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Abstract: With the capability of employing virtually unlimited compute resources, the cloud evolved into an attractive
execution environment for applications from the High Performance Computing (HPC) domain. By means
of elastic scaling, compute resources can be provisioned and decommissioned at runtime. This gives rise to
a new concept in HPC: Elasticity of parallel computations. However, it is still an open research question
to which extent HPC applications can benefit from elastic scaling and how to leverage elasticity of parallel
computations. In this paper, we discuss how to address these challenges for HPC applications with dynamic
task parallelism and present TASKWORK, a cloud-aware runtime system based on our findings. TASKWORK
enables the implementation of elastic HPC applications by means of higher-level development frameworks and
solves corresponding coordination problems based on Apache ZooKeeper. For evaluation purposes, we discuss
a development framework for parallel branch-and-bound based on TASKWORK, show how to implement an
elastic HPC application, and report on measurements with respect to parallel efficiency and elastic scaling.

1 INTRODUCTION

The cloud evolved into an attractive execution en-
vironment for High Performance Computing (HPC)
workloads with benefits such as on-demand access
to compute resources and pay-per-use (Netto et al.,
2018; Galante et al., 2016). Recently, Amazon
Web Services (AWS) and Microsoft Azure introduced
new cloud offerings optimized for HPC workloads.
Whereas traditional HPC clusters rely on static re-
source assignment, cloud offerings allow applications
to scale elastically, i.e., compute resources can be pro-
visioned and decommissioned at runtime. This gives
rise to a new concept in HPC: Elasticity of parallel
computations (Rajan and Thain, 2017; Galante et al.,
2016; Da Rosa Righi et al., 2016; Haussmann et al.,
2018). By leveraging elasticity, HPC applications
benefit from fine-grained cost control per application
run. For instance, processing time and/or the qual-
ity of results can be related to costs, allowing versa-
tile optimizations at runtime (Rajan and Thain, 2017;
Haussmann et al., 2018). But this novel opportunity
comes with many challenges that require research ef-
forts on all levels of parallel systems.

During the last years, there has been a growing in-
terest to make HPC applications cloud-aware (Gupta
et al., 2016; Gupta et al., 2013b; Da Rosa Righi et al.,

2016; Rajan et al., 2011). In particular, applications
have to cope with the effects of virtualization and re-
source pooling leading to fluctuations in processing
times (Gupta et al., 2013b). Existing research also
shows how to employ elasticity for HPC applications
with simple communication and coordination patterns
(e.g., iterative-parallel workloads) (Rajan et al., 2011;
Da Rosa Righi et al., 2016). In these cases, problems
are iteratively decomposed into a set of independent
tasks, which can be farmed out for distributed com-
putation. However, it is still an open research ques-
tion to which extent other application classes from the
field of HPC can benefit from cloud-specific proper-
ties, how to leverage elasticity of parallel computa-
tions in these cases, and how to ensure cloud-aware
coordination of distributed compute resources.

In this paper, we discuss how to address these
challenges for HPC applications with dynamic task
parallelism. These applications are less sensitive
to heterogeneous processing speeds when compared
to data-intensive, tightly-coupled HPC applications
(Gupta et al., 2016; Gupta et al., 2013a), but comprise
unstructured interaction patterns and complex coor-
dination requirements. Prominent examples of this
application class include constraint satisfaction solv-
ing, graph search, n-body simulations, and raytracing
with applications in artificial intelligence, biochem-
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istry, electronic design automation, and astrophysics.
We discuss the challenges that have to be addressed
to make these applications cloud-aware and present
TASKWORK - a cloud-aware runtime system that
provides a solid foundation for implementing elas-
tic task-parallel HPC applications. In particular, we
make the following contributions:

• We present the conceptualization of a cloud-aware
runtime system for task-parallel HPC applica-
tions.

• We show how to leverage elasticity of paral-
lel computations and how to solve correspond-
ing coordination problems based on Apache
ZooKeeper1.

• We discuss a development framework for im-
plementing elastic branch-and-bound applications
with only minor effort required at the program-
ming level.

• We describe the design and implementation
of TASKWORK, an integrated runtime system
based on our findings, and report on performance
experiments in our OpenStack-based cloud envi-
ronment.

This paper is structured as follows. Sect. 2 describes
our conceptualization of a cloud-aware runtime sys-
tem for task-parallel HPC in the cloud. In Sect. 3, we
present TASKWORK - our integated runtime system
for elastic task-parallel HPC applications. We elabo-
rate on a branch-and-bound development framework
and describe its use in Sect. 4. The results of several
experiments related to parallel performance and elas-
tic scaling are presented in Sect. 5. Related work is
discussed in Sect. 6. Sect. 7 concludes this work.

