Shrouf and Mi-
ragliotta, 2015). Each system operates in a different
domain but can overlap, e.g., a healthcare application
to monitor high-risk patients can utilize mobility solu-
tions to call an ambulance. Therefore, the integration
of different CPS, hence, the combination of domains
yields great benefits but is also one of the main chal-
lenges of CPS (Gunes et al., 2014), as with each com-
bination these systems get more complex, error-prone
and harder to maintain. The Reconfigurability (Gunes
et al., 2014) of these systems must ensure that they
can adapt themselves to changing requirements, envi-
ronments and components at runtime. For example, a
change on requirements regarding performance may
need to scale up certain components, a change in the
environment would start reconfiguration of the net-
work, while a change of the components themselves,
such as a new version, could change the configuration
of the overall system. Therefore designing CPS in a
context-aware manner (Perera et al., 2014) to enable
such adaptations (Muccini et al., 2016) is a promis-
ing direction. According to the widely used defini-
tion by Dey context can be defined as ”..any informa-
tion that can be used to characterize the situation of
an entity.” (Dey, 2001), therefore a plethora of differ-
ent data sets can be used to describe the situations in
the context of a CPS, such, as location, environment,

people, devices and activities, all with their describing
attributes such as GPS coordinates, the type of envi-
ronment, the roles of users, the capabilities of devices
and running processes. In Figure 1 we depict a Smart
Home scenario that needs an approach for Situation-
Aware Management. A running CPS application run-
ning on a local device monitors movement in rooms
and turns on light if movement is detected (See mid-
dle in Figure 1), therefore controlling the energy con-
sumption. This system can may need update proce-
dures as the Light Control application must enable the
connection to new light systems or patch open secu-
rity issues. However, the update, i.e., the adaptation
of such a system should be achieved preferably in an
autonomous manner and not interrupt the function-
ality when it is needed, e.g., updating when a user
wants use functionality will disrupt the availability,
thus, reduce customer satisfaction. Therefore, the up-
date should only be started when a system owner is
not at home, the device has enough energy to exe-
cute the update and still be able to run the application
for an appropriate amount of time; and an update is
available on the internet (See right hand side in Figure
1). This means a management system must be able
to monitor different entities and their situations, such
as, the location of people, the battery levels of devices
and updates files on servers. To detect situations, con-
text data combined with management operations must
be incorporated which is a complex and error-prone
task, as developers have to define fine-grained states
in context and complex management tasks.

To cope with the challenge of modeling appli-
cations to be able to adapt to context the SitOPT
(Wieland et al., 2015) project developed the concept
of Situation-Aware Workflows. In SitOPT the basic
concept for context was enhanced to so-called Situa-
tions modeled within Situation Templates, a modeling
concept to enable the modeling of situations that oc-
cured to so-called Things (Häussermann et al., 2010;
Hirmer et al., 2017). This abstraction allows modelers
to define arbitrary situations for physical and virtual
entities which encapsulate low-level context informa-
tion and therefore ease the modeling of Context-, i.e.,
Situation-aware applications or the management of
applications, on which our approach is based on.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

552



Situation	Detection Deployment Models

Situation-Aware	
Management	Process Models

Deployment &	Situation-Aware	
Management	System

Situation	Detection Layer

Situation-Aware	Management	Layer

2b

3b

2c Application Instance

Situation	Detection Instances

Modeling	 Runtime &	Management

1

3a

3c

..0
11
0…

Deployment
Model

..0
11
0…

Update	Process
<… …

Update	Process
<… …

Update	Process
<… …

2a

< …

Application Package

✔
✗

Figure 2: Overview of our Situation-Aware Deployment and Management System enabling Situation-Aware Management of
applications.

3 SITUATION-AWARE
MANAGEMENT

In this section we describe an overview of our ap-
proach to enable Situation-Aware Application Man-
agement in Subsection 3.1, a detailed description of
the modeling concepts in Subsection 3.2 and runtime
aspects in Subsection 3.3.

