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Abstract: There are multiple definitions and technologies making the path to a big data solution a challenging task.
The use of cloud computing together with a proven big data software architecture helps reducing project
costs, development time and abstracts the complexity of the underlying implementation technologies. The
combination of cloud computing and big data platforms results in a new service model, called Big Data as
a Service (BDaaS), that automates the process of provisioning the infrastructure. This paper presents an
architecture for big data systems in private clouds, using a real system to evaluate the functionalities. The
architecture supports batch/real-time processing, messaging systems and data services based on web APIs.
The architectural description defines the technology roadmap, composed exclusively of big data tools. The
results showed that the proposed architecture supports the facilities of cloud computing and performs well in
the analysis of large datasets.

1 INTRODUCTION

The infrastructure required to support the demand
for technology in modern life is complex, has a
high financial cost and needs a specialized workforce,
since the datacenter of the companies is usually het-
erogeneous, with multiple operating systems, stor-
age devices, programming languages and application
servers. In this context, cloud computing aims to
streamline provisioning and optimize the use of data-
center equipment through virtualization, enabling bet-
ter utilization and decreasing the idleness of comput-
ing resources (Mell et al., 2011).

The need to process and store a huge amount of
data has became known as ”big data”, a concept that
is related to the generation or consumption of a large
volume of data in a short time, so that the traditional
technology infrastructure can not process efficiently
and at low cost (Chang, 2015a).

The value of combining these two trends, big data
and cloud computing, has been recognized an is of in-
teresting in the software industry and academia, lead-
ing to the creation of a technology category called
Big Data as a Service (BDaaS) (Bhagattjee, 2014).
But creating big data systems is not trivial, and or-
ganizations that need to use their private cloud have
difficulty delivering effective solutions because of the
company’s lack of expertise.

To meet this demand, this paper presents an ar-

chitecture for building big data systems in private
cloud, called ArchaDIA (Architecture for Data In-
tegration and Analysis), detailing the functionalities,
techniques and tools most suitable for this type of sys-
tem. The architecture uses the capabilities of cloud
computing to shorten the time needed to build big data
systems that operate in the same scenarios described
in this proposal. As a result, architecture can help to
reduce the time required to deploy big data solutions,
avoiding the time spent in the early stages of adopting
new technologies.

The main contributions of this paper are: (i) the
formal and up-to-date architectural description for big
data systems (Rozanski and Woods, 2012), (ii) a clear
definition of the Big Data as a Service model, (iii) the
description of techniques for creating data-intensive
systems, (iv) architecture evaluation through a proof
of concept (PoC) involving a real situation and real
data.

The rest of the paper is organized as follows: Sec-
tion 2 presents the concepts of big data and cloud
computing. Section 3 gives the proposed architecture.
Section 4 describes techniques for building big data
systems. Section 5 discusses the methodology used
to conduct the study, to evaluate the architecture and
to build the proof of concept. In the end, Section 6
highlights the conclusion and some future works.
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2 BACKGROUND

2.1 Cloud Computing

Cloud computing, according to (Foster et al., 2008),
is a large-scale, scale-driven, distributed computing
paradigm in which a set of resources is delivered on
demand to external users on the Internet. This set of
resources consists of computational power, storage,
platforms and services.

Cloud computing differs from other models by be-
ing massively scalable, virtualized, encapsulated at
different levels of service to the external customer,
and by their services being dynamically configured.
The essential features of cloud computing embodied
in ArchaDIA, the architecture proposed in this article,
are: (i) on-demand self-service; (ii) broad network
access; (iii) resource pooling; (iv) elasticity; and (v)
measured service.

2.2 Big Data

The term ”big data” has several definitions, depend-
ing on the context it applies. The first definition pre-
sented is (Chang, 2015a) and says that big data con-
sists of large datasets with the characteristics of vol-
ume, variety, speed, and/or variability that require a
scalable architecture for efficient storage, manipula-
tion, and analysis. Also in (Chang, 2015a), big data
refers to the inability of traditional data architectures
to efficiently manipulate new datasets, forcing the cre-
ation of new architectures, consisting of data systems
distributed in independent, horizontally-coupled com-
puting resources to achieve scalability, using mas-
sively parallel processing.