2 CONCEPTUALIZATION OF A
CLOUD-AWARE RUNTIME
SYSTEM

To benefit from cloud-specific characteristics, devel-
oping elastic HPC applications is a fundamental prob-
lem that has to be solved (Galante et al., 2016). At the
core of this problem lies the required dynamic adap-
tation of parallelism. At all times, the degree of log-
ical parallelism of the application has to fit the phys-
ical parallelism given by the number of processing
units to achieve maximum efficiency. Traditionally,
the number of processing units has been considered as
static. In cloud environments, however, the number of

1https://zookeeper.apache.org.
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Figure 1: Conceptualization of a cloud-aware runtime sys-
tem that adapts the logical parallelism, handles load balanc-
ing and task migration, and thus enables elastic scaling for
task-parallel HPC applications.

processing units can be scaled at runtime by employ-
ing cloud management tooling. As a result, applica-
tions have to dynamically adapt the degree of logical
parallelism based on a dynamically changing physi-
cal parallelism. At the same time, adapting the logi-
cal parallelism and mapping the logical parallelism to
the physical parallelism incurs overhead (in form of
excess computation, communication, and idle time).
Consequently, elastic HPC applications have to con-
tinuously consider a trade-off between the perfect fit
of logical and physical parallelism on the one side and
minimizing overhead resulting from the adaptation of
logical parallelism and its mapping to the physical
parallelism on the other. Hence, ensuring elasticity
of parallel computations is a hard task as it intro-
duces new sources of overhead and thus leads to many
system-level challenges that have to be addressed to
ensure a high parallel efficiency.

Because we specifically focus on dynamic task
parallelism, the degree of logical parallelism can be
defined as the current number of tasks. We argue that
a cloud-aware runtime system is required that trans-
parently controls the parallelism of an HPC applica-
tion to ensure elastic scaling. Fig. 1 shows our con-
ceptualization of such a runtime system. It allows
developers to mark parallelism in the program, auto-
matically adapts the logical parallelism by generating
tasks whenever required, and exploits available pro-
cessing units with maximum efficiency by mapping
the logical parallelism to the physical parallelism. An
application based on such a runtime system is elas-
tically scalable: Newly added compute nodes auto-
matically receive tasks by means of load balancing
and a task migration mechanism releases compute
nodes that have been selected for decommissioning
(cf. Fig. 1). Our approach is not limited to any spe-
cific cloud management approach or tooling: Cloud
management may comprise any kind of external deci-
sion making logic (e.g., based on processing time, the
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quality of results, or costs) that finally adapts the num-
ber of processing units (i.e., the physical parallelism).
An example for such a cloud management approach
is given in (Haussmann et al., 2018), where costs are
considered to control the physical parallelism. In this
work, we focus on elasticity of parallel computations
and address related system-level challenges.

Besides elasticity, the characteristics of cloud en-
vironments lead to new architectural requirements
that have to be considered by HPC applications
(Kehrer and Blochinger, 2019). Due to virtualization
and resource pooling (leading to CPU timesharing
and memory overcommitment), fluctuations in pro-
cessing times of individual processing units are the
common case (Gupta et al., 2016). Thus, in cloud en-
vironments processing units should be coupled in a
loosely manner by employing asynchronous commu-
nication mechanisms (e.g., for load balancing). Sim-
ilarly, inter-node synchronization should be loosely
coupled while guaranteeing individual progress. A
runtime system built for the cloud has to provide
such asynchronous communication and synchroniza-
tion mechanisms thus releasing developers from deal-
ing with these low-level complexities.

In this work, we show how to leverage elasticity
for applications with dynamic task parallelism. These
applications rely on dynamic problem decomposition
and thus support the generation of tasks at runtime.
Moreover, they are ideal candidates for cloud adop-
tion because they are less sensitive to heterogeneous
processing speeds when compared to data-intensive,
tightly-coupled HPC applications (Gupta et al., 2016;
Gupta et al., 2013a).

3 TASKWORK

In this section, we present TASKWORK, our cloud-
aware runtime system for task-parallel HPC applica-
tions, designed according to the principles discussed
in Sect. 2. TASKWORK comprises several interact-
ing components that enable elasticity of parallel com-
putations (cf. A , Fig. 2) and solve corresponding
coordination problems based on ZooKeeper (cf. B ,
Fig. 2). Based on these system-level foundations,
higher-level development frameworks and program-
ming models can be built (cf. C , Fig. 2), which facil-
itate the implementation of elastic HPC applications.

TASKWORK is implemented in Java and em-
ploys distributed memory parallelism by coordinating
a set of distributed compute nodes. TASKWORK’s
components are described in the following. At first,
we briefly describe the well-known task pool execu-
tion model that we use to manage tasks. Thereafter,
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Figure 2: TASKWORK is a cloud-aware runtime system
for elastic task-parallel HPC applications. Its components
support the construction of higher-level development frame-
works and programming models.

we provide details on ZooKeeper, which we employ
to solve coordination problems. Finally, we discuss
the components of TASKWORK.

3.1 Task Pool Execution Model

The task pool execution model (Grama et al., 2003)
decouples task generation and task processing by pro-
viding a data structure that can be used to store dy-
namically generated tasks and to fetch these tasks
later for processing. The task pool execution model is
fundamental for our runtime system to implement the
concepts depicted in Fig. 1: It manages tasks gener-
ated at runtime (defining the logical parallelism) and
provides an appropriate interface for load balancing
and task migration mechanisms that enable elasticity
of parallel computations.

In general, a task pool can be implemented fol-
lowing a centralized or a distributed approach. A cen-
tralized task pool is located at a single node and ac-
cessible by all other nodes. To enable parallel pro-
cessing, tasks have to be transferred over the network.
By following this approach, there is a single instance
that has complete knowledge on the state of the sys-
tem, e.g., which node is executing which tasks. This
makes load balancing and coordination simple. How-
ever, the centralized approach becomes a sequential
bottleneck for a large number of nodes. On the other
hand, a distributed implementation leads to multiple
task pool instances, local to each node, forming a dis-
tributed task pool. The distributed task pool model de-
couples compute nodes from each other thus leading
to a highly scalable and asynchronous system. Fur-
ther, it enables local accesses to the task pool. On the
contrary, coordination becomes a non-trivial task by
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following a distributed approach because nodes only
have partial knowledge. This specifically holds in
cloud environments, where compute nodes are pro-
visioned and decommissioned at runtime.

