
Towards a Runtime Standard-based Testing Framework for
Dynamic Distributed Information Systems

Moez Krichen1,3, Roobaea Alroobaea2 and Mariam Lahami3
1Faculty of CSIT, Al-Baha University, Saudi Arabia

2College of CIT, Taif University, Saudi Arabia
3ReDCAD Laboratory, University of Sfax, Tunisia

Keywords: Distributed, Information Systems, Runtime, Dynamic, Adaptable, TTCN-3, Testing, Isolation, Generation,
Minimization, Classification.

Abstract: In this work, we are interested in testing dynamic distributed information systems. That is we consider a decen-
tralized information system which can evolve over time. For this purpose we propose a runtime standard-based
test execution platform. The latter is built upon the normalized TTCN-3 specification and implementation test-
ing language. The proposed platform ensures execution of tests cases at runtime. Moreover it considers both
structural and behavioral adaptations of the system under test. In addition, it is equipped with a test isolation
layer that minimizes the risk of interference between business and testing processes. The platform also gener-
ates a minimal subset of test scenarios to execute after each adaptation. Finally, it proposes an optimal strategy
to place the TTCN-3 test components among the system execution nodes.

1 INTRODUCTION

Nowadays, information systems are steadily gaining
importance as a major ingredient for a wide range
of modern technologies and computerized services.
More precisely we are interested in distributed in-
formation systems (Grusho et al., 2017; Yesikov
et al., 2017) which correspond to decentralized sys-
tems made of sets of physical devices and software
components. Moreover we pay a particular attention
to dynamic distributed information systems which are
systems that can evolve during execution time.

The possible changes the considered system may
encounter could be either structural or behavioral. On
the first hand, structural changes correspond to the ad-
dition or deletion of physical nodes or links between
nodes. On the other hand, behavioral changes corre-
spond to the addition, deletion or update of the soft-
ware components installed on the physical nodes of
the system.

It is worth noting that these two types of changes
may happen while the system is running. Conse-
quently this may lead to the apparition of new risks,
bugs and problems for the considered distributed in-
formation system either locally (on some limited parts
of the system) or globally (on the whole behavior of
the system).

In both cases this is considered as a dangerous and
critical situation. Thus very urgent and efficient mea-
sures must be taken in order to guarantee the correct-
ness and the safety of the distributed information sys-
tem we are dealing with.

To remedy this, we adopt in this work an online
testing approach which can be applied at runtime. For
that, we propose a standard-based testing platform for
dynamic distributed information systems. The pro-
posed platform uses the TTCN3 standard and takes
into account both structural and behavioral adapta-
tions. Moreover, it is equipped with a test isolation
layer which minimizes the risk of interference be-
tween testing and business processes. We also com-
pute a minimal subset of test cases to run and effi-
ciently distribute them among the execution nodes.

The remainder of this paper is organized as fol-
lows. Section 2 is dedicated for Runtime Testing
for Structural Adaptations. In Section 3, we propose
techniques for Runtime Testing of Behavioral Adap-
tations. Finally, Section 4 summarizes the main con-
tributions presented in this paper and states some di-
rections for future work.

Krichen, M., Alroobaea, R. and Lahami, M.
Towards a Runtime Standard-based Testing Framework for Dynamic Distributed Information Systems.
DOI: 10.5220/0007772101210129
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 121-129
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

121



2 TESTING FOR STRUCTURAL
ADAPTATIONS

The process depicted in Figure 1 shows the different
steps to fulfill in order to execute runtime tests when
structural reconfiguration actions happen:

Figure 1: The different steps for structural adaptations vali-
dation of the system under test.

• Dependency Analysis: This step focuses on de-
termining the affected components of the system
under test by a structural reconfiguration action.

• Test Case Selection: This step allows to identify
the set of test cases to choose from the Test Case
Repository and which will be applied on the set of
components identified during the previous step.

• Test Component Placement: This step allows
to distribute test components over the execution
nodes while taking into account specific con-
straints.

• Test Isolation and Execution: This step allows
to take into account isolation aspects and to exe-
cute the test cases selected during step 2.

More details about these different steps are given
in the next sections.

2.1 Dependency Analysis

Our goal here is to reduce the cost of the test activity
with respect to both to time and resources. For that
purpose, after each dynamic evolution of the system
we determine the subset of components of the system
which were impacted by the considered dynamic evo-
lution. This allows us not to execute all the available
test cases at runtime. Rather we choose a minimal
subset of tests (corresponding to the modified parts of
the system) and then we re-execute them. Our tech-
nique is based on the use of a dependency analysis
algorithm. The latter is used in several software engi-
neering branches (e.g., testing (Li et al., 2005), main-
tenance and evolution (Qu et al., 2010), etc.).

