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Abstract: In this paper, we introduce Transitive Semantic Relationships (TSR), a new technique for ranking 

recommendations from cold-starts in datasets with very sparse, partial labelling, by making use of semantic 

embeddings of auxiliary information, in this case, textual item descriptions. We also introduce a new dataset 

on the Isle of Wight Supply Chain (IWSC), which we use to demonstrate the new technique. We achieve a 

cold start hit rate @10 of 77% on a collection of 630 items with only 376 supply-chain supplier labels, and 

67% with only 142 supply-chain consumer labels, demonstrating a high level of performance even with 

extremely few labels in challenging cold-start scenarios. The TSR technique is generalisable to any dataset 

where items with similar description text share similar relationships and has applications in speculatively 

expanding the number of relationships in partially labelled datasets and highlighting potential items of interest 

for human review. The technique is also appropriate for use as a recommendation algorithm, either standalone 

or supporting traditional recommender systems in difficult cold-start situations. 

1 INTRODUCTION 

New Big Data recommendation systems face a high 

barrier to entry due to the large labelled data 

requirement of most existing recommendation 

techniques such as collaborative filtering and bespoke 

deep learning models such as Suglia et al., (2017). 

Obtaining this labelled data, such as user interactions 

or human judgements, is particularly problematic in 

highly specialised or commercially competitive 

domains where this labelling may not yet exist or not 

be freely available, often requiring an expensive 

expert or crowd-sourced labelling. As such, 

techniques that function well with few labels are 

highly desirable. 

The cost of labelling is highly dependent on the 

complexity of the task, specifically the time needed 

per human annotation and the expertise required. 

Snow et al., (2008) find that for tasks such as textual 

entailment and word sense disambiguation 

approximately four non-expert labels have similar 

quality to one expert label. Grady and Lease (2010) 

investigate crowdsourcing binary relevance labelling 
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tasks and find that tasks where annotators must use 

item descriptions achieve poorer accuracy and require 

greater time per judgement than tasks using titles. 

In some cases, datasets may be too large for 

comprehensive manual labelling and may only be 

viable to label by observing user behaviour, which 

requires a system able to function with very few 

labels without exclusively preferencing the already 

labelled subset of the data. Such systems can be used 

to bootstrap a recommendation platform where user 

interactions can then be observed to enhance the 

model or train an alternative model which performs 

well with many labels. This is also related to the cold-

start problem where newly added items have no past 

interaction data. 

Content based and hybrid recommender systems 

reduce the requirement for user-item interaction 

labels by making use of item content, such as 

descriptions. Many such systems rely on either 

knowledge bases and ontologies (Zhang et al., 2016), 

which do not avert the requirement of experts for new 

or commercially guarded domains, or tags and 
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categorisation (Xu et al., 2016), which requires either 

many labels or distinct groupings in the data. 

2 ISLE OF WIGHT SUPPLY 

CHAIN DATASET 

We examine the case of supply chain on the Isle of 

Wight. We introduce a new dataset for this task, 

which we name the Isle of Wight Supply Chain 

(IWSC) dataset. The data consists of varying length 

text descriptions of 630 companies on the Isle of 

Wight taken via web scraping from the websites of  

IWChamber (2018), IWTechnology (2018), and 

Marine Southeast (2018).  

HTML tags and formatting have been 

removed, but the descriptions are otherwise unaltered 

and are provided untokenized, without substitutions, 

and complete with punctuation. Some descriptions 

contain product codes, proper nouns, and other non-

dictionary words.  

Most of the descriptions are a few sentences 

describing the market role of the company, or a 

general description of the company’s activities or 

products. Several but not all the descriptions also 

contain a list of keywords, but this is included as part 

of the descriptive text and not as an isolated feature.  

The mean description length is 61 words, or 412 

characters (including whitespace). The distribution of 

description lengths is shown in Figure 1. 

 

Figure 1: Histogram of item description lengths in the 

IWSC dataset. 