3.1 Concept Overview

In the following we give an overview of our approach
depicted in Figure 2. The basis are Application
Packages (See 1 in Figure 2) that contain a Deploy-
ment Model, so-called Situation-Aware Management
Process Models and Situation Detection Deployment
Models. A Deployment Model specifies the structure
of applications, e.g., the software-, hardware compo-
nents and relations among each other. Additionally,
the Situation-Aware Management Process Models de-
fine the possible tasks on an application instance, e.g.,
to backup the contents of state-full components, up-
date components to new versions or scale up parts of
the application. These processes are annotated with
Situation-Aware Process Triggers that specify a cer-
tain set of situations that must hold to start a process,
e.g., when an user is not at home, a device has enough
energy or there is an update available. The second part
of an application are Situation Detection Deployment
Models that encapsulate the detection of certain situa-
tions. Such a model is another Deployment Model, as
the applications’ Deployment Model itself, but speci-
fies a utility application that is able to detect the spec-
ified situations, e.g., an instance of SitOPT Middle-
ware (Wieland et al., 2015) with suitable Situation
Templates, a Python application reading the battery

levels on a Raspberry Pi or a simple Cron job check-
ing for software updates on the Internet. A Situation
Detection Deployment Model therefore specifies the
kinds of situations it can detect, these situations are
referenced by Situation-Aware Management Process
Models within the Situation-Aware Process Triggers.

After having modeled the Deployment Model,
Processes and necessary Situation Detection Deploy-
ment Models the complete Application Package is up-
loaded to the Deployment & Situation-Aware Man-
agement System (See 2a in Figure 2). The system is
responsible for creating instances from the given De-
ployment Model and Situation Detection Deployment
Models by installing, configure and starting the mod-
eled software components according to their specifi-
cation, e.g., installing necessary packages, uploading
and starting Python scripts on a Raspberry Pi. This
deployment process starts with the creation Situation
Detection Deployment Model instances, which is a
mandatory to be started first as the detection of situa-
tions must be available (See 2b in Figure 2) before an
instance of an application can be created (See Subsec-
tion 3.2 for more details). After instances of Situation
Detection Deployment Models are available users can
create instances of the application itself (See 2c in
Figure 2), by requesting the system to install, con-
figure and start software components specified within
the applications’ Deployment Model. Additionally, to
creating such instances, the attached Situation-Aware
Management Process Models deployed within the de-
ployment system are bound against the situations de-
tected by the system and therefore creating an in-
stance of a Situation-Aware Process Trigger that will
start a process attached to it when the specified situa-
tions occur, i.e., are active.

Situation-Aware Management of Cyber-Physical Systems

553



<

Situation-Aware	Application InstanceSituation	Recognition	Instance

Deployment &	
Situation-Aware	Management	

System

Situation	Description
SituationId:	@Runtime
Situation	Template:	50Energy
Thing	Ids:	@Runtime
Thing	Types:	Raspberry Pi

Situation	Description
SituationId:	@Runtime
Situation	Template:	50Energy
Thing	Ids:	@Runtime
Thing	Types:	Raspberry Pi

Situation	Description
ID:	[SetByRuntime]
Situation	Id:	[SetByRuntime]
Situation	Type:	50Energy
Thing	Ids:	[SetByRuntime]
Thing	Types:	Raspberry Pi

Situation-Aware	Process Trigger
ID:	[SetByRuntime]
Process ID:	UpdateProcess
Single	Instance:	true/false
Situation	Descriptions:	[BoundAtRuntime]

✔
✗

Figure 3: Modeling details of a Situation Detection Deployment Models and Situation-Aware Management Process Models.

The runtime aspects of the system are in gen-
eral the following: (i) the running Situation Detection
Model Instances are continuously monitoring their re-
spective situations and send the current state to the
Situation Detection Layer of the system (See 3a in
Figure 2). As the situations are referenced within
Situation-Aware Process Triggers a change of a sit-
uation state activates such a trigger and therefore
starts an instance of the respective Management Pro-
cess (See 3b in Figure 2). These Management Pro-
cesses are invoked within the Situation-Aware Man-
agement Layer and interact with the running applica-
tion to achieve the specified management tasks, such
as, backing up, scale up and updating software com-
ponents (See 3c in Figure 2)

3.2 Modeling based on Situations

In the following we describe the modeling of appli-
cations and their Situation-Aware Management Pro-
cesses of our approach in detail (See Figure 3).

A Situation Recognition Deployment Model de-
scribes an application that enables to observe situa-
tions of relevant entities in the context of a system.
The recognized situations are exposed in so-called
Situation Descriptions (See left-hand side in Figure
3). A Situation Description contains a unique identi-
fier for a single specific Situation Type (e.g. Situation
Template in SitOPT) and also a set of unique identi-
fiers for Thing Types. While a Situation Type speci-
fies what kind of situation the Situation Recognition
Model is able to observe, the set of Thing Types spec-
ifies what kind of things, e.g., a sensor, Raspberry Pi
or people, are needed to observe the situation. A Situ-
ation Description basically defines what kind of situa-
tion can be detected by a Situation Detection Deploy-
ment Model. While Situation- and Thing Types are
used to define the type of situations and things at run-

time a description additionally specifies the runtime
identifier of a situation as a Situation Id and for things
a set of Thing Ids (e.g. a MAC address of a Pi)for
which a situation detection is executed, i.e., a Situa-
tion Description is always bound against a concrete
set of physical or virtual objects. When an applica-
tion is deployed, each Situation Reference is bound
against a concrete set of things and therefore a situ-
ation detection is started. The binding of things and
situation against a reference can be achieved by differ-
ent methods such as binding by an input value from
the runtime at instantiation time of applications (indi-
cated by an [SetByRuntime] for SituationId and Thing
Ids in Situation Descriptions) or methods that try to
automate the binding such as the work of Hirmer et
al. (Hirmer et al., 2017).