We favor the distributed task pool model, which,
in general, provides a better scalability (Poldner and
Kuchen, 2008) and leads to an asynchronous system,
thus matching the characteristics of cloud environ-
ments. To deal with the drawbacks of the distributed
task pool model, we enhance it with scalable coor-
dination and synchronization mechanisms based on
ZooKeeper.

3.2 ZooKeeper

ZooKeeper eases the implementation of primitives for
coordination, data distribution, synchronization, and
meta data management (Hunt et al., 2010). Its in-
terface allows clients to read from and write to a
tree-based data structure (consisting of data registers
called znodes). This data structure is replicated across
a set of ZooKeeper servers. Each server accepts client
connections and executes requests in FIFO order per
client session. Additionally, the API provides so-
called watches, which enable a client to receive no-
tifications of changes without polling. ZooKeeper
guarantees writes to be atomic; read operations are
answered locally by each server leading to eventual
consistency (Hunt et al., 2010). ZooKeeper’s design
ensures both high availability of stored data and high-
performance data access.

As the cloud is a highly dynamic and distributed
execution environment, coordination primitives such
as leader election and group membership are essen-
tially required. Based on ZooKeeper, leader elec-
tion and group membership can be implemented in a
straightforward manner (Junqueira and Reed, 2013).
However, specific challenges arise in the context of
the distributed task pool model: Global variables have
to be synchronized across tasks, which imposes addi-
tional dependencies, and as tasks can be generated at
each node, a termination detection mechanism is re-
quired to detect when the computation has been com-
pleted. We argue that ZooKeeper provides the means
to compensate the missing global knowledge in the
distributed task pool model and show how to solve
these problems.

3.3 Load Balancing

Load balancing is a fundamental aspect in cloud envi-
ronments to exploit newly added compute resources
efficiently. Moreover, it is a strong requirement of
applications with dynamic task parallelism due to dy-

namic problem decomposition. Load balancing can
be accomplished by either sending tasks to other com-
pute nodes (work sharing) or by fetching tasks from
other nodes (work stealing) (Blumofe et al., 1996).
As the transferral of tasks leads to overhead we fa-
vor work (task) stealing because communication is
only required when a compute node runs idle. In
TASKWORK, load balancing is accomplished by ob-
serving changes in the local task pool. Whenever the
local task pool is empty and all worker threads are
idle, task stealing is initiated. Task stealing is an ap-
proach where idle nodes send work requests to other
nodes in the cluster. These nodes answer the request
by sending a task from their local task pool to the re-
mote node.

Because the distributed task pool model lacks
knowledge about which compute nodes are busy and
which are idling, randomized task stealing has been
proven to yield the best performance (Blumofe and
Leiserson, 1999). However, in the cloud, the number
of compute nodes changes over time. Thus, up-to-
date information on the currently available compute
nodes is required. This information is provided by
the group membership component (cf. Fig. 2). Newly
added compute nodes automatically register them-
selves in ZooKeeper. Changes are obtained by all
other compute nodes by means of ZooKeeper watches
(Hunt et al., 2010).

3.4 Task Migration

To benefit from elasticity, applications also have to
deal with the decommissioning of compute resources
at runtime. Hence, compute nodes that should be de-
commissioned have to send unfinished work to re-
maining nodes. This is ensured by the task migration
component. Whenever a compute node should be de-
commissioned, the task migration component stores
the current state of tasks being executed, stops the
worker thread, and sends all local tasks to remain-
ing nodes. To support task migration, developers sim-
ply specify an optimal interruption point in their pro-
gram. Therefore, the migrate operation can be used
to check if a task should be migrated (for an example
see Sect. 4.2). TASKWORK employs weak migra-
tion of tasks. This means that a serialized state gen-
erated from a task object is transferred across the net-
work. To facilitate the migration process, application-
specific snapshotting mechanisms can be provided by
developers.
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3.5 Termination Detection

Traditionally, distributed algorithms (wave-based or
based on parental responsibility) have been preferred
for termination detection due to their superior scala-
bility characteristics (Grama et al., 2003). However,
maintaining a ring (wave-based) or tree (parental re-
sponsibility) structure across compute nodes in the
context of an elastically scaled distributed system im-
poses significant overhead. To deal with this issue,
we propose a novel termination detection algorithm
based on ZooKeeper’s design principles.

Termination detection has to consider that tasks
are continuously generated at any time and on any
compute node in the system. However, an algorithm
can make use of the fact that new tasks are always
split from existing tasks, ultimately leading to a tree-
based task dependency structure. Our termination de-
tection algorithm employs this structure as follows:
Every task in the system maintains a list of its chil-
dren. During the lifecycle of a task, the taskID of
a child task is appended to this list when it is split
from the parent task. Moreover, we make use of a
global task list that is updated whenever a task is com-
pleted. To initialize this global task list, the taskID
of the root task is added to the list. At runtime, we
update the global task list for every completed task
considering its taskID as well as the taskIDs of all its
child tasks. Such an update procedure works as fol-
lows: Each taskID is either added to the global list if
it is not contained in the global list or removed from
the global list if it is contained. By following this up-
date procedure, termination can be deduced from an
empty global task list because all taskIDs are added
and removed exactly once: Either by an update pro-
cedure triggered after the task has been completed or
by an update procedure triggered by the completion
of the task’s parent task. To ensure that each taskID
leads to exactly two updates, TASKWORK guaran-
tees that tasks are completed exactly once. Based on
this assumption, our termination detection algorithm
ensures that the update procedure leads to exactly one
create and exactly one delete operation per taskID.