The IWSC dataset is provided with two discrete 

sets of labels intended to evaluate algorithmic 

performance in different scenarios. In both cases, the 

labels are binary, directed, human judgements of 

market relatedness based on the company 

descriptions. The number and distribution of labels is 

shown in Table 1. These labels are speculative 

potential relationships, not necessarily real existing 

relationships. We choose to provide binary labels as 

real-world supply chain relationships are typically 

multi-class binary relationships. i.e. any two 

companies either are or are not in each possible type 

of supply chain relationship. 

Table 1: Labels in the IWSC dataset. 

Label Name Total 

Labels 

Labelled 

Items 

Unique 

Targets 

SL_suppliers 142 15 75 

SL_not_suppliers 563 16 120 

SL_consumers 376 17 117 

SL_not_consumers 712 16 157 

SL_competitors 82 15 49 

SL_not_competitors 396 17 99 

ES_suppliers 92 48 76 

ES_consumers 207 51 171 

ES_competitors 95 53 82 

ES_unrelated 431 75 299 

The first label set we denote IWSC-SL. It is 

comprised of the labels ‘SL_consumers’, 

‘SL_not_consumers’, ‘SL_suppliers’, 

‘SL_not_suppliers’, ‘SL_competitors, and 

‘SL_not_competitors. These labels are concentrated 

on a small number of labelled items, relating them to 

a random distribution of other items (both labelled 

and unlabelled). These labels are intended for 

evaluation in the case that we only have records for a 

small subset of items and must extrapolate from this 

to perform inferences on many unseen items. We 

refer to this scenario as “Subset Labelling” (SL). 

The second label set we denote IWSC-ES. It is 

comprised of the labels ‘ES_suppliers’, 

‘ES_consumers’, ‘ES_competitors’, and 

‘ES_unrelated’. The labels are randomly distributed 

across all labelled items with no intentional patterns 

(random pairs were selected for labelling). These 

labels are intended for evaluation in the case that 

known items have very few labels and many are 

entirely unlabelled, in contrast to common 

recommender system datasets such as Movie 

Reviews (MR) (Pang and Lee, 2004), Customer 

Reviews (CR) (Hu and Liu, 2004), and MovieLens 

(Harper and Konstan, 2015), where most items have 

many recorded interactions. While in those examples 

the labels are sparse as most possible item pairs are 

unlabelled, in our scenario, which we refer to as 

“extremely sparse” (ES) labelling, there is the 

additional condition that most items in the dataset do 

not occur in any of these pairs. 

IoTBDS 2019 - 4th International Conference on Internet of Things, Big Data and Security

186



 

Figure 2: A 2D t-SNE plot of ISWC item description 

embeddings showing labels for the SL tasks. 

Figures 2 and 3 illustrate the label distributions 

using 2d t-SNE (Maaten and Hinton, 2008) plots of 

IWSC item description embeddings generated using 

Universal Sentence Encoder (USE) (Cer et al., 2018), 

annotated with the labels from IWSC-SL and IWSC-

ES respectively. 

For the problem of effective recommendations 

from few labels, we set the four following tasks: 

1. Prediction of “SL_consumers” labels using 

IWSC-SL labels and item descriptions 

2. Prediction of “SL_suppliers” labels using IWSC-

SL labels and item descriptions 

3. Prediction of “ES_consumers” labels using 

IWSC-ES labels and item descriptions 

4. Prediction of “ES_suppliers” labels using IWSC-

ES labels and item descriptions 

These tasks could also be expressed as two multi-

class classification problems (one each for IWSC-SL 

and IWSC-ES), but in this paper we look at the four 

single-class recommendation tasks set out above.  

The full IWSC dataset is available for download 

from https://github.com/DavidRalph/TSR-Public/ 

tree/master/datasets 

3 TRANSITIVE SEMANTIC 

RELATIONSHIPS 

We introduce a novel approach to approach the 

problems of extremely sparse labelling and subset 

labelling previously described, that we call 

“Transitive Semantic Relationships” (TSR). TSR 

uses auxiliary item information for unsupervised  
   

 

Figure 3: A 2D t-SNE plot of ISWC item description 

embeddings showing labels for the ES tasks. 

comparison of items to expand the coverage of the 

few available labels. This is conceptually similar to 

other embedding based hybrid recommenders such as 

Vuurens et al. (2016) and He et al. (2017), but we 

implement a novel approach which combines item 

content embeddings with inferential logic instead of 

learned or averaged user embeddings, making it 

suitable for datasets with fewer labels and producing 

provenance that is both intuitively understandable 

and easy to visualise. 