In (Alhazbi and Jantan, 2007) the authors de-
fine dependency as “the reliance of a component on

other(s) to support a specific functionality”. So It can
be seen as a binary relation between components. A
component C1 is said to be an antecedent to compo-
nent C2 if its functionalities or data are exploited by
C2. Moreover in this case, B is said to be dependent on
C1. For a such situation we use the following notation
C2→C1.

The authors of (Larsson and Crnkovic, 2001) de-
fine the relation→ in a formal fashion as follows. Let
N odes be the set of components of the considered
system. The set of dependencies of this system is:

Dep =
{
(Cp,Cq) : Cp,Cq ∈N odes∧Cp→Cq

}
.

In this manner, the current configuration of the
system is made of two elements namely the set of
components and the set of corresponding dependen-
cies

Con f = (N odes,Dep).

Figure 2: An example of a 5-nodes dependency graph and
its corresponding 5x5 dependency matrix.

The configuration of the system can be presented
either by a Component Dependency Graph or an
equivalent Component Dependency Matrix. In Fig-
ure 2 we give an example of such a dependency graph
and its equivalent dependency matrix.

At the beginning, the dependency graph stores
only the direct dependencies between the different
components of the system. Then in a second step in-
direct dependencies are calculated by means of transi-
tive closure algorithm (Ioannidis and Rantakrishnan,
1988) applied on the initial graph. For instance in the
example given by Figure 2 there is no direct depen-
dency between the two nodes C1 and C4 however an
indirect dependency exist between them through the
node C2. Similarly an indirect dependency exist be-
tween C1 and C5 through the node C3.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

122



2.2 Test Case Selection

When dynamic adaptations occur, we need to con-
sider two types of test cases. The first type corre-
sponds to unit tests which allow to check the correct-
ness of the components which were affected at a local
level. Besides, the second type corresponds to inte-
gration tests which are necessary to guarantee com-
patibility and correct interaction between the different
components of the system which were influenced by
the dynamic adaptation.

As shown in Figure 3, this step consists in identi-
fying a subset of test cases from an already existing
test suite in order to test the affected parts of the sys-
tem. For that purpose several regression test selection
methods have been adopted in the literature. The pro-
posed methods are mostly based on dependency anal-
ysis techniques (Rothermel and Harrold, 1996).

Figure 3: Illustration of the test selection phase.

Since we opted for a standard-based test execu-
tion platform, our tests will be written in the TTCN-
3 language and run by TTCN-3 test components.
More precisely two types of TTCN-3 components
are needed namely Main Test Components (MTC)
and Parallel Test Components (PTC). As illustrated
in Figure 4, an MTC can be charged of the execution
of a unit test for a specific component of the system
under test (Figure 4.a). Otherwise it can collaborate
with a set of PTCs in order to execute some integra-
tion tests corresponding to a set of interacting compo-
nents of the system (Figure 4.b). In the next section
we explain how the placement of these different test
components is done.

2.3 Test Component Placement

In this section, we explain how to compute an ade-
quate plan to distribute test cases over the different
nodes of the execution environment. For this pur-

Figure 4: TTCN-3 components used to execute unit and
integration test cases.

pose we consider both connectivity and resource con-
straints of the different components of the system.

First the connectivity constraint corresponds to the
fact that a given TTCN-3 test component needs to
have a connection (either direct or indirect) with all
components of the system it is in charge of testing.

Figure 5: An example of a system under test made of ten
components.

For instance the system shown in Figure 5 is made
of ten components. These components can be divided
into three subsets according to connectivity namely
{C1,C2,C3}, {C4,C5} and {C6,C7,C8,C9,C10}.

Towards a Runtime Standard-based Testing Framework for Dynamic Distributed Information Systems

123



Consequently at least three test components are
needed in order to test this system (i.e., a TTCN-3 test
component for each of the previously defined subsets
of the system nodes).

The second constraint to take into account at this
level deals with the availability of resources required
by test components in order to execute the set of se-
lected test cases. That is each node of the execution
environment which is hosting a particular test compo-
nent must have enough resources to execute the test
cases attributed to this test component. Among these
resources we may consider for instance the CPU load,
the memory occupation, the storage capacities, etc.