A big data system is made up of functionalities to
handle the different phases of the data life cycle from
birth to disposal. From the point of view of systems
engineering, a big data system can be decomposed
into four consecutive phases, namely generation, ac-
quisition, storage and data analysis, as listed in (Hu
et al., 2014). Data generation refers to the way data
is generated, considering that there are distributed and
complex sources, such as sensors and videos. Data
acquisition is the process of obtaining the data. This
process includes partitioning into specific collections,
data transmission and preprocessing. Data storage
refers to data retention and management capabilities.
The last phase of data analysis presents new meth-
ods and tools for querying and extracting information
from datasets.

This paper adds the data integration phase, so
that external systems can consume the data through

web services, an approach that guarantees low cou-
pling between the big data system and the data con-
sumers.

2.3 Big Data as a Service (BDaaS)

Big Data as a Service (BDaaS) is a new model that
combines the capabilities of cloud computing with
the processing power of big data systems to deliver
data, database, data analysis, and processing platform
services, in addition to the tradicional service models
(Paas, Saas and IaaS).

BDaaS represents an abstraction layer above data
services, so the user selects the functionality, and the
underlying infrastructure is in charge of provision-
ing, installing, and configuring the services, which
are complex tasks that require specialist knowledge.
In this model it is possible to rapidly deploy big data
systems, reducing development time and cost in the
early stages of the project’s lifecycle (Zheng et al.,
2013).

The implementation of big data systems involves
high costs for configuring the infrastructure and ob-
taining skilled labor. A BDaaS framework can there-
fore help organizations move quickly from the start-
ing point, which is big data technology research, to
the final phase of the solution deployment. Even the
phases involving pilot projects would be streamlined
with the use of cloud-based technologies (Bhagattjee,
2014).

BDaaS includes other service models to address
the specific demands of big data systems. A BDaaS
cloud infrastructure must offer the following func-
tionalities:

• Data as a Service (DaaS): refers to the availabil-
ity of data sets through web services and it is im-
plemented by the Application Programming Inter-
face (API). The data services are independent of
each other and are reusable;

• Database as a Service (DBaaS): refers to the
provisioning of NoSQL databases. Although
technically possible, the ArchaDIA, proposed in
this work, does not provision relational databases
management system (RDBMS) instances;

• Big Data Platform as a Service (BDPaaS): refers
to the provisioning of big data clusters to run
Hadoop or Spark1. The private cloud platform is
responsible for installing and configuring the soft-
ware, reducing the complexity of the management
of big data environments;

1https://spark.apache programs.org/
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• Analytics as a Service (AaaS): refers to the pro-
visioning of data analysis tools from big data clus-
ters. For AaaS, the tools are Hive2 and Spark.
Hive is a data warehouse tool with SQL support.
Spark has a framework for in-memory process-
ing that combines capabilities for processing SQL
queries, real-time, machine learning and graphs;

• Storage as a Service (StaaS): refers to stor-
age provisioning through distributed file systems
(DFS). The service is implemented in two ways:
(i) with OpenStack Swift3 in the form of object
storage (Varghese and Buyya, 2018) or (ii) with
HDFS4 from a Hadoop cluster. The techniques
to select between one technology and another are
described in Section 4.

Well-known cloud providers such as Amazon, Mi-
crosoft and Oracle already offer the BDaaS cloud
model. In these cases, the provider is responsible for
the equipment, the software instalation and configu-
ration, the datacenter operation and the big data ser-
vices.

Thus, as will be presented in Section 3, the Ar-
chaDIA presents an alternative in which the BDaaS
model uses its own infrastructure without the public
cloud. This article presents the advantages of this ap-
proach that uses the big data in the private cloud.

2.4 Private Cloud

According to (Mell et al., 2011), the private cloud is
one of the forms of deployment in cloud computing,
in which computing resources are available only to
an organization and its consumers. It may belong to,
be managed, located and operated by the organization
itself or by an outsourced company or even some kind
of combination between them.

The private cloud is adequate when the company
has the datacenter itself and its data demands a high
level of security, as in the government, banking and
telecom. It is not necessary for the datacenter to be
large, so only a few servers can justify its adoption.
In the private cloud computing resources are not nec-
essarily available to the public.