3.1 Theory 

Transitive Semantic Relationships are based on an 

apparent transitivity property of many types of data 

items, where it is the case that items which are 

described similarly are likely to have similar 

relationships to other data items. Take for example, 

the supply chain: if company A, a steel mill and 

company B, a construction firm are known to have the 

relationship A supplies (sells to) B, it is likely that 

some other companies C, another steel mill, and D, 

another construction firm, would have a similar 

relationship. Given auxiliary information about each 

company, such as a text description of their product 

or market role, and the example relationship A->B, 

we can infer the potential relationships C->D, A->D, 

and C->B. We illustrate this example in Figure 4. 

It follows that the greater the similarity between 

an item of interest and an item in a known 

relationship, the greater confidence we can have that 

the relationship is applicable. Given some fixed 

length vector representation of the auxiliary 

information about each item, we can use cosine 
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Figure 4: Illustration of Transitive Semantic Relationships. 

similarity to measure similarity between the items. 

The vector representation should ideally capture 

semantic features of the auxiliary information that 

indicate whether the items they describe are similar in 

function in terms of the known relationship. If the 

vector representations fulfil this criterion, then the 

cosine similarity between two items is their semantic 

similarity. It then follows that we can determine the 

confidence that two items share a relationship by 

measuring the cosine similarity of the semantic vector 

for each item with another pair of items that share the 

same relationship. Cosine similarity values range 

from 0 (no similarity) to 1 (completely similar), so to 

keep confidence scores in the range 0 to 1, we take 

the sum of the similarity values over 2.  

Continuing from the prior example illustrated in 

Figure 4, if the semantic similarity of A and C is |A-

C|, and the similarity of B and D is |B-D|, we can 

calculate the confidence for each inferred relationship 

to be as shown in equations 1, 2, and 3. 
 

𝐴 → 𝐷 =
1 + |𝐵 − 𝐷|

2
    (1) 

 

𝐶 → 𝐵 =
|𝐴 − 𝐶| + 1

2
    (2) 

 

𝐶 → 𝐷 =
|𝐴 − 𝐶| + |𝐵 − 𝐷|

2
 (3) 

To further illustrate this, if C is very similar to A, 

for example |A-C|=0.8, but D was only slightly 

similar to B, |B-D|=0.2, then we can calculate A-

>D=0.6, C->B=0.9, C->D=0.5, indicating that there 

is a good chance that C could share a similar 

relationship with B as A does, but other new relations 

are unlikely. In another example, if C remains very 

similar to A, |A-C|=0.8, and we make D highly similar 

to B, |B-D|=0.7, then we calculate A->D=0.85, C-

>B=0.9, C->D=0.75, showing that while all 

relationships are likely, higher confidence scores are 

awarded when there is less uncertainty (due to 

dissimilarity with the known items). 

Taking the inverse of this TSR confidence can be 

described as the combined-cosine-distance, or more 

generally the combined-semantic-distance. When 

explaining algorithms for recommendation using 

TSR confidence, we generally use this combined 

distance metric as we consider it easier to interpret 

when results are visualised and when distance values 

are weighted. 

3.2 Application 

The previous scenarios suppose that we have already 

pre-determined the items of interest for comparison. 

However, we can extend this principle to selection of 

items for comparison, given an input item to use as a 

query. Note that this is not a query in the sense of 

traditional search engines but is auxiliary information 

for an item for which we want to find relations (e.g. 

an item description).  