In the following, we describe our ZooKeeper-
based implementation that is comprised of two parts:
One for a coordinator that is determined with the
leader election component (cf. Algorithm 1) and one
for compute nodes (cf. Algorithm 2). The global task
list is stored in ZooKeeper and initialized with the
taskID of the root task (cf. Algorithm 1, C-1). This
is required because the root task has no parent task,
i.e., the update procedure with its taskID is triggered
only once: After the completion of the root task. At
runtime, a finite number of update operations add or

Algorithm 1: Termination Detection - Coordinator.
Task Pool, instance tp.
Application, instance app.
ZooKeeper Client, instance zk.
1: upon event <Init> do . C-0
2: if !zk.exists('/globallist') then
3: zk.create('/globallist');
4: end if
5: if !zk.exists('/txnIDs') then
6: zk.create('/txnIDs');
7: end if
8: upon event <tp, RootTaskEnqued | task> do . C-1
9: zk.getChildren('/globallist');

10: zk.create('/globallist/' + TaskID(task));
11: upon event <zk, Watch | w> do . C-2
12: if Type(w) = NodeChildrenChanged then
13: if zk.getChildren('/globallist') = /0 then
14: trigger <app, Terminated>
15: end if
16: end if

remove taskIDs. Termination can be deduced by the
coordinator from an empty global task list. There-
fore, a ZooKeeper watch is set to receive notifications
on changes of the list. C-2 of Algorithm 1 triggers a
termination event if all taskIDs have been removed.

Algorithm 2 implements the mechanisms to up-
date the task list at runtime. An update is executed
by the TrackTasks procedure, which is called by a
worker thread whenever a task is completed (cf. Al-
gorithm 2, CN-0). If a specific taskID is contained in
the task list, we request the removal of this taskID (cf.
Algorithm 2, line 12). If a taskID is not contained,
we request its creation (line 14). To avoid false posi-
tive termination decisions, we have to ensure that the
update procedure is executed atomically. We employ
ZooKeeper transactions to enforce an atomic update
of the global task list. This guarantees that termina-
tion cannot be detected due to an intermediate system
state, in which the global task list is empty until the
full update procedure (related to a single completed
task) has been executed. As the transaction might
fail, e.g., if a taskID should be created that has been
created by another compute node before our transac-
tion gets processed by ZooKeeper, we pass an asyn-
chronous callback to the commit operation that han-
dles potential failures (cf. Algorithm 2, line 17). In
the following, we discuss these potential failures.

We constructed the transaction as a set of create
and delete operations. Each create operation might
fail. In case of such a failure, another compute
node added the taskID before the local request was
processed. Moreover, delayed reads might lead to
a falsely constructed create operation. On the other
hand, delete operations are executed exactly once
because they are only requested if the corresponding
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Algorithm 2: Termination Detection - Compute Node.
Worker Thread, instance wt.
ZooKeeper Client, instance zk.

1: upon event <wt, completedTask | task> do . CN-0
2: taskIDs← TaskID(task) ∪ ChildTaskIDs(task);
3: TRACKTASKS(TASKIDS, NULL);
4: procedure TRACKTASKS(taskIDs, txnID) . CN-1
5: txn← zk.transaction();
6: if txnID = null then
7: txnID← generateTxnID();
8: end if
9: txn.create('/txnIDs/' + txnID);

10: for each taskID ∈ taskIDs do
11: if zk.exists('/globallist/' + taskID) then
12: txn.delete('/globallist/' + taskID);
13: else
14: txn.create('/globallist/' + taskID);
15: end if
16: end for
17: txn.commit(TXNCALLBACK, taskIDs, txnID);
18: end procedure
19: procedure TXNCALLBACK(taskIDs, txnID) . CN-2
20: if failed ∨ lost connection then
21: if !zk.exists('/txnIDs/' + txnID) then
22: TRACKTASKS(TASKIDS, TXNID);
23: end if
24: end if
25: end procedure

taskID is contained in the list (cf. Algorithm 2, line
11-12). Additionally, connection losses might also
lead to a failed transaction and, by default, handling
connection losses is a non-trivial task with ZooKeeper
(Junqueira and Reed, 2013). There are cases, in which
we cannot know if a transaction, which is interrupted
by a connection loss, has been processed or not. Sim-
ply executing the transaction again could compromise
our termination detection algorithm, finally leading to
a false positive or missing termination event. In the
following, we describe how our algorithm deals with
these issues.

CN-2 of Algorithm 2 shows the implementation of
the TxnCallback procedure, which handles the fail-
ures described above. Therefore, transactions that fail
are simply retried by calling the TrackTasks pro-
cedure again. To deal with connection losses, how-
ever, we enhanced the presented algorithm to in-
clude an additional create operation in each trans-
action constructed by the TrackTasks procedure.
This operation creates a unique znode /txnIDs/txnID,
where txnID is a globally unique ID generated for
each transaction (cf. Algorithm 2, line 6-8). This
allows us to check if a transaction has been pro-
cessed or not in case of a connection loss. CN-
2 of Algorithm 2 employs the txnID to avoid a re-
peated execution of committed transactions thus mak-
ing them idempotent. Even if the txnID exists but we

read an outdated ZooKeeper server state (in which
it seems to be nonexistent), the txnID passed to
the TrackTasks procedure avoids a repeated com-
mit thus finally maintaining a consistent system state.
As ZooKeeper guarantees that clients read up-to-date
values within a certain time bound, retrying a commit
of a transaction with an existing txnID stops eventu-
ally (cf. Algorithm 2, CN-2).