To enable the triggering of processes we de-
fine Situation-Aware Process Triggers that model the
binding between observed situations and management
logic (See right-hand side in Figure 3). This binding
is based on the references to Situation Descriptions
and a Management Process used by Situation-Aware
Process Triggers. A Situation-Aware Process Trigger
has at least one reference to a Situation Description
and exactly one reference to a Management Process.
At runtime a set of referenced situations is evaluated
in a conjunction, i.e., all of the observed situations are
interpreted as a binary value which are then evaluated
with an AND-function over the values.

To define on which Management Process is started
we define the Process ID attribute (See right-hand
side in Figure 3) on Situation-Aware Process Triggers.
A Process ID references a Management Process by
its identifier inside its application package. As there
are different management tasks to be executed some
may influence the availability of an application, e.g.,
a backup, update or test of an application component
may directly influence the performance of the overall

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

554



Situation	Detection Layer

Situation-Aware	
Management	Layer

Fetch new
Version

Install
new Version

Update		
Relations

……

v1.0

v1.1

Repository,..

v0.1 v2.1

v1.1
v1.1

1

2 3

✔

✗

Figure 4: Details of adapting an application instance by Management Process in a Situation-Aware manner.

application. To control the execution of multiple in-
stances of Management Process, e.g., because the sit-
uations change often and force the triggering of pro-
cesses, we define the Single Instance attribute for Pro-
cess References. This forces the runtime to allow the
execution of a trigger only when there is no instance
of a Management Process already running, enabling
to control the number of executions of a trigger.

3.3 Using Situations at Runtime

In this subsection we describe the runtime aspects
(See Figure 4), such as, registration of situations
at the Situation Detection Layer, the observation by
Situation-Aware Process Triggers and how Manage-
ment Processes are invoked and adapt a running ap-
plication. Before the Situation-Aware Management
of applications is possible the Situation Recognition
Deployment Models must be deployed and instanti-
ated (See 1 in Figure 4), i.e., the Deployment and
Situation-Aware Management System creates an in-
stance of the models by creating, configuring and
starting components defined inside the Situation De-
tection Deployment Models, e.g., installing packages
and applications on a Raspberry Pi. However, the
components that are responsible for the detection of
the situations are configured to be bound against the
Situation Detection Layer of the system to enable the
observation of the current state of the defined situa-
tions. Note, that the binding between the Situation
Detection Components of these Deployment Models
must be able to communicate with the Situation De-
tection Layer, i.e., these detection components must
use the available protocols, data formats and a have
network connection at runtime, which in different sce-
narios may be a challenging technical issue, e.g., a
pulling protocol from the cloud inside a Smart Home.
Another aspect of the instantiation of Situation De-
tection Deployment Models is the binding of concrete

things. The used identifiers must be unique for each
thing observed, e.g., a MAC address and credentials
identifying a Pi, a URI that specifies a software arti-
fact, a name and birth date for persons. These identi-
fiers can be given as input to the instantiation or use
methods such as those by Hirmer et al. and Urbieta et
al. (Hirmer et al., 2016; Urbieta et al., 2017).

After the deployment and instantiation, and
therefore starting the observation of situations, the
Situation-Aware Management Layer can use the
observed situations to bind initially and trigger
Situation-Aware Process Triggers (See 2 in Figure
4). The binding of a Situation-Aware Process Trig-
ger against concrete situations, i.e., the observation of
things and the possible situations their are in is done
at instantiation time of the application that should be
managed in a situation-aware manner. At instantia-
tion time the concrete identifiers of the needed sit-
uations that are defined by the referenced Situation
Descriptions of each Situation-Aware Process Trigger
can be given, e.g., as input to the instantiation pro-
cess or derived by more sophisticated methods such
as semantically binding the situations to the applica-
tion. After binding Situation-Aware Process Triggers
to concrete situations the Situation-Aware Manage-
ment Layer is responsible for observing the situations
with the help of the Situation Detection Layer an fire
triggers as specified, i.e., a Situation-Aware Process
Trigger only starts a process if all of its situations are
active. This means if a Situation-Aware Process Trig-
ger is specified to observe, as in our motivational sce-
nario, the availability of an update, of enough energy
and users are not present, it will only trigger the up-
date process when all of the situations are active.