First, we must make the distinction between cases 

where relationships map from one space to some 

other non-overlapping space, for example separate 

document collections, and the alternative case where 

items on either side of the relationship co-exist in the 

same space. A practical example of the former might 

be a collection of resumes and a collection of job 

adverts, while an example of the later might be 

descriptions of companies looking for supply chain 

opportunities, as in the IWSC dataset on which we 

evaluate TSR later in this paper. The TSR scoring 

does not differentiate between these two dataset 

types, but in the former case, with separate item 

collections, it is only necessary to make similarity 

comparisons between items in the same collection 

and irrespective of the total number of collections, we 

need only examine the collections featuring items on 

either end of at least one example of the relationship 

type of interest; this may be a useful filtering criteria 

in datasets featuring many types of relationships 

across many non-overlapping collections. 

Having identified the collections that are of 

interest, we can optionally apply additional filtering 

of items before similarity comparison, such as by 

using item meta-data or additional auxiliary 

information, for example, only considering recent 

information, or limiting by language or region. This 

filtering could be done to the list of known 

relationships, if, for example historical trends are not 

of interest, or could be applied to potential targets, for 

example, ignoring adverts in a different language to 

the query item. 
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The next stage is to calculate similarity between 

the query item and other items in the same collection 

which are members of relationships of the type we are 

looking to infer, items not in such relationships are 

not of interest. We then calculate the similarity 

between the query and each of these, we refer to these 

items as “similar nodes” and call the similarity for 

each S1.  

We then look at all items pointed to by the known 

relationships of each similar node, we refer to these 

collectively as “related nodes”. If the number of 

similar nodes is large we can choose to only follow 

relationships for a maximum number of similar 

nodes, preferring ones most similar to the query, in 

the results section we denote this parameter as L1. We 

then calculate the similarity between each related 

node and every other node in that space, which we 

call the “target nodes” and the similarity S2. An item 

can be both a related node and a target node, but an 

item cannot be both the query and a target node. If the 

number of target nodes is large, we can limit the 

number of comparisons in the next stage by 

considering only a maximum number of targets for 

each related node, preferring the most similar, we 

denote this parameter as L2. 

We discuss alternative scoring approaches in 

section 5.3, but a simple scoring metric equivalent to 

the pre-selected items examples in the previous 

section is to determine the score for each target node 

by finding the largest value for (S1+S2)/2 that creates 

a path to it from the query item, where S1 is the 

similarity between the query and an item in the 

query’s space (the similar node), which shares a 

relationship with an item in the target’s space (the 

related node) which is of similarity S2 to the target 

node. This scoring system ranks items by the 

minimum combined-semantic-distance from a known 

relationship of the desired type. 

In Figure 5 we show a visualised example of 

several TSR routes for a query. Due to the number of 

relationships considered for a query a 2d plot is not 

an ideal visualisation. While not shown in this 

publication, the evaluation software can also produce 

interactive 3d plots which allow inspection of 

individual routes and the relevant nodes and labels, 

allowing some insight into the behaviour of the 

scoring algorithm. 

 

Figure 5: A 2D t-SNE plot of IWSC item descriptions 

showing labelled and inferred relationships for a query. 

Each route is comprised of three lines: query node→similar 

node, similar node→related node, related node→target 

node. 

4 EVALUATION TECHNIQUES 

Various evaluation metrics are used in recommender 

system and information retrieval literature. As the 

IWSC dataset uses binary labels, and the total number 

of labels is small, we look at evaluation techniques 

which best reflect this. 

Normalised Discounted Cumulative Gain 

(NDCG) (Järvelin and Kekäläinen, 2002) is a 

common evaluation metric in information retrieval 

literature. This is a graded relevance metric which 

rewards good results occurring sooner in the results 

list, however it does not penalise highly ranked 

negative items. As binary labels have no ideal order 

for positive items, we do not consider this a suitable 

metric.  

Quantitative error metrics such as Root Mean 

Squared (RMS) error or Median Absolute Error are 

also common. Error metrics naturally favour scoring 

systems optimised to minimise loss such as learning-

to-rank algorithms and require scores to fit the same 

range as the label values. For the IWSC dataset, as the 

labels are binary, the range is 0 to 1. However, scores 

output from TSR have no guarantee of symmetric 

distribution over the possible output range and are 

typically concentrated towards high-middle values 

due to averaging similarity scores making extreme 

values uncommon. Figure 6 shows the typical score 

distribution for the standard TSR algorithm TSR-a. 