Our termination detection algorithm makes use
of ZooKeeper’s design principles by employing (1)
watches and notifications to be informed on relevant
updates to the system state, (2) fast read operations
for ensuring high-performance transaction construc-
tion, (3) asynchronous execution of operations for
non-blocking system behavior2, and (4) ZooKeeper’s
atomic writes and transactions in conjunction with
TASKWORK’s exactly once completion to ensure a
consistent system state.

3.6 Synchronization of Global Variables

Many non-trivial task-parallel applications require the
synchronization of global variables across tasks at
runtime. This synchronization leads to additional task
interaction patterns that the runtime system has to
cope with. TASKWORK’s synchronization compo-
nent allows developers to easily define global vari-
ables that are transparently shared across tasks.

Synchronization considers three hierarchy lev-
els: (1) task-level variables, which are updated for
each task executed by a worker thread, (2) node-
level variables, which are updated on each com-
pute node, and (3) global variables. Task-level vari-
ables are typically updated by the implemented pro-
gram and thus managed by the developer. To syn-
chronize node-level variables, we provide two opera-
tions: getVar for obtaining node-level variables and
setVar for setting node-level variables. Whenever
a node-level variable changes its value, we employ
ZooKeeper to update this variable globally, which en-
ables synchronization across all distributed compute
nodes. These generic operations allow developers to
address application-specific synchronization require-
ments, while TASKWORK handles the process of
synchronization.

3.7 Development Frameworks

TASKWORK is specifically designed for applications
with dynamic task parallelism and provides a generic

2Note that we employed ZooKeeper’s asynchronous
API for all interactions with ZooKeeper. In some cases,
we used a synchronous-looking notation in the algorithmic
descriptions only for the purpose of better readability.
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task abstraction that allows the specification of cus-
tom task definitions. As described in Sect. 2, de-
velopers only mark program-level parallelism while
task generation, load balancing, and task migration
are handled automatically thus ensuring elasticity of
parallel computations. Therefore, developers specify
an application-specific split operation based on the
generic task abstraction to split work from an exist-
ing task. Afterwards, this split operation can be
used for implementing any application program that
dynamically creates tasks at runtime (for an example
see Sect. 4.2). To enable elasticity of parallel com-
putations, TASKWORK provides an execution mode
called potential splitting that adapts the logical paral-
lelism (number of tasks) in an automated manner. In
this mode, developers also implement the split op-
eration, but only specify a potential splitting point in
their application program with the potentialSplit
operation. Thus, the potentialSplit operation is
used to mark program-level parallelism. At runtime,
TASKWORK decides whether to create new tasks or
not depending on the current system load. Poten-
tial splitting automatically adapts the amount of tasks
generated and thus controls the logical parallelism of
the application (cf. Fig. 1). As a result, TASKWORK
manages the trade-off between perfect fit of logical
and physical parallelism and minimizing overhead re-
sulting from task generation and task mapping as dis-
cussed in Sect. 2.

4 BRANCH-AND-BOUND
DEVELOPMENT
FRAMEWORK

We describe a development framework for par-
allel branch-and-bound applications based on
TASKWORK. Branch-and-bound is a well-known
meta-algorithm for solving search and optimization
problems with numerous applications in biochem-
istry, pattern recognition, finite geometry, model
checking, and fleet and vehicle scheduling. In the
following, we briefly explain the branch-and-bound
approach and employ our framework to develop an
example application.

4.1 Branch-and-Bound Applications
and the TSP

We explain the branch-and-bound approach by em-
ploying the Traveling Salesman Problem (TSP) as ex-
ample application. We chose the TSP as a represen-
tative application due to its wide use in research and

T1

State

Scope of a Task

T2

… … …

Figure 3: For parallelization, we cut the state space tree of
a problem into several tasks, each capturing a subproblem
of the initial problem. However, because states in the state
space tree are explored as the computation proceeds, tasks
containing these states have to be created at runtime to avoid
load imbalance.

industry. The TSP states that a salesman has to make
a tour visiting n cities exactly once while finishing at
the city he starts from. The problem can be modeled
as a complete graph with n vertices, where each ver-
tex represents a city and each edge a path between
two cities. A nonnegative cost c(i, j) occurs to travel
from city i to city j. The optimization goal is to find a
tour whose total cost, i.e., the sum of individual costs
along the paths, is minimum (Cormen et al., 2009).

All feasible tours can be explored systematically
by employing a state space tree that enumerates all
states of the problem. The initial state (root of the
state space tree) is represented by the city the sales-
man starts from. From this (and all following states),
the salesman can follow any path to travel to one of
the unvisited cities, which leads to a new state. At
some point in time, all cities have been visited thus
leading to a leaf state, which represents a tour. Each
state can be evaluated with respect to its cost by sum-
ming up the individual costs of all paths taken. This
also holds for leaf states representing a tour. A search
procedure can be applied that dynamically explores
the complete state space tree and finally finds a tour
with minimum cost. However, brute force search can-
not be applied to large state space trees efficiently.
Instead of enumerating all possible states, branch-
and-bound makes use of existing knowledge to search
many paths in the state space tree only implicitly. The
following four operations enable an efficient search
procedure:

Branching: If the current state is not a leaf state,
the next level of child states is generated by visiting
all unvisited cities that are directly accessible. Each
of these child states leads to a set of disjoint tours.