The tool used to deploy the private cloud in this
study is OpenStack5, which is a widely used and
tested open source IaaS tool. OpenStack supports
the most important virtualization solutions such as

2https://hive.apache.org/
3 https://docs.openstack.org/swift/latest/
4 http://hadoop.apache.org/
5https://www.openstack.org

KVM6, Hyper-V7, QEMU8 etc.

2.5 Related Work

The correct selection of architecture components has
the potential to reduce project costs, development
time and abstracts the complexity of the underlying
implementation technologies. In this direction, there
are several architectures that can be used for big data
solutions.

The Lambda Architecture, proposed by (Marz and
Warren, 2015), was designed based on the principles
of scalability, simplicity, immutability of data, batch
and real-time processing frameworks. The architec-
ture was created by observing the problems presented
by traditional information systems, such as the com-
plexity of the operation, the addition of new function-
alities, the recovery of human errors and the optimiza-
tion of performance.

This architecture uses big data techniques and
tools to process and store data, including technologies
for batch processing, the NoSQL database for data
management, and the messaging system for data in-
gestion. The goal is to combine the benefits of each
technology to minimize the weaknesses. In order to
organize the internal elements, the architecture is di-
vided into three layers, which are:

• Batch layer: stores the main copy of the data and
preprocesses the batch views with the batch pro-
cessing system (Hadoop);

• Serving layer: stores the result of batch process-
ing in a data management system for queries, such
as a NoSQL database;

• Speed layer: processes incoming data while batch
processing, ensuring the execution of the query
with real time data.

In (Chang, 2015b) the authors show a reference archi-
tecture for big data solutions. The goal is to create a
conceptual model of architecture for big data archi-
tecture, without reference to specific technologies or
tools. In this model the following functional logical
components are defined:

• System Orchestrator: defines and integrates activ-
ities into a vertical operating system. It is respon-
sible for setting up and managing the other com-
ponents, or directly assigning the workload to the
computational resource;

6https://www.linux-kvm.org
7https://www.microsoft.com/en-us/cloud-platform/

server-virtualization
8http://www.qemu.org/

ArchaDIA: An Architecture for Big Data as a Service in Private Cloud

189



• Data provider: includes new data or sources of
information in the system;

• Big data application provider: encapsulates busi-
ness logic and functionality to be executed by the
architecture. It includes activities such as collec-
tion, preparation, analysis, visualization and ac-
cess to data;

• Big Data Framework Provider: consists of one or
more technologies to ensure flexibility and meet
the requirements that are set by the big data appli-
cation provider. It is the component that gets the
most attention from the industry;

• Data consumer: the end users and other systems
that use the result produced by the big data appli-
cation provider.

In (Bhagattjee, 2014), the author defines that BDaaS
is a distributed, horizontally scalable, cloud-based
computing framework designed to handle large
datasets (big data). However, due to the number of
technologies available, it is difficult to identify the
right solutions for each demand. As a result, the
development of big data systems ultimately involves
high costs both for infrastructure management and
for skilled labor. As a proposed solution, (Bhagat-
tjee, 2014) introduces a framework to help technology
users and suppliers identify and classify cloud-based
big-time technologies. The framework is described in
layers, each with a set of responsibilities and the ap-
propriate tools for implementation.

3 ARCHITECTURE FOR DATA
ANALYSIS - ArchaDIA

This section introduces the design of the big data ar-
chitecture to ensure the state of the art in integrating
big data resources and cloud computing. The pro-
posal uses and extends the models defined by (Bha-
gattjee, 2014) (Chang, 2015b) (Marz and Warren,
2015).

The architecture’s scope includes support for two
processing modes: batch and real-time. The batch
processing platform will be used for analysis in the
complete dataset, in which the need to access its re-
sult has no rigid time limitation, i.e. it is possible to
wait minutes or hours for the result. The real-time
processing platform will be used in applications with
constant data flow, that is, data is entered continuously
and the system response must be immediate.