In section 5.3 we describe some alternative 

scoring algorithms with unbounded upper values. A 

scaling function can be applied after scores are 

calculated to fit them to a specific range, but this still 
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Figure 6: Histogram of item scores produced by TSR-a. 

does not guarantee the desired distribution and could 

be sensitive to outliers, such as unusually high scoring 

items, distorting error values.  

For a binary labelled dataset, it is intuitive to set 

some threshold on the rankings and produce a 

confusion matrix, and take precision (P), recall (R), 

and f1 scores. As scores are not evenly distributed, 

there is no obvious score value to use as a threshold, 

so instead we look at some number of the top ranked 

items.  

Due to the sparsity of labels in the dataset, the 

number and ratio of known positives and known 

negatives varies significantly between items and in 

many cases the number of known positives is smaller 

than typical values of K used for Precision at K. For 

this reason, we instead use R-Precision, setting the 

threshold at R, the number of true positives, and take 

the R most highly rated items to be predicted positive 

and all remaining to be predicted negative; at this 

threshold P, R, and f1 are equal. In the results section, 

we denote scores taken at this threshold as @R. A 

drawback of this approach is that we can only 

evaluate using known positives and known negatives, 

which is a minority of possible pairs in a sparse 

dataset. The difficulty of this evaluation task also 

varies with the ratio of known positives and negatives 

which is undesirable when evaluating datasets such as 

IWSC where the ratio varies greatly between items. 

Finally, we look at techniques from the literature 

on implicit feedback. Techniques for implicit 

feedback have the desirable property of allowing us 

to expand the number of unique evaluation cases by 

enabling us to use unlabelled pairs of items (which for 

a sparse dataset is most possible item pairs) as 

implicit negative feedback. We use the common 

evaluation framework used by He et al. (2017) and 

Koren (2008), where we perform leave-one-out cross 

validation by, for each item, taking one known 

positive and 100 randomly selected other items 

(excluding known positives), and judging the ranking 

algorithm by ability to rank the known positive 

highly. The typical threshold used is that the known 

positive must be in the top 10 results, this Hit Ratio 

(HR) metric is denoted as HR@10. HR@5 refers to 

the known positive being in the top 5, and HR@1 as 

it being the highest rated item. We also show the 

mean and median values for the ranks of the known 

positives across all test cases.  

It is of note that due to the random selection of 

negative items results may vary between runs. To 

ensure the results are representative we test each 

known positive against multiple random pools of 

implicit negatives. This significantly increases the 

compute time required for evaluation but minimises 

variation in scores between runs. 

Having a fixed number of items in each evaluation 

and repeating with different random sets of items 

makes this metric well suited to datasets with uneven 

label distribution such as IWSC. We also consider the 

values to be quite intuitive as the random-algorithm 

performance for any HR@n is approximately n%, 

with ideal performance always being 100%. Mean 

and median positive label rank is in the range 0 to 100.  

5 RESULTS 

We first use a neural language model to generate 

fixed length embeddings for all descriptions. In this 

study we use Universal Sentence Encoder (USE). 

This model was chosen as it shows good performance 

on a range of existing downstream tasks (Cer et al., 

2018). It is also of particular interest that this model 

was fine-tuned on the SNLI dataset (Bowman et al., 

2015), a set of sentence pairs labelled as 

contradiction, entailment, or unrelated; we speculate 

that this may require the model to learn similar 

linguistic features as are likely needed for the supply 

chain inference task as the ability to discern whether 

pairs of descriptions are entailed or contradictory is 

essential to human judgements for this task, in 

particular, in determining if companies serve similar 

supply chain roles. As the focus of this paper is in 

introducing TSR, we leave detailed investigation of 

the effects of upstream embedding models to future 

work.
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Table 2: Explicit feedback evaluation of TSR-a on the IWSC-SL tasks. 