The last part enabling the Situation-Aware Man-
agement of applications are Management Processes.
These are triggered by the Situation-Aware Pro-
cess Triggers that are actively observed inside the
Situation-Aware Management Layer. A Management

Situation-Aware Management of Cyber-Physical Systems

555



Apache	ODE

Situation	API

Management	Bus

SitOPT
Situation Handler

Situations….

Raspbian

Python		App

Pi

Light

Fetch new
Version

Install
new Version

Update		
Relations

Pi

Energy
Detector

User	
Detector

OpenTOSCA Runtime
Situation-Aware	Management	Layer

Situation	
Detection
Layer

Situation	
API

OT	
Runtime

Pi

Raspbian

Python	App Light

Energy Sit

User	Sit

…
BPEL

Fetch.. Install.. Update.. …
TOSCA

V1.1

Update	Sit WineryUpdate	
Detector Winery

….

Situation	Detection Deployment Model TOSCA

…

Deployment Model

Situation-Aware	Management	Processmodels

…

TOSCA	Extension

Figure 5: Overview of our prototypical implementation within the OpenTOSCA Ecosystem.

Process can implement any kind of management task
in any kind of language that is able to alter the con-
figuration of applications at runtime. We propose the
use of Workflow Technology that is proven in indus-
try enabling properties such as transactional execution
and compensation, parallel execution, recoverability,
error handling or traceability (Leymann and Roller,
2000). For example, the update process of our mo-
tivational example can fetch the newest version of a
component, install it and reconfigure needed compo-
nent relations of application (See 3 in Figure 4).

4 PROTOTYPICAL
IMPLEMENTATION

In this section we describe our prototypical im-
plementation based on the OpenTOSCA Ecosys-
tem(Binz et al., 2013)1 enabling the modeling and
deployment of applications based on the language
TOSCA(OASIS, 2013b; OASIS, 2013a; OASIS,
2015), which was originally created for Cloud Appli-
cations but also was used for IoT applications (Franco
et al., 2017).

The motivating scenario was prototypical imple-
mented based on different Python scripts that are de-
ployed and started on a single Raspberry Pi (See up-
per and lower left-hand side in Figure 5). For the
Light Control application we used a simple script that
can periodically switch a power socket On and Off
that was connected to a light. The Energy Moni-
toring Python application was prototypically imple-
mented by checking whether the Pi is connected to a
power outlet which implies that there is enough en-

1https://www.github.com/OpenTOSCA/

ergy, hence, over 50%. To check the situation that
there is an update file available a Python script contin-
uously checked a repository of OpenTOSCA Winery2

whether an archive with a new version of the Light
Control is available. The AtHome check was simu-
lated by altering the situations state periodically every
minute, we plan to implement this situation recog-
nition with real GPS values received from a Smart-
phone. The Update Process was implemented in the
workflow language BPEL, which would check for the
latest version of the light controlling Python script,
fetch it, upload it to the Raspberry Pi and exchange it
with the old script.

After implementing the necessary scripts to con-
trol the light and observe the necessary situations
we modeled a TOSCA application for the situation
recognitioning and application itself and extended
the Runtime OpenTOSCA Container3 with the Situ-
ation Detection Layer and Situation-Aware Manage-
ment Layer to be able to hande the applications. The
TOSCA applications used newly created generic Sit-
uation Detection Component as a TOSCA Node Type
(i.e. Component Type) that can register Situations
based on Situation Description and modeled proper-
ties such Situation Type, Thing Types, Situation Id,
Thing Ids and receive an endpoint to the Situation De-
tection Layer. Each Python Script is able to receive
endpoint data from the modeled Situation API com-
ponent inside their deployment models (See black-
bock in the left of Figure 5) and would receive the
endpoint to send the current state of the situation they
are observing. The Situation Detection Layer was im-
plemented by the Situation API which allows to store
Situation Descriptions and manipulate the state of the

2https://projects.eclipse.org/projects/soa.winery
3http://opentosca.github.io/container