The design of big data systems is more complex
than traditional projects, mainly because it involves
distributed processing. The difficulties include not

only the technologies but also the processing and stor-
age techniques that must be reviewed in this new con-
text of data-intensive applications. In order to guide
the creation of this type of system, the study of (Chen
and Zhang, 2014) proposes seven principles:

1. Good architecture and good frameworks - there
are many distributed architectures to big data and
each uses different strategies for real-time and
batch processing;

2. Support for various analysis methods - data sci-
ence involves a large number of techniques that
need to be supported by new architectures, such
as data mining, statistics, machine learning etc;

3. No one size fits all - there is no single solution
that suits all situations, since each technology has
limitations. One should choose the right tool for
each technique and situation;

4. The analysis must be close to the data - the pro-
cessing must have high performance access to the
storage, which favors the use of data lakes, as de-
tailed in Item 4.3;

5. Processing must be distributable for in-memory
analysis - Massively Parallel-Processing (MPP) is
one of the bases of big data systems, in which data
is accumulated in the datacenter storage system,
but must be partitioned to allow parallel process-
ing;

6. Storage must be distributable to memory retention
- MPP tools often divide data into blocks in mem-
ory;

7. A mechanism is required to coordinate data and
processing units to ensure both scalability and
fault tolerance.

As a constraint, the tools used in ArchaDIA should
be free and open source (FOSS) to ensure that the so-
lution can be used in government agencies or private
companies without the limitations of the cost of ac-
quisition.

The stakeholders are people and organizations in-
terested in the architecture. Thus, for the architecture
of big data systems, those interested are: (i) Data Sci-
entists: who perform ad hoc queries and data anal-
ysis; (ii) Software Developers: who create the sys-
tems; (iii) Enterprise Systems: production systems
and databases in the organization; (iv) External Sys-
tems: systems and databases in operation outside the
organization; (v) Infrastructure Administrators: re-
sponsible for maintaining the datacenter environment,
including servers, storage, network and database.
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3.1 Architectural Views for Big Data
Systems

Architectural views are used to show different aspects
of the big data system in an abstract way without tech-
nical details. The formalization of the documentation
uses the (1) context, (2) functional and (3) deploy-
ment views, a combination that clearly illustrates big
data in the ArchaDIA.

3.1.1 Context View

It presents the architecture from a conceptual per-
spective, in which the operational environment of the
project is illustrated and shows what is inside and out-
side the boundaries of the BDaaS architecture, as ver-
ified in Figure 1. On one side are the data sources, in
the center the private cloud and the BDaaS, and on the
right side are the users of the system.

Figure 1: ArchaDIA Context View.

The data sources are composed of pre-existing re-
lational databases, file systems, or web services in the
organization. After importing these records into the
big data system, data is available for processing or
storage and then accessible to users.

3.1.2 Functional View

Describes the uses, components, interfaces, external
entities and the main interactions between them. Fol-
lowing this definition, Figure 2 shows the Functional
View of the architecture through a component dia-
gram.

The Data Source component is an external en-
tity that represents, as the name suggests, any mech-
anism that provides corporate data, and includes the
RDBMS, file system, and web services.

The Big Data ETL performs the processing re-
quired to convert the data from its source format to
the formats supported by the big data storage engine.
This component and the techniques used are detailed
in Section 4.

Figure 2: ArchaDIA Component Diagram.

The Data Administration subsystem is a compo-
nent for managing the data lifecycle in the organiza-
tion. It consists of two components. The first one is
the Data Storage service, responsible for persisting
the data in the distributed file system. The compo-
nent of Data Management consists of the NoSQL
database.

The Data Processing component consists of the
mechanisms for batch and real-time processing, as
well as support for the implementation of big data
programs such as Hadoop and Spark, by the use of
their respective frameworks.

The Data Integration is a feature present in the
latest big data architectures and provides an API for
external systems to insert and query system data with
high performance. The API is built by a NoSQL
database and available through web services, a trend
in the area of Big Data and Cloud Computing that is
detailed in Section 4.

The last component is the Data Analysis, which
combines ad hoc query mechanisms, statistics, and
machine learning algorithms. These features are used
by data scientists and are part of an area known as big
data analytics.

3.1.3 Deployment View

Describes the environment where the system will be
installed, the hardware and the software necessary for
its execution, that is, in this view the necessary equip-
ment types, software and basic network requirements
are defined to implement the big data system. This
view shows two diagrams, one for deploying the pri-
vate cloud platform and one for deploying the big data
systems. Figure 3 shows the necessary equipment for
private cloud deployment.