Positive Label 
Name 

Labelled 
Items 

Positive 
Labels 

Negative 
Labels 

F1 
@R 

RMS 
Error 

Median Absolute 
Error 

SL_consumers 16 375 712 0.520 0.204 0.688 

SL_suppliers 15 142 525 0.477 0.234 0.682 

Table 3: Implicit feedback evaluation of TSR-a on the IWSC-SL tasks. 

Positive Label 
Name 

Labelled 
Items 

Positive 
Labels 

HR 
@10 

HR 
@5 

HR 
@1 

Median 
Positive Rank 

Mean Positive 
Rank 

SL_consumers 17 376 0.752 0.510 0.146 4 7.8 

SL_suppliers 15 142 0.663 0.543 0.150 4 14.0 

Table 4: Explicit feedback evaluation of TSR-a on the IWSC-ES tasks. 

Positive Label 
Name 

Labelled 
Items 

Positive 
Labels 

Negative 
Labels 

F1 
@R 

RMS 
Error 

Median Absolute 
Error 

ES_consumers 39 115 198 0.549 0.167 0.560 

ES_suppliers 46 90 259 0.350 0.177 0.572 

Table 5: Implicit feedback evaluation of TSR-a on the IWSC-ES tasks. 

Positive Label 
Name 

Labelled 
Items 

Positive 
Labels 

HR 
@10 

HR 
@5 

HR 
@1 

Median 
Positive Rank 

Mean Positive 
Rank 

ES_consumers 51 207 0.221 0.119 0.018 36 43.0 

ES_suppliers 48 92 0.197 0.129 0.055 32 47.7 

 
5.1 Results for Subset Labelled Tasks 

Table 2 and Table 3 show our results on the two 

IWSC-SL tasks introduced in section 2. In these 

experiments we used the least-combined-cosine-

distance soring metric described in section 3.2 and 

evaluate using metrics discussed in section 4. All 

experiments are cold-start scenarios where the input 

(query) item is treated as unseen, only the USE 

embedding of its description is known.  

We set the parameters L1=5 and L2=10, for this 

scoring metric the value of these parameters has little 

impact on performance as only the best routes 

contribute to scoring, but it is observable that this 

inflates the mean positive rank as items lacking good 

routes are more excluded from the results, which we 

treat as it being the worst possible rank. 

For the implicit feedback evaluations (HR and 

Positive Rank) we use one known positive, and a 

random pool of 100 not-known-positive items. We 

repeat this process 10 times for each label, using 

different random pools, and calculate the scores 

across all tests. Therefore, the number of test runs is 

always 10 times the number of positive labels. The 

number of labelled items and positive labels used in 

the implicit feedback tests is higher as we can 

additionally test items that lack any known negatives. 

Our results show good performance on the IWSC-

SL tasks, considering how few labels are available, 

achieving a hit-rate@10 of over 75%. It is notable that 

we see less than 9% worse performance on the 

SL_suppliers test despite having less than half the 

number of labels, showing that the algorithm can 

achieve good performance on labelled-subset tasks 

even when extremely few labels are available (142 

labels in a dataset of 630 items). For both IWSC-SL 

tasks the frequency of the top ranked item being the 

known positive (when competing with 100 randomly 

selected others) HR@1 appears similar and is 14-15 

times better than random. 

5.2 Results for Extra Sparse Labelling 
Tasks 

Table 4 and Table 5 show our results on the two 

IWSC-ES tasks introduced in section 2. The 

algorithm and parameters are the same as in the 

IWSC-SL tasks tests. The IWSC-ES tasks each have 

around half the number of positive labels as the 

IWSC-SL tasks, so a lower score should be expected.  

In the IWSC-ES tasks we show significantly 

worse hit-rate, but smaller median absolute error and 

RMS error. We speculate that the lack of dense 

regions in the labels, due to the extreme sparsity and 

random distribution, makes identifying a particular
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Table 6: Evaluation of alternative TSR algorithms on the IWSC SL_consumers task. 