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

556



registered situations (See middle in Figure 5). To en-
able the triggering of processes based on situations we
implemented the Situation-Aware Management Layer
on top of the already available Management Bus of
the runtime which already could invoke Management
Process implemented in BPEL. The Situation-Aware
Management Layer was implemented by integrating
the already available Management Bus of the Open-
TOSCA Runtime with the Situation Handler compo-
nent of the SitOPT project (Wieland et al., 2015) (See
middle in Figure 5). In SitOPT the Situation Han-
dler was responsible for enabling the registration of
notifications when situations changed or invoke ser-
vices based on situations, i.e., invoking different ser-
vice implementations when different situations were
active. Based on this integration the Situation-Aware
Process Triggers, which were mapped as TOSCA ap-
plication properties, are registered as notifications to
the Management Bus of OpenTOSCA which can in-
voke the processes specified in the TOSCA applica-
tions. These processes are implemented in the work-
flow language BPEL (OASIS, 2007) and are deployed
on and executed in the workflow engine Apache ODE
(See upper right in Figure 5). The necessary runtime
information, such as, Situation Ids are requested by
the extended OpenTOSCA Runtime when an applica-
tion is instantiated by reading it from the input.

5 RELATED WORK

In this section we present related work on the domains
of CAS (Baldauf et al., 2007), application provision-
ing and management, and adaptation. There are mul-
tiple surveys on adaptability (Mens et al., 2016; Da
et al., 2012; Kakousis et al., 2010; Muccini et al.,
2016) and describe different methods for adapting ap-
plication at runtime, but in the following we focus on
(Context-Aware) adaptation of applications.

The domain of Adaptation Systems has broad ap-
plication areas because of the wide-range of factors
that influence a system to adapt itself. According Da
et al. (Da et al., 2012) there are three types of adap-
tations: Reactive Adaptation, Evaluative Adaptation
and Adaptation for Integration. Reactive Adaptation
is used to react on changes in the environment, such
as, network changes or user preferences. Evaluative
Adaptation is the category of adaptations that influ-
ence the functionality, performance and error han-
dling of a system. The last adaptation type is called
Adaptation for Integration that tries to overcome the
issue of incompatible components of software and
hardware, e.g., by changing implementations or pro-
tocols between components. All of the three types

can be implemented based on the proposed approach
inside Management Processes.

Baldauf et al. (Baldauf et al., 2007) present
a survey about Context-Aware Systems focusing on
architectures and design principles, followed by an
overview of Context-Aware Middlewares. They in-
troduce a layered conceptional architecture that has
sensors on the lowest layers, which are read by the
next layer of data retrieval. Raw data is then passed to
the Preprocessing layer where the results are stored in
the Storage/Management Layer, that can be used by
the last layer called Application layer. Our proposed
approach can be categorized according to Baldauf et
al. as our approach has the Situation Detection Layer
and the Situation-Aware Management Layer on top.

Muccini et al. (Muccini et al., 2016) present a
Systematic Literature Review on Self-Adaptation of
CPS. They investigated the use of adaptation tech-
niques in CPS, such as, concerns, on which area these
are applied or their domains. One of the insights given
by Muccini et al. is that most approaches are used
for performance optimization and increased flexibil-
ity. Most of the techniques targeted the application
layer instead of the infrastructure. In the investigated
works the used techniques used different feedback
loop mechanisms, with MAPE (Monitor, Analyse,
Plan and Execute) functions being the most used ones.
From the found works and analysis a layered adapta-
tion model consisting out of an Application layer on
top of Context Management Layer that uses the un-
derlying Physical Layer is proposed. Our approach
can be categorized into the same layers, although we
don’t use on the MAPE technique, as used in most
approaches according to Muccini et al.

Saller et al. (Saller et al., 2013) present an ap-
proach for the context-aware adaptation of dynamic
software product lines based on extended feature
models. A feature model enables to specify a set of
features and relations among each other, e.g., a feature
is an alternative to another, a feature requires another
feature or is optional. Based on such feature models
Saller et al. extend them based on a Context Model
where a mapping between the features and context en-
tities is defined to state whether a feature can be used
under a certain context. These models are used to
adapt applications at runtime by monitoring the con-
text and adapting the currently active features. In con-
trast to our approach Saller et al. adapt the application
model directly while our approach uses Management
Process that also allow to execute management logic
that is not limited to reconfigurations of the applica-
tion but also enables tasks, such as, storing backups.

Breitenbücher et al. (Breitenbücher et al., 2015)
present an approach to enable the modeling of work-

Situation-Aware Management of Cyber-Physical Systems

557



flow models in a situation-aware manner. The basic
idea is to enable the modeling of events and areas
in the control flow of a workflow model that either
start the execution of activities or enable the execu-
tion of activities only when certain situations occured
or are active. This approach is build on so-called Sit-
uation Events and Situational Scopes. A Situation
Event is an event trigger inside a workflow model that
can be connected to other activities inside the con-
trol flow and when activated, i.e., a situation is ac-
tive, triggers the execution of the connected activities.
To enable the execution of a group of activities only
when a certain situation is active, Breitenbücher et al.
introduce Situation Scopes that enable to specify a
set of activities inside the workflow models’ control
flow. These concept enable to model workflows to
be situation-aware and therefore enable modelers to
add adaptation logic directly into their models. The
main difference to our approach is that the Situation-
Aware Adaptation is focused on the control-flow of
applications, while our approach is focused on adapt-
ing application structures. A combination of both
approaches could make the Management Processes
within our approach adapt at runtime.