Evaluation: If the current state is a leaf state, we
evaluate the tour represented by this state with respect
to its total cost.

Bounding: At runtime, the tour whose total cost
is known to be minimum at a specific point in time
defines an upper bound for the ongoing search pro-
cedure. Any intermediate state in the state space tree
that evaluates to a higher cost can be proven to lead
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to a tour with higher total costs and thus has not to be
explored any further. Moreover, lower bounds can be
calculated by solving a relaxed version of the problem
based on the current state (Sedgewick, 1984).

Pruning: We can prune parts of the state space
tree if the calculated lower bound of the current state
is larger or equal to the current upper bound. The
pruning operation is essential to make branch-and-
bound efficient.

Following a branch-and-bound approach, a prob-
lem is decomposed into subproblems at runtime.
Each of these subproblems captures several states
of the state space tree and can be solved in paral-
lel. Technically, these subproblems are captured in
a set of tasks, which can be distributed across avail-
able compute nodes. However, several challenges
arise when we map branch-and-bound applications to
parallel and distributed architectures: Pruning intro-
duces work anomalies, which means that the amount
of work differs between sequential and parallel pro-
cessing as well as across parallel program runs due
to non-determinism of message delivery. Addition-
ally, the workload of branch-and-bound applications
is highly irregular, i.e., task sizes are not known a pri-
ori and unpredictable by nature. Consequently, solv-
ing the TSP requires the runtime system to cope with
dynamic problem decomposition and load balancing
to avoid idle processors. Every task that captures
a specific subproblem can produce new child tasks
(cf. Fig. 3). Thus, termination detection is another
strong requirement to detect if a computation has been
completed. Additionally, updates on the upper bound
have to be distributed fast to enable efficient pruning
for subproblems processed simultaneously in the dis-
tributed system.

4.2 Design and Use of the Development
Framework

In the following, we describe a development frame-
work for parallel branch-and-bound on top of
TASKWORK. We employ the TSP as an example ap-
plication to show how to use the framework. Parallel
applications can be built with this framework without
considering low-level, technical details.

TASKWORK provides a generic task abstraction
that can be used to build new development frame-
works. In this context, we define a task as the traver-
sal of the subtrees rooted at all unvisited input states.
Additionally, each task has access to the graph struc-
ture describing the cities as vertices and the paths as
edges. This graph structure guides the exploratory
construction of the state space tree. All visited states
are marked in the graph. This representation allows

1 public void search() {
2    while(!openStates.isEmpty()){
3      if(migrate()) return;
4     
5      State currentState = openStates.getNext();
6      
7 getUpperBound();
8
9      State[] children = currentState.branch();
10     for(State child : children) {
11       if(child.isLeafState()) {
12         if(child.getCost() < current_best_cost){
13           current_best_cost = child.getCost();
14           current_best_tour = child.getPath();
15           setUpperBound();
16         }
17       }else if(child.getLowerBound() < current_best_cost){
18         openStates.add(child);
19       }
20     }
21
22     potentialSplit();
23   }
24 }

Figure 4: The branch-and-bound development framework
allows developers to implement parallel search procedures
without considering low-level details such as concurrency,
load balancing, synchronization, and task migration.

to split the currently traversed state space tree to gen-
erate new tasks.

New tasks have to be created at runtime to
keep idling processors (and newly added ones)
busy. Therefore, the branch-and-bound task defini-
tion allows the specification of an application-specific
split operation. This operation branches the state
space tree by splitting off a new task from a cur-
rently executed task. This split-off task can be pro-
cessed by another worker thread running on another
compute node. To limit the amount of tasks gener-
ated, we make use of TASKWORK’s potential splits,
i.e, the split operation is only triggered, when new
tasks are actually required. As depicted in Fig. 4,
here, the potentialSplit operation is executed af-
ter a state has been evaluated. TASKWORK decides
if a split is required. If so, it executes the application-
specific split operation that takes tasks from the
openStates list to create a new (disjoint) task. Oth-
erwise it proceeds normally, i.e., it evaluates the next
state in the state space tree.

Task Migration: To enable task migration, de-
velopers check if migration is required (cf. Fig. 4). In
this case, a task simply stops its execution. The mi-
gration process itself is handled by TASKWORK (cf.
Sect. 3.4).

Bound Synchronization: Pruning is based on a
global upper bound. In case of the TSP, the total
cost of the best tour currently known is used as the
global upper bound. The distribution of the current
upper bound is essential to eliminate excess com-
putation (due to an outdated value). By employing
the synchronization component (cf. Sect. 3.6), we
initiate an update of the global upper bound when-
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Table 1: Performance measurements of TSP instances.

Problem
Instance

Ts [s]
(1 VM)

Tp [s]
(60 VMs)

Speedup
(60 VMs)

Efficiency
(60 VMs)

TSP351 1195 32.9±2.0 36.3 0.60

TSP352 1231 55.7±4.0 22.1 0.37

TSP353 2483 103.5±2.1 24.0 0.40

TSP354 3349 115.5±6.3 29.0 0.48

TSP355 10286 167.4±12.4 59.5 0.99

ever the local upper bound is better then the cur-
rent global upper bound observed. Technically, we
specify an update rule that compares the total costs
of two tours. If a better upper bound has been
detected, TASKWORK ensures that the new upper
bound is propagated through the hierarchy levels.
getUpperBound and setUpperBound (cf. Fig. 4) are
implemented based on the getVar and setVar oper-
ations (cf. Sect. 3.6).