Scoring 
Algorithm 

HR 
@10 

HR 
@5 

HR 
@1 

Median 
Positive 

Rank 

Mean 
Positive 

Rank 

F1 
@R 

RMS 
Error 

Median 
Absolute 

Error 

TSR-a 0.754 0.509 0.145 4 7.7 0.520 0.204 0.688 

TSR-a* 0.754 0.509 0.145 4 7.7 0.520 0.195 0.481 

TSR-b 0.548 0.364 0.115 8 11.5 0.541 0.12 0.319 

TSR-c 0.573 0.385 0.133 7 10.9 0.544 0.12 0.309 

TSR-d 0.565 0.373 0.124 7 11.1 0.544 0.122 0.322 

TSR-e 0.771 0.532 0.163 4 7.6 0.530 0.204 0.584 

TSR-f 0.582 0.408 0.158 7 10.5 0.549 0.146 0.456 

TSR-g 0.742 0.536 0.185 4 7.8 0.533 0.192 0.523 

TSR-h 0.767 0.538 0.152 4 7.5 0.531 0.196 0.508 

TSR-i 0.543 0.362 0.112 8 11.5 0.541 0.121 0.32 

TSR-j 0.550 0.359 0.117 8 11.6 0.541 0.12 0.318 

TSR-k 0.750 0.538 0.179 4 7.9 0.525 0.207 0.605 

TSR-l 0.723 0.529 0.189 4 8.1 0.536 0.189 0.525 

TSR-m 0.771 0.530 0.151 4 7.5 0.523 0.17 0.433 

TSR-n 0.577 0.385 0.135 7 10.7 0.541 0.121 0.32 

TSR-o 0.659 0.466 0.181 5 9.2 0.539 0.143 0.452 

TSR-p 0.758 0.533 0.158 4 7.5 0.531 0.165 0.456 

TSR-q 0.558 0.372 0.119 8 11.2 0.541 0.120 0.325 

 

known positive more difficult, but the better error 

values and F1 score indicate that the predicted scores 

are still effective for discerning good and bad results 

despite being less effective at a ranking a given good 

result highly. 

5.3 Alternative Scoring Algorithms 

The TSR-a scoring algorithm described previously, 

taking the score for a target as simply the minimum 

combined cosine similarity values over 2 (i.e. shortest 

combined cosine distance), is relatively simple to 

calculate and is both intuitive and easy to visualise 

(see Figure 5). However, as only the shortest route to 

a target is considered, it does not factor in supporting 

evidence. For example, in the case of two targets with 

highly similar shortest distances from the query, if 

one had multiple high-quality routes and the other had 

only the one short route, we would intuitively be more 

confident to recommend the target with greater 

supporting evidence. 

We test several variations of the scoring algorithm 

which boost the score when multiple good routes to 

the target are found. These approaches include 

multiplication of the score based on the number of 

routes, taking the weighted sum of the scores for each 

route, and taking the sum of scores for each route but 

increasing the significance of distance (e.g. distance 

squared or cubed). The results for some of these tests 

for the SL_consumers task are shown in Table 6 and 

a comprehensive comparison across all task is shown 

in Figure 7. As these algorithms produce scores 

outside the range 0-1, we apply a simple scaling 

algorithm shown in equation 4. 

 

𝑓(𝑠𝑖) =
𝑠𝑖 − min (𝑠)

max(𝑠) − min(𝑠)
 (4) 

 

The scaling algorithms does not modify the 

order of results but gives more score values suitable 

for error measurement. TSR-a produces score in the 

range 0-1 without scaling, but we include a scaled 

version TSR-a* for comparison, as TSR-a rarely 

gives scores close to its bounds (see Figure 6). 

We find that most of these approaches perform 

either similarly to, or significantly worse than scoring 

by only the best route as in TSR-a. The scoring 

metrics that do perform better show slight 

improvement. 