In ArchaDIA, big data systems are deployed
through the private cloud platform, as can be seen in
Figure 4. The servers represented in the diagram can
be VMs or physical servers (bare metal). For the cre-
ation of PoCs it is possible to use a single server for
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Figure 3: Private Cloud Deployment Diagram.

the private cloud platform and for the big data sys-
tems, however, the performance can not be evaluated
because the computational resources are limited.

The functionalities provided in the architecture to
meet the demands of the big data systems are (i) Big
Data Cluster, where the data storage and analysis
services reside; the (ii) API Server, which encom-
passes the Data Integration service; (iii) NoSQL
Server includes Data Management; and finally, (iv)
the Storage offers the Data Storage service with ob-
ject storage, that is, without the need of a big data
cluster. The Table 1 lists these components and their
implementation tools.

Figure 4: Deployment Diagram for Big Data Systems.

3.2 Layered Implementation

The ArchaDIA architecture obeys the layered archi-
tectural style, in which the structure is divided into
logical modules, each with a well-defined function-
ality. This view serves the non-technical stakehold-
ers, as it presents the description of the functionalities
without details of implementation or technologies.
Figure 5 shows the layers that are detailed through-
out this section. The layers are functionally indepen-
dent of each other, are low-coupling and the commu-
nication between them is done with web services and
APIs.

Table 1: Software Components Dependencies.

Component Requirement
Private Cloud Plat-
form

OpenStack Pike

CentOS 7
KVM

Big Data ETL Java 8
Apache Sqoop9

Apache Flume10

Apache Kafka11

Data Storage Apache HDFS
OpenStack Swift

Data Management Apache Cassandra
Apache HBase

Data Processing Apache Hadoop
Apache Spark
Cloudera
Hortonworks

Data Integration Spring Boot 2.0
Data Analysis Apache Hive

Apache Spark
Hue

Figure 5: ArchaDIA Layered View.

The Data Service Layer provides a data access
interface through a flexible, loose coupling communi-
cation mechanism with external systems. This layer
is related to the DaaS model. This layer is shown in
the Figure 6. The data flow starts with the External
System request to the Web API and has two ways: (i)
to ingest the data in the Messaging System, in an as-
syncronous way; and (ii) NoSQL query. It should be
noted that operations with the Messaging System are
unidirectional, since the purpose of this proposal is to
allow the insertion of new records as an alternative to
improve performance (Chang, 2015b).

The Data Processing Layer offers a platform that
allows the user to execute big data programs and data
analysis, including SQL queries. The layer is formed
by BDPaaS and AaaS.

The Data Administration Layer offers storage
and data management services. Thus, this layer is
composed of DBaaS and StaaS. Data is stored perma-
nently or temporarily, according to user demand. Se-
curity, access control, integrity, replication, and scal-
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Figure 6: Data Integration Diagram.

ability are provided by the cloud platform.
The Private Cloud Platform Layer is responsi-

ble for the management of computing resources (pro-
cessing, memory, storage and networking). The user
can start or stop the services through the web inter-
face or console, without direct access to the underly-
ing hardware resources or deployment technologies.

The Monitoring Layer checks the operating con-
ditions and usage of the systems in the datacenter.
Users of this layer have access to metrics on resource
availability and utilization. Collecting these metrics
allows datacenter administrators to plan scalability of
systems. The objective of the layer is related to the
quality of the service offered, as it allows the moni-
toring of failures, unavailability, underutilization and
resource overload.

4 TECHNIQUES FOR BUILDING
BIG DATA SYSTEMS

The description of an architecture should detail the
best practices for building systems, which is espe-
cially important in an area as recent and complex as
big data. The construction of big data systems based
on computational cloud has specific techniques for
sizing, loading, storage, modeling and data integra-
tion.

The deployment of infrastructure for big data sys-
tems demands great effort from technology teams.
The difficulties include: (i) the installation and config-
uration of the big data cluster and NoSQL databases;
(ii) sizing the resources and attend to changes in the
processing demand; and (iii) the provisioning of data
services.