Termination Detection: Termination detection is
transparently handled by TASKWORK.

5 EVALUATION

Our evaluation is threefold: (1) We report on the
parallel performance and scalability by measuring
speedups and efficiencies. (2) We measure the effects
of elastic scaling on the speedup of an application.
(3) Moreover, because TASKWORK heavily relies on
ZooKeeper, we provide several results that show that
ZooKeeper fits our architectural requirements. For
evaluation purposes, we employ the TSP application
implemented with the parallel branch-and-bound de-
velopment framework.

Setup. TASKWORK compute nodes are oper-
ated on CentOS 7 virtual machines (VM) with 1
vCPU clocked at 2.6 GHz, 2 GB RAM, and 40 GB
disk. All VMs are deployed in our OpenStack-based
cloud environment. The underlying hardware con-
sists of identical servers, each equipped with two Intel
Xeon E5-2650v2 CPUs and 128 GB RAM. The vir-
tual network connecting tenant VMs is operated on a
10 GBit/s physical ethernet network. Each compute
node runs a worker thread and is connected to one of
three ZooKeeper servers (forming a ZooKeeper clus-
ter). Our experiments were performed during regular
multi-tenant operation.

Parallel Performance & Scalability. To evalu-
ate the parallel performance, we solved 5 randomly
generated instances of the 35 city symmetric TSP.
Speedups and efficiencies are based on the runtime
Ts of a sequential implementation executed by a sin-

gle thread on the same VM type. We calculate the
lower bound (cf. Sect. 4.1) by adding the weight of a
minimum spanning tree (MST) of the not-yet visited
cities to the current path (Sedgewick, 1984; Archibald
et al., 2018). The MST itself is calculated based on
Prim’s algorithm (Prim, 1957). Table 1 shows the re-
sults of our measurements with three parallel program
runs per TSP instance. As we can see, the measured
performance is highly problem-specific. Note that,
as mentioned in Sect. 4.1, the pruning operation re-
sults in work anomalies, which means that the total
amount of work differs significantly between sequen-
tial and parallel processing as well as across parallel
program runs thus rendering a systematic evaluation
of the system’s scalability infeasible. To deal with
this problem, we disabled pruning for our scalability
measurements. Fig. 5 shows the measured scalabil-
ity for two TSP instances with 14 and 15 cities with
a sequential runtime Ts of 1170 and 16959 seconds,
respectively.

Elastic Scaling. Compute resources can be provi-
sioned or decommissioned easily by employing cloud
management tooling. However, to leverage elastic-
ity of parallel computations, the fundamental ques-
tion is: How fast can resources be effectively em-
ployed by an HPC application? This is a completely
new viewpoint from which cloud-aware parallel sys-
tems have to be evaluated. Traditional HPC metrics
do not cover this temporal aspect of elasticity. In the
following, we present an experiment that shows the
capability of TASKWORK to dynamically adapt to a
changing number of resources while maximizing the
speedup of the computation. To avoid work anoma-
lies, we disabled pruning to evaluate elastic scaling.
All measurements are based on the TSP instance with
14 cities.

Our experiment is described in Fig. 6 and com-
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prises three phases. We start our application with 10
compute nodes (VMs) in Phase P1. At time t1, we
scale out by adding more VMs to the computation.
To abstract from platform-specific VM startup times,
we employ VMs that are already running. At time
t2, we decommission the VMs added at t1. At phase
transition 1 , TASKWORK ensures task generation
and efficient load balancing to exploit newly added
compute nodes. At phase transition 2 , the task mi-
gration component ensures graceful decommission-
ing of compute nodes (cf. Sect. 3.4). We can easily
see if newly added compute resources contribute to
the computation by comparing the measured speedup
SE (speedup with elastic scaling) with the baseline
speedup S10 that we measured for a static setting with
10 VMs. To see how effectively new resources are
employed by TASKWORK, we tested several dura-
tions for Phase P2 as well as different numbers of
VMs added (cf. Fig. 6) and calculated the percentage
change in speedup S% as follows:

S% =
SE −S10

S10
·100 (1)

S% allows us to quantify the relative speedup im-
provements based on elastic scaling. Both SE and S10
are arithmetic means calculated based on three pro-
gram runs. Fig. 7 shows the percentage change in
speedup achieved for different durations of Phase P2
and different numbers of VMs added to the computa-
tion at runtime. 40 VMs added (leading to 50 VMs
in total) can be effectively employed in 15 seconds.
Higher speedup improvements can be achieved by in-
creasing the duration of Phase P2. We also see that for
a duration of 10 seconds, adding 40 VMs even leads to
a decrease in speedup whereas adding 20 VMs leads
to an increase in speedup (for the same duration). This
effect results from the higher parallel overhead (in
form of task generation, load balancing, and task mi-
gration) related to adding a higher number of VMs.
On the other hand, as expected, for higher durations
of Phase P2, employing a higher number of VMs leads
to better speedups. Note that the percentage of time
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Figure 7: We calculated the percentage change in speedup
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bers of VMs added to the computation. The legend shows
the total number of VMs employed in Phase P2.

spent in Phase P2 (with respect to the total runtime)
affects the actual percentage change in speedup, but
not the effects that we have described.