The best performing algorithm for the IWSC-

SL tests is TSR-e, where we calculate the target score 

as the sum of score for the best route and half the 

score of the second-best route. This produced an 

improvement to HR@10 of 1.7% for the 

SL_consumers task and 1.2% for SL_suppliers but 

has the disadvantage of having a score distribution 

concentrated towards middle values, as extreme 

values would require either all routes to be very poor, 

or both routes to be very good, which is less common 

than only the best route being very good or bad. This 

may account for its comparatively high error values 

as error measurements will be high even for a correct
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Figure 7: Comparison of Hit rate of alternative TSR algorithms on all four IWSC tasks. 

ordering if values are concentrated towards the mid-

range. 

Another well performing algorithm is TSR-m, 

as given in equation 5, where r is the number of routes 

to the target and d is the combined-semantic-distance 

of each route. We omit the scaling function for clarity 

as it is already given in equation 4. Scaling is applied 

once all score values have been calculated. 

 

𝑆 = ∑ (
1

𝑑𝑖(𝑖 + 1)3
)

𝑟

𝑖=0

 (5) 

 

The algorithms TSR-o and TSR-p are the same 

as TSR-m except that the exponent of the route’s 

rank, which the score is divided by, is 1 and 2 

respectively; these variations perform significantly 

worse. It is interesting that when penalising the 

contribution of additional routes, we see sub-standard 

performance when the penalty is small, but above-

standard performance when it is large. This would 

suggest that some ideal penalty function exists where 

additional routes do not overpower the normal 

scoring but still provide support in closely scored 

cases. It is possible that the best scoring penalty is a 

property of the distribution of the data and labels, and 

that the ideal penalty function may be dependent on 

the dataset. Testing of this property on other datasets, 

and alternative penalties for this dataset are left to 

future research. 

 

 

5.4 Reproducibility 

We have made available for download the full suite 

of evaluation tools and TSR implementation used in 

generating these results, along with the full set of 

experimental results and IWSC dataset at 

https://github.com/DavidRalph/TSR-Public. 

In section 5.3 we describe only the best 

performing scoring algorithms. The full 

implementation of each can be found in the publicly 

available TSR implementation. 

6 CONCLUSIONS AND FUTURE 

WORK 

We have demonstrated the Transitive Semantic 

Relationships technique as an effective 

recommendation algorithm on datasets with very few 

labels and from cold-stats. In particular we see good 

performance on the subset-labelling task of the Isle of 

Wight Supply Chain dataset also introduced in this 

paper. We show that supporting evidence in the form 

of additional high-quality routes to a target can have 

a positive impact on performance, but that the 

weighting used can have a large impact on 

performance. Additionally, we find that the inclusion 

of additional routes in the scoring can have a negative 

effect if the labels are extremely sparse and not 

concentrated. Using TSR we set the baseline 

performance on the four recommendation tasks for 

e m h p a g k l o f n d c q b j i

SL_consumers 0.77 0.77 0.77 0.76 0.75 0.74 0.75 0.72 0.66 0.58 0.58 0.57 0.57 0.56 0.55 0.55 0.54

SL_suppliers 0.68 0.67 0.67 0.66 0.66 0.66 0.65 0.61 0.55 0.44 0.44 0.43 0.42 0.40 0.37 0.36 0.34

ES_consumers 0.23 0.24 0.23 0.23 0.23 0.21 0.21 0.20 0.21 0.18 0.19 0.18 0.18 0.18 0.18 0.18 0.18
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the IWSC dataset. Our best performing algorithm 

TSR-e showing a hit-rate@10 of 77% on the 

SL_consumers task.  

The focus of this paper has been on introducing 

the TSR technique and IWSC dataset and tasks. Both 

contributions open new avenues for further 

investigation into the properties of extra sparse, and 

subset labelled datasets. Future work could examine 

the effects of different embedding models on TSR 

and prediction of supply chain competitors and test if 

different fine-tuning of these models would further 

improve results.  

Additional future work could include a 

comprehensive analysis of the performance of the 

TSR technique on other datasets and how it compares 

to or could be used in conjunction with other 

recommender systems, particularly as the number of 

labels is increased. TSR could also be applied to 

expand the number of relationships in a partially 

labelled dataset to allow the use of algorithms that 

struggle with cold starts or require many training 

examples. 
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