4.1 Resource Sizing

Resource sizing for big cloud data systems is the sub-
ject of several researches (Corradi et al., 2015), in-
cluding the use of predictive algorithms and the auto-
matic provisioning of Hadoop clusters. In many com-
panies it is common to find large clusters with dozens

of servers, however, this type of installation tends to
be oversized to meet processing peaks.

With ArchaDIA, the recommendation to meet the
demand for large-scale processing is to use several
smaller big data clusters, one for each type of work-
load, since most Hadoop jobs run on datasets with
less than 100 GB (Appuswamy et al., 2013). In these
cases, a cluster with up to three nodes and 48 GB
memory can be used as a starting point. After the
processing is finished, the resources can be released.
For a NoSQL database the starting point is a single
VM with 16 GB memory. In this case, the resources
are not released, since the duration of this processing
is undetermined.

4.2 Cloud Storage

In the early versions of Hadoop, data analysis was
performed using data from the cluster’s file system,
because HDFS is optimized for this purpose. How-
ever, for cloud-based systems, this approach is not
the most efficient and durable. As the data is directly
connected to the cluster, there are limitations in or
even the impossibility of using the cloud character-
istics. For example, considering a Hadoop cluster in
the datacenter, if the user needs more disk space, the
storage capacity can not be easily increased because
only the datacenter operations team has this capabil-
ity. Similarly, when the cluster is released, its data
is usually deleted. To make further analysis on this
deleted dataset, the data sources need to be copied
back to a cluster.

One possible solution to this problem is the use
of object storage technology, separating the data from
the processing. The object storage (ObS) or object
storage device (OSD) stores the data as objects of
variable size, unlike traditional block storage (Fac-
tor et al., 2005). Thus, object storage features are:
durability, high availability, replication, and ease of
elasticity, allowing storage capacity to be virtually in-
finite. In object storage each stored item is an object,
defined by a unique identifier, offering an alternative
to the block-based file model.

Because of these facilities, storing data in the
cloud can be done through object storage. Following
this trend, leading cloud providers have their object
storage implementations, such as AWS S312, Oracle
Object Storage13, Azure Blob Storage14 and Google

12https://aws.amazon.com/s3/
13https://cloud.oracle.com/storage/object-storage/

features
14https://azure.microsoft.com/en-us/services/storage/

blobs/
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Cloud Storage15. In Openstack, the object storage
module is Swift (Rupprecht et al., 2017), in which
data analysis can be performed with the ArchaDIA
architecture.

4.3 Data Lake

Data lakes are centralized repositories of enterprise
data, including structured, semi-structured and un-
structured data. This data is usually in its native for-
mat and stored on low-cost, high-performance file
systems such as HDFS or object storage (Dixon,
2010). The purpose of the data lake is different from a
data warehouse (DW). In DW, the data are processed
and structured for the query and the structure is de-
fined before ingestion in the system, through ETL
routines. This technique is called schema-on-write,
a task that is not technically difficult, but is time-
consuming.

In data lakes the data is in its original format,
with little or no transformation and the data structure
is defined during its reading, a technique known as
schema-on-read. Users can quickly define and rede-
fine data schemas during the process of reading the
records. With this, the ETL runs from the data lake
itself (Fang, 2015).

Data lake provisioning and configuration are per-
formed by the private cloud platform, with the Open-
Stack Swift module. Swift is integrated with Hadoop
and Spark in order to allow data analysis with the
main file formats: SequenceFiles, Avro16 and Par-
quet17 (Liu et al., 2014).

The advantage of the data lake is its flexibility,
which is at the same time a problem because it makes
the analysis very complete, but also complex. Data
lake users should be highly specialized, such as data
scientists and developers. There are also other risks in
adopting data lakes, such as quality assurance, secu-
rity, privacy and data governance, which are still open
questions.

4.4 NoSQL Databases

This new database paradigm, which does not follow
relational algebra, is generally called Not Only SQL
(NoSQL). In a NoSQL database, the data is stored in
its raw form and the formatting of the result is done
during the read operation, a feature called schema-on-
read (Chang, 2015a).