The ACCADA framework introduced by Gui et al.
(Gui et al., 2009) targets the context-aware deploy-
ment and adaptation of software components. These
software components are monitored in a continuous
loop by an Event Monitor that informs a Structure
Modeler responsible for composing the different com-
ponents in the system on a functional level, such as,
binding the components according to their dependen-
cies. As the Structure Modeler is only responsible
for composing the components based on this func-
tional level a set of Context-specific Modelers are
responsible for adapting the structure of the compo-
nents and relations based specific context-related con-
straints. These Context-specific Modelers build there-
for Context-Specific Architecture/Deployment Mod-
els based on the current context. After determining
such a context-specific model these are send to an
Adaptation Actuator that is responsible for changing
the current system structure according to the deter-
mined model. Our approach is similar to the approach
of ACCADA in the way that we adapt the application
structure based on changes in the environment, but
additionally we enable to execute Management Pro-
cess enabling activities, such as, backing up data in
the cloud instead of only enabling structural changes
of software components.

Anthony et al. (Anthony et al., 2009) present
their Context-Aware Adaptation techniques in their
system called DySCAS. The conceptual parts of their
approach is based on so-called Decision Points that

are embedded in the software components and config-
ured by loading Policies into the components. These
policies are responsible for subscribing to context in-
formation and adapt the software component they are
loaded in by using a sandbox environment inside the
components themselves. The supporting DySCAS
Middleware is responsible for monitoring and man-
aging the overall system while the software compo-
nents themselves are responsible for the reconfigura-
tion based on context. The main difference to our
approach is the point of adaptation while, DySCAS
adapts single components our approach enables to
adapt the whole structure of the system, and addi-
tionally, doesn’t force the software components to be
altered to enable the loading of policies, i.e., our ap-
proach allows the use of Off-the-Shelve components.

La et al. (La and Kim, 2010) present a frame-
work for the context-aware provisioning of services
for mobile devices. The main goal of their frame-
work is to adapt the binding between mobile appli-
cations and services on the cloud based on the current
context of the user and their mobile device. In their
framework a Context Collector running on a mobile
device gathers data to determine the current context,
such as, device, service or user preference context.
When the context changes the framework from La et
al. adapts the binding of a mobile application and the
used cloud services by either simply rebinding it or
using different adapters to adapt the binding to the
used services. These adaptation are needed for ex-
ample when the QoS of the different services change
or certain functionalities are not available by a service
in the current context, and therefor must be extended
by adapters. In contrast to our approach the presented
framework is only used to adapt the binding between
components based on the current context.

Alcarria et al. (Alcarria et al., 2017) present an
approach to enable Context-Aware CPS to enable a
seamless service provisioning. This is achieved by
modeling an abstract process, e.g., in BPEL (OA-
SIS, 2007), that contain activities invoking various
services based on their service description. The se-
lection of a concrete service running on a device is
based on situations in the context of the possible de-
vices and therefore enables the Context-Aware Adap-
tation of the running process. In contrast to our ap-
proach Alcarria et al. focus on the adaptation of Man-
agement Processes itself, while our approach focuses
on executing processes at the right time.

Bucchiarone et al. (Bucchiarone et al., 2012)
present an approach to enable the dynamic adaptation
of context-aware business processes. The approach
uses a high-level business process where its abstract
activities are annotated with goals, and based on

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

558



these goals concrete and finer-grained business pro-
cess fragments are selected in a context-aware manner
to implement the abstract activities. This approach
allows even the integration between lower-level frag-
ments as these can also contain abstract activities that
can be implemented by a fragment at runtime through
a context-aware selection. In contrast to our approach
it is possible to generate process from the fragments
to implement various management tasks based on de-
fined goals, while we reused already available Man-
agement Processes.