ZooKeeper. Because TASKWORK heavily re-
lies on ZooKeeper, we evaluate two fundamental as-
pects of our implementation: Its read/write ratio and
the usefulness of our termination detection algorithm.
For the termination detection algorithm, we measured
a read/write ratio of 2.6:1 on average. For group
membership, load balancing, and variable synchro-
nization each write operation leads to n reads, where
n is the number of compute nodes. Consequently,
our workload fits ZooKeeper’s design principles as
it is built for systems with a read/write ratio of at
least 2:1 (Hunt et al., 2010). Further, we evaluate
our termination detection algorithm. For the termi-
nation detection algorithm, performance degradation
results from retrying to many operations due to con-
tention thus leading to excess computation. Hence, in
our case, we have to ensure that retrying transactions
does not dominate the execution time of the algorithm
(cf. Sect. 3.5). Additionally, replication of data across
ZooKeeper servers amplifies this problem by provid-
ing a worse data accuracy. However, for our example
application, we measured that roughly 2% of all trans-
actions have been retried on average, which is a negli-
gible overhead and thus emphasizes the advantage of
our implementation.

6 RELATED WORK

It has been widely recognized that HPC applications
have to be adapted towards cloud-specific characteris-
tics to benefit from on-demand resource access, elas-
ticity, and pay-per-use (Netto et al., 2018; Rajan et al.,
2011; Parashar et al., 2013; Rajan and Thain, 2017).
The authors of (Galante et al., 2016) propose the de-
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velopment of new frameworks for building HPC ap-
plications optimized for cloud environments and dis-
cuss the importance of application support with re-
spect to elasticity. We follow this approach by pre-
senting a runtime system that does most of the heavy
lifting to implement cloud-aware HPC applications.

In (Gupta et al., 2016) an in-depth performance
analysis of different HPC applications is presented.
Based on their measurements, the authors describe
several strategies to make HPC applications cloud-
aware. A major issue is the specification of the opti-
mal task size to balance various sources of overhead.

The authors of (Gupta et al., 2013b) address the
problem of fluctuations in processing times, which
specifically affects tightly-coupled HPC applications.
A dynamic load balancer is introduced that continu-
ously monitors the load of each vCPU and reacts to
a measured imbalance. Whereas the authors rely on
overdecomposition to ensure dynamic load balancing,
our runtime system actively controls the logical paral-
lelism of an application to minimize task management
overhead. However, it is still an open research ques-
tion if applications without dynamic task parallelism
can benefit from such an approach.

In (Da Rosa Righi et al., 2016), the authors enable
elasticity for iterative-parallel applications by em-
ploying a master/worker architecture. They make use
of an asynchronous elasticity mechanism that enables
scaling operations without blocking the application.
Whereas we specifically consider dynamic task par-
allelism, our runtime system also makes use of asyn-
chronous scaling operations. Moreover, our runtime
system handles communication and synchronization
asynchronously to hide network latencies and fluctu-
ations in processing times.

Task-based parallelism was originally designed to
exploit shared memory architectures and used by sys-
tems such as Cilk (Blumofe et al., 1996). A major
characteristic of task-parallel approaches is that tasks
can be assigned dynamically to worker threads, which
ensures load balancing and thus effectively reduces
idle time. This approach also provides attractive ad-
vantages beyond shared memory architectures and
has been adopted for different environments includ-
ing clusters (Archibald et al., 2018) and grids (Anstre-
icher et al., 2002). As a result, the distributed task
pool model has been actively researched. The authors
of (Poldner and Kuchen, 2008) present a skeleton for
C++, which supports distributed memory parallelism
for branch-and-bound applications. Their skeleton
uses MPI communication mechanisms. The authors
of (Cunningham et al., 2014) propose a termination
detection mechanism based on ZooKeeper. However,
in contrast to our algorithm, their approach employs

the synchronous API of ZooKeeper. COHESION is
a microkernel-based platform for desktop grid com-
puting (Schulz et al., 2008; Blochinger et al., 2006).
It has been designed for task-parallel problems with
dynamic problem decomposition and tackles the chal-
lenges of desktop grids such as limited connectivity.
In this work, we present an approach to enable elastic
task-parallelism in cloud environments.

7 CONCLUSION AND FUTURE
WORK

In this work, we addressed several system-level chal-
lenges related to task-parallel HPC in the cloud and
presented a novel runtime system that manages the
complexities of cloud-aware applications. We showed
how to solve several coordination problems with
ZooKeeper and enhanced the well-known distributed
task pool execution model. Elasticity of parallel com-
putations is enabled by means of load balancing, task
migration, and application-specific task generation,
which requires only minor effort at the programming
level. Whereas our development framework is specif-
ically designed for branch-and-bound applications,
other applications with dynamic task parallelism such
as n-body simulations (Hannak et al., 2012) might
also benefit from TASKWORK’s architecture.

Many research challenges are left on the path to-
wards cloud-aware HPC applications. Most interest-
ingly, it is not fully understood how to deal with mon-
etary costs of parallel computations in the cloud. To
ultimately benefit from elastic scaling and pay-per-
use, new cost models are required. Specifically, ir-
regular task-parallel applications with unpredictable
resource requirements may benefit from elasticity. In
this context, we are confident that TASKWORK pro-
vides a solid foundation for future research activi-
ties. We also plan to investigate container virtual-
ization for deploying HPC applications to cloud envi-
ronments (Kehrer and Blochinger, 2018b; Kehrer and
Blochinger, 2018a).
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