NoSQL has fast access to read and write, sup-
ports large volumes of data and replication, so they

15https://cloud.google.com/storage/docs/
16 https://avro.apache.org/
17https://parquet.apache.org/

are suitable for big data systems. However, NoSQL
databases do not follow the same rules and standards
as a relational database. For example, there is no na-
tive SQL support, and queries are typically run in pro-
prietary languages, or through third-party tools.

At this point, there are big differences between
relational and NoSQL modeling. While a relational
data model is standardized to avoid data redundancy,
NoSQL databases do not use normalization, and data
is often duplicated in several tables to ensure maxi-
mum performance (Chebotko et al., 2015).

4.5 API Management

The use of web APIs is becoming the standard for
web, mobile, cloud and big data applications (Tan
et al., 2016). APIs make it easy to exchange data and
are used to integrate business, make algorithms avail-
able, connect people, and share information between
devices. This new business model, called the APIs
economy, enables companies to become true data
platforms, which simplifies the creation of new ser-
vices, products and business models (Gartner, 2018).

Web APIs are composed of independent services
in the form of reusable components, which can be
combined to create the data platform. For example, a
company can create a new service by using third-party
APIs, such as maps, machine learning, geolocation,
and payments. These services are usually based on
REST and JSON, thus allowing the sharing of the data
and the new features with high performance. This is
the strategy adopted by major API providers and users
such as Netflix, Google, AWS and eBay.

In this context, it is extremely important that a
big data architecture provide technological support
for API management. In ArchaDIA, the Data Inte-
gration Component is the technical solution for cre-
ating data services by accessing NoSQL databases or
the Hadoop cluster. The API server is permanent and
the VMs are not released, only resized in the case of
processing peaks.

5 ARCHITECTURE EVALUATION

The evaluation of the proposed architecture (Archa-
DIA) used a proof of concept (PoC), in which the us-
age scenarios and the behavior of the system were ver-
ified. In this way, it was possible to determine the pos-
itives and negatives of the project. After defining the
functionalities of the BDaaS, experiments were con-
ducted using techniques and tools to create big data
systems in order to find the most appropriate combi-
nation.
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The Big Data Access Tool (BDAT)18 is the prac-
tical implementation of PoC and was used to evalu-
ate the capabilities of the architecture proposal in the
form of a big data system. The BDAT was written in
Java and incorporates frameworks for big data, ETL,
API management and messaging system. Consider-
ing the diversity of technologies available in the big
data area, BDAT represents an abstraction layer be-
tween the functionalities of a big data system and its
implementation software, and can be used to create
new big data systems.

The experiments used real data sources from the
Brazilian government and the performance was mea-
sured in four situations: (i) batch/real-time process-
ing of big data; (ii) ad hoc queries; (iii) ingestion of
records in the system; and (iv) data query by API.

The dataset consists of several tables of systems
available in the TJDFT, a Brazilian Court, totaling
approximately 1.5 billion records that were imported
from the enterprise RDBMS. The Hadoop/Spark clus-
ter used in the experiments has four nodes, one master
and three worker nodes, as shown in Figure 4. Eval-
uations were performed by simulating routine activi-
ties, such as executing SQL commands for extracting
dataset information, such as those shown in the table
2. In the RDBMS the fields used for data consoli-
dation are indexed and partitioned, at a high level of
optimization. In the cluster analysis tools were used
on files recorded in HDFS and object storage Swift.

The ArchaDIA involves the areas of Big Data,
Cloud Computing and the intersection between them.
Therefore, it was evaluated from different perspec-
tives. Initially, it was evaluated as a reference archi-
tecture independent of technologies and implementa-
tions, in order to contribute to the research and devel-
opment of big data systems. Finally, services, tech-
nologies, and how they relate to the private cloud en-
vironment are demonstrated.

5.1 Deployment Roadmap

The private cloud deployment used OpenStack and
its specific modules that supports big data (Sahara)
and databases (Trove). The installation scripts, com-
mands, procedures, and configurations are available
in the repository19.