6 CONCLUSION

We presented an approach to enable the Situation-
Aware Management of Cyber-Physical Systems. The
basic idea of the approach was to reuse concepts of
Context-Aware Systems and Management Processes
enabling processes to be executed when certain situa-
tions occur inside the context of an application. Situ-
ations encapsulate low-level context data into higher
level knowledge, easing the modeling of Context-
Aware, i.e., Situation-Aware Systems as fine-grained
states inside the application context don’t need to be
specified on the application level. The high level sit-
uations are observed by instances Situation Detec-
tion Deployment Models to recognize situations in the
context of applications and making the information
available to Situation Detection Layer of the Deploy-
ment & Situation-Aware Management System. In
the system these situations are observed by Situation-
Aware Process Triggers that are observed and fired
inside the Situation-Aware Management Layer. A
Situation-Aware Process Trigger references a certain
set of situations that it reacts to when situations are
either active or not. When the set of situations are
in a state that fit the specification of a Situation-
Aware Process Trigger a referenced Management Pro-
cess is started. These Mangement Processes are bun-
dled within the Application Packages and are able
to change the structure, configuration and execute
mangement tasks of the application at runtime, there-
fore implementing a wide range of management func-
tions. Hence, these processes enable the adaptation
of applications at runtime and with the combination
of the Situation-Aware Trigger are executed in certain
situations, hence, enable the Situation-Aware Man-
agement of applications.

In the future we want to extend the presented ap-
proach with concepts of timing and compensation,
e.g., to predict when a situation will change and c
changes of a Management Process. To properly adapt
a CPS the role of time is crucial as certain situa-

tions can change often and therefore starting Mange-
ment Processes and their compensation can lead to
unwanted errors, such as, aborting a flashing process
of an embedded system. Therefore incorporating the
prediction of situations, i.e., predicting when a situa-
tions occurs or not can be beneficial to a more timely
execution of Management Processes.

ACKNOWLEDGEMENT

This work was funded by the DFG project DiStOPT
(252975529).

REFERENCES

Alcarria, R., Bordel, B., and Jara, A. (2017). Flexible ser-
vice provision in context-aware cyber-physical sys-
tems. In International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing,
pages 873–883. Springer.

Andr, C., Quijano, N., and Mojica-nava, E. (2011). A Sur-
vey on Cyber Physical Energy Systems and their Ap-
plications on Smart Grids. 2011 IEEE PES Confer-
ence on Innovative Smart Grid Technologies (ISGT
Latin America).

Anthony, R., Chen, D., Pelc, M., Persson, M., and
Torngren, M. (2009). Context-aware adaptation
in DySCAS. Communications, 19(Context-Aware
Adaptation Mechanism for Pervasive and Ubiquitous
Services (CAMPUS)).

Atzori, L., Iera, A., and Morabito, G. (2010). The Internet
of Things: A survey. Computer Networks.

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A sur-
vey on context-aware systems. International Journal
of Ad Hoc and Ubiquitous Computing.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,
F., Nowak, A., and Wagner, S. (2013). OpenTOSCA
- A Runtime for TOSCA-based Cloud Applications.
In Proceedings of the 11th International Conference
on Service-Oriented Computing (ICSOC 2013), pages
692–695. Springer.

Breitenbücher, U., Hirmer, P., Képes, K., Kopp, O., Ley-
mann, F., and Wieland, M. (2015). A situation-aware
workflow modelling extension. In Proceedings of the
17th International Conference on Information Inte-
gration and Web-based Applications & Services, ii-
WAS ’15, pages 64:1–64:7, New York, NY, USA.
ACM.

Bucchiarone, A., Marconi, A., Pistore, M., and Raik, H.
(2012). Dynamic adaptation of fragment-based and
context-aware business processes. Proceedings - 2012
IEEE 19th International Conference on Web Services,
ICWS 2012, pages 33–41.

Da, K., Dalmau, M., and Roose, P. (2012). A Survey of
Adaptation Systems. International Journal on Inter-
net and Distributed Computing Systems, 2(1):1–18.

Situation-Aware Management of Cyber-Physical Systems

559



Dey, A. (2001). Understanding and using context. Personal
and ubiquitous computing, 5(1):4–7.

Franco, A. C., Breitenbücher, U., Hirmer, P., Képes, K.,
Kopp, O., Leymann, F., Mitschang, B., and Steinke,
R. (2017). Internet of Things Out of the Box : Using
TOSCA for Automating the Deployment of IoT Envi-
ronments. Proceedings of the 7th International Con-
ference on Cloud Computing and Services Science.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M.
(2013). Internet of Things (IoT): A vision, architec-
tural elements, and future directions. Future Genera-
tion Computer Systems.

Gui, N., De Florio, V., Sun, H., and Blondia, C. (2009). AC-
CADA: A framework for continuous context-aware
deployment and adaptation. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 5873 LNCS:325–340.

Gunes, V., Peter, S., Givargis, T., and Vahid, F. (2014). A
survey on concepts, applications, and challenges in
cyber-physical systems. KSII Transactions on Inter-
net and Information Systems.