Computing an adequate test placement strategy is
done by fitting the previous constraints. This pro-
cedure may be considered as a Constraint Satisfac-
tion Problem (CSP) (Ghédira and Dubuisson, 2013).
More precisely the problem in hand can be instan-
tiated as a particular variant of the Knapsack Prob-
lem (Martello and Toth, 1990; Kellerer et al., 2004),
called Multiple Multidimensional Knapsack Problem
(MMKP) (Lahami et al., 2012b).

Figure 6: Illustration of the TTCN-3 Test Component Place-
ment Module.

As presented in Figure 6, the test component
placement takes as inputs the minimal set of test cases
(generated during the test selection phase), a descrip-
tion of the amount of resources needed by the test
components and finally a description of the state of
available resources in each node of the execution plat-
form. As an output this module generates a resource
aware test plan.

2.4 Test Isolation and Execution

As already mentioned our work is based on the
TTCN-3 standard. More precisely we are inspired
by the work of (Lahami et al., 2012a; Lahami et al.,
2016). Next we recall the main constituents of the

TTCN-3 reference architecture as shown in Figure 7:
• Test Management (TM): starts and stops tests,

provides parameters and manages the whole test
process;

• Test Logging (TL): handles all log events;

• TTCN-3 Executable (TE): executes the com-
piled TTCN-3 code;

• Component Handling (CH): distributes parallel
test components and ensures communication be-
tween them;

• Coding and Decoding (CD): encodes and de-
codes data exchanged with the TE;

• System Adapter (SA): adapts the communication
with the system under test;

• Platform Adapter (PA): implements external func-
tions.
In Figure 7, the abbreviation TCI stands for

TTCN-3 Control Interface and the abbreviation TRI
stands for TTCN-3 Control Interface.

Figure 7: TTCN-3 Reference Architecture (Lahami et al.,
2016).

As already mentioned, we need to consider some
isolation operations during the test execution phase in
order to avoid any possible interference between busi-
ness behaviors and test behaviors. So inspired by the
work of (Lahami et al., 2016), we intend to extend
the standard TTCN-3 architecture with a test isola-
tion component (Figure 8). This new component is
connected with both the system adapter (SA) and the
system under test. It allows to choose the appropriate
isolation strategy for each constituent under test de-
pending on the nature of that constituent. Next, we
briefly describe five possible isolation strategies:
• The BIT-based Strategy: corresponds to a built-

in-testing approach where we assume that the

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

124



SUT components are initially equipped with inter-
faces which accept both business inputs and test
inputs simultaneously.

• The Aspect-based Strategy: which is inspired
from Aspect-Oriented Programming (AOP)
paradigm (Kienzle et al., 2010; Kiczales et al.,
2001) and consists in equipping each SUT
component with an aspect providing testing
facilities.

• The Tagging-based Strategy: consists in tagging
test inputs with a special flag to differentiate them
from business inputs.

• The Cloning-based Strategy: consists in creat-
ing a copy of the component under test and then
testing the created clone instead of the original
component.

• The Blocking-based Strategy: consists in pre-
venting temporarily the component under test
from receiving any requests from its environment
except from the test components to which it is
connected.

Figure 8: TTCN-3 Architecture Extended with an Isolation
Component (Lahami et al., 2016).

3 TESTING OF BEHAVIORAL
ADAPTATIONS

Now we move to the second part of this work which
deals with runtime testing of distributed information
systems after behavioral adaptations. For this purpose
we adopt a formal approach (Krichen, 2010; Krichen
and Tripakis, 2009) based on the use of the model
of timed automata (Alur and Dill, 1994). That is we

assume the our system is modelled as a simple timed
automaton or a product of timed automata. Moreover
we assume the considered model may evolve either
partially or entirely after the occurrence of a dynamic
behavioral adaptation. Consequently there is a need to
update the set of available test cases either by creating
new tests or modifying old ones. For that reason we
need to take advantage from both selective regression
testing and model-based testing techniques.

Figure 9: The different steps for behavioral adaptations val-
idation of the system under test.

In order to reach this goal, we adopt a four-step
approach as illustrated in Figure 9. The four consid-
ered steps are the following:

• Model Differentiation: consists in comparing
the old and the new model of the distributed infor-
mation system we have in hand in order to detect
similarities and differences between them;

• Old Tests Classification: consists in sorting the
old tests and dividing them into three groups
(1. Tests which need to be removed because they
are no longer valid, 2. Tests which are partially
valid and need to be updated and finally 3. Tests
which are still valid and do not need any update);

• Test Update and Generation: consists in updat-
ing the partially valid tests detected in the previ-
ous step and generating new test cases covering
the new behaviors appearing in the new model of
the system;

• TTCN-3 Transformation: consists in concretiz-
ing the set of obtained tests by translating them
from an abstract level into a TTC-3 representa-
tion.