In addition to the Web interface, OpenStack offers
the option of operating via command line, which was
the option used in this study. After the complete en-
vironment configuration, you can provision a Hadoop

18https://github.com/masreis/big-data-access-tool
19https://github.com/masreis/big-data-as-a-service-

openstack

cluster with a single command. With the cloud operat-
ing platform, the next step was provisioning services.
The roadmap used for the creation of the PoC (Section
5.2) and for the initial data load using BDATconsists
of the following steps:

1. Provision the big data cluster;

2. Provision an instance of the NoSQL Server (Cas-
sandra);

3. Provision an instance of the Spring Boot API
Server with BDAT;

4. List the available tables of the RDBMS environ-
ment;

5. Import each table to the big data staging area;

6. Convert imported files to Avro format and write
them to HDFS and data lake;

7. Create the tables in Cassandra and load them with
the files imported;

8. Perform the analyzes in the dataset with the
Hadoop and Spark cluster;

9. Query through the Web API;

10. Release the cluster resources.

5.2 Proof of Concept

The first experiment was the analysis of the complete
dataset with batch and real-time processing tools. The
analyzes were performed with the execution of SQL
commands in the Hadoop/Spark cluster and in the
RDBMS. The second experiment was to write the
records in the NoSQL database. Finally, the last sim-
ulated situation was the query of the records through
the Web API. The operations available on the Web
API are divided into three categories:

• Data Access: data inclusion, change and query
operations;

• Data Store: lists the available tables in the PoC;

• ETL: data import and export operations, as well
as list of available tables in the RDBMS.

In each experiment, we used three load levels: (i)
low, with up to 10 million records; (ii) moderate, with
up to 100 million records; and (iii) high, from 100
million records. Thus, the minimum amount of re-
sources required to support the experiments was veri-
fied, avoiding oversizing or undersizing.

The proof of concept allowed us to verify that Ar-
chaDIA supports the expected characteristics of the
Big Data as a Service model.

The results in the Table 2 show that the correct
combination of technologies and techniques for build-
ing big data systems in the cloud ensure performance
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similar to the traditional datacenter solutions. An im-
portant point to note is the performance and disk sav-
ing made possible by the new file formats compres-
sion, such as Avro16.

6 CONCLUSION AND FUTURE
WORKS

This study describes the functionalities and the pro-
posed solutions for the big data area in the pri-
vate cloud, adding new practical use cases evaluated
with PoC in real scenarios. As a result, an archi-
tectural description was formalized, with its specific
systems-building techniques in the form of a tech-
nology roadmap that can be used to deploy new so-
lutions, or as a tool for communicating with non-
technical users.

The study of the state of the art lead to conclude
that the object storage is more interesting than HDFS
in the cloud, since there is no great performance dif-
ference between the technologies. This point rein-
forces the importance of loose coupling in the pro-
posed architecture, and is pointed as a trend along
with the advancement of the data lakes.

Provisioning the big data cluster in the Archa-
DIA takes a few minutes, as opposed to installing
an RDBMS in a datacenter, which can take hours.
The query by keys in NoSQL is not as fast as that
of RDBMS, however it presents acceptable perfor-
mance, considering that the NoSQL table was not
as optimized as that of RDBMS in the experiments
(Chebotko et al., 2015).

Table 2: Results of the Experiments.

Item Small Medium Large
Cluster provi-
sioning

160 sec. 180 sec. 190 sec.

Size of the
dataset (Avro)

400 MB 4 GB 18 GB

Size of
the dataset
RDBMS

- - 76 GB

Cluster data
analysis

8 sec. 80 sec. 150 sec.

RDBMS data
analysis

6 sec. 90 sec. 201 sec.

NoSQL query
by key

0.03 sec. 0.06 sec. 0.1 sec.

RDBMS
query by key

0.01 sec. 0.02 sec. 0.04 sec.

The Big Data and Cloud Computing research presents

several open issues that will be considered in the fu-
ture works (Varghese and Buyya, 2018) (Taleb and
Serhani, 2017). The evolutions of ArchaDIA in the
future include (i) the provision of a job completion
prediction model; (ii) a pre-processing methodology
to guarantee data quality and cleanliness in the anal-
ysis and integration phases; (iii) evolution of the
disk load balancing mechanism, considering the im-
balance between CPU and I/O; (iv) provide a secu-
rity and data sharing model, considering a multi-user
cloud; and (v) support for other resource managers
(Kubernetes, Swarm and Mesos).
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