Guo, Y., Hu, X., Hu, B., Cheng, J., Zhou, M., and Kwok, R.
Y. K. (2017). Mobile Cyber Physical Systems: Cur-
rent Challenges and Future Networking Applications.
IEEE Access, XX(c):1–1.

Haque, S. A., Aziz, S. M., and Rahman, M. (2014). Re-
view of cyber-physical system in healthcare. In-
ternational Journal of Distributed Sensor Networks,
10(4):217415.

Häussermann, K., Hubig, C., Levi, P., Leymann, F.,
Siemoneit, O., Wieland, M., and Zweigle, O. (2010).
Understanding and Designing Situation-Aware Mo-
bile and Ubiquitous Computing Systems. World
Academy of Science, Engineering & Technology.

Hirmer, P., Breitenbücher, U., da Silva, A. C. F., Képes, K.,
Mitschang, B., and Wieland, M. (2016). Automating
the Provisioning and Configuration of Devices in the
Internet of Things. CSIMQ, 9:28–43.

Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Bre-
itenbücher, U., Sáez, S. G., and Leymann, F. (2017).
Situation recognition and handling based on executing
situation templates and situation-aware workflows.
Computing, 99(2):163–181.

Kakousis, K., Paspallis, N., and Papadopoulos, G. A.
(2010). A survey of software adaptation in mobile and
ubiquitous computing. Enterprise Information Sys-
tems, 4(4):355–389.

Knappmeyer, M., Kiani, S. L., Reetz, E. S., Baker, N.,
and Tonjes, R. (2013). Survey of context provision-
ing middleware. IEEE Communications Surveys and
Tutorials, 15(3):1492–1519.

La, H. J. and Kim, S. D. (2010). A Conceptual Frame-
work for Provisioning Context-aware Mobile Cloud
Services. In 2010 IEEE 3rd International Conference
on Cloud Computing.

Leymann, F. and Roller, D. (2000). Production Workflow:
Concepts and Techniques. Prentice Hall PTR.

Mens, K., Capilla, R., Cardozo, N., and Dumas, B. (2016).
A taxonomy of context-aware software variability ap-
proaches. Companion Proceedings of the 15th Inter-

national Conference on Modularity - MODULARITY
Companion 2016, (March):119–124.

Muccini, H., Sharaf, M., and Weyns, D. (2016). Self-
adaptation for cyber-physical systems. In Proceed-
ings of the 11th International Workshop on Software
Engineering for Adaptive and Self-Managing Systems
- SEAMS ’16.

OASIS (2007). Web Services Business Process Execution
Language (WS-BPEL) Version 2.0. Organization for
the Advancement of Structured Information Standards
(OASIS).

OASIS (2013a). Topology and Orchestration Specification
for Cloud Applications (TOSCA) Primer Version 1.0.
Organization for the Advancement of Structured In-
formation Standards (OASIS).

OASIS (2013b). Topology and Orchestration Specification
for Cloud Applications (TOSCA) Version 1.0. Organi-
zation for the Advancement of Structured Information
Standards (OASIS).

OASIS (2015). TOSCA Simple Profile in YAML Version
1.0. Organization for the Advancement of Structured
Information Standards (OASIS).

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos,
D. (2014). Context Aware Computing for The Inter-
net of Things: A Survey. Communications Surveys
Tutorials, IEEE, 16(1):414–454.

Saller, K., Lochau, M., and Reimund, I. (2013). Context-
aware DSPLs: model-based runtime adaptation for
resource-constrained systems. Proceedings of the 17th
International Software Product Line Conference co-
located workshops, pages 106–113.

Shrouf, F. and Miragliotta, G. (2015). Energy management
based on Internet of Things: Practices and framework
for adoption in production management. Journal of
Cleaner Production.

Urbieta, A., González-Beltrán, A., Ben Mokhtar, S., An-
war Hossain, M., and Capra, L. (2017). Adaptive
and context-aware service composition for IoT-based
smart cities. Future Generation Computer Systems.

Wieland, M., Schwarz, H., Breitenbücher, U., and Ley-
mann, F. (2015). Towards situation-aware adaptive
workflows: SitOPT - A general purpose situation-
aware workflow management system. In 2015 IEEE
International Conference on Pervasive Computing
and Communication Workshops, PerCom Workshops
2015.

YIN, Y., Zeng, Y., Chen, X., and Fan, Y. (2016). The inter-
net of things in healthcare: An overview. Journal of
Industrial Information Integration, 1:3 – 13.

Zorzi, M., Gluhak, A., Lange, S., and Bassi, A. (2010).
From today’s INTRAnet of things to a future INTER-
net of things: A wireless- and mobility-related view.
IEEE Wireless Communications.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

560