Towards a Runtime Standard-based Testing Framework for Dynamic Distributed Information Systems

125



More details about these different steps are given
in the next subsections. However before that we start
by giving a brief description of the formalism used to
model distributed information systems, namely UP-
PAALL timed automata.

3.1 UPPAAL Timed Automata

In order to specify the behavioral models of evolved
systems, Timed Automata (TA) are chosen for the
reason that they correspond to a widespread formal-
ism usually used for modeling behaviors of criti-
cal and real-time systems. More precisely, we opt
for the particular UPPAAL style (Behrmann et al.,
2004) of timed automata because UPPAAL is a well-
established verification tool. It is made up of a system
editor that allows users to edit easily timed automata,
a simulator that visualizes the possible dynamic exe-
cution of a given system and a verifier that is charged
with verifying a given model w.r.t. a formally ex-
pressed requirement specification. Within UPPAAL
timed automata, a system is modeled as a network of
timed automata, called processes. A timed automa-
ton, is an extended finite-state machine equipped with
a set of clock-variables that track the progress of time
and that can guard when transitions are allowed.

Let C l be a set of continuous variables called
clocks, and Act = I np∪Out} where I np is a set of
inputs and Out a set of outputs. Gd(C l) is defined as
the set of guards on the clocks C l being conjunctions
of constraints of the form c op n, where c∈ C l, n∈N,
and op ∈ {6,≤,=,≥,>}. Moreover, let U p(C l) de-
note the set of updates of clocks of the form c := n.

A timed automaton over (Act, C l) is a tuple
(Loc, l0,Act,C l, Inv,Ed), where :

• Loc is the set of locations;

• l0 ∈ Loc is the initial location;

• Inv : Loc 7−→ Gd(C l) a function which an invari-
ant to each location;

• Ed is the set of edges such that Ed ⊆ Loc×
Gd(C l)×Actτ×U p(C l)×Loc.

Figure 10: A simple UPAALL timed automaton.

A simple example of a UPPAALL timed automa-
ton is shown in Figure 10. It has:

• Two locations: Idle and InUSe;

• One input action: use?;

• One output action done!;

• One clock (x).

The system is initially occupying the location Idle.
The clock x is reset to 0 when the input action use?
takes place. The system is allowed to stay at most
C times unit at the location InUse. Finally when the
clock x reaches the value C the output action done! is
produced and the system goes back to its initial loca-
tion. Then the same cycle can start again and again.

3.2 Model Differentiation

As already mentioned the goal of this step is to com-
pare the old and new models of the system under test.
That is to find differences and similarities between
them. This allows us to avoid generating the whole set
of test cases from scratch after each behavioral adap-
tation of the system. For this purpose we need to split
the behaviors described by the new model of the sys-
tem into four groups (as illustrated in Figure 9):

• Newly Detected Behaviors: correspond to the set
of behaviors present in the new model of the sys-
tem but not in the old one;

• Partially Valid Behaviors: correspond to the set
of behaviors that bear a high level of similarity
with some old behaviors of the system but are not
completely identical to them;

• Still Valid Behaviors: correspond to the set of
behaviors which are in common between the two
versions of the model of the system;

• No Longer Valid Behaviors: correspond to the
set of behaviors present in the old model of the
system but not in the new one and which therefore
must be rejected.

To achieve this goal, we need to take advantage
from different works present in the literature. For in-
stance, (Pilskalns et al., 2006) presented a technique
which allows to reduce the complexity of identify-
ing the modification impact from different UML dia-
grams. The authors consider different design changes
which are classified according to whether they create,
modify, or delete elements in the diagram.

In this same context, (Chen et al., 2007) propose
a regression technique based on the use of the model
of Extended Finite State Machine. This model is used
to identify the effects of three types of modifications:
modification, addition or deletion of a transition.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

126



3.3 Old Tests Classification

Once the computation of the different sets of behav-
iors is achieved as explained in the previous step, the
next task to do consists in splitting the set of old avail-
able test cases accordingly into three subsets of tests
(see Figure 9):

• Partially Valid Tests: correspond to the set of
partially valid behaviors of the new model of the
system;

• Still Valid Tests: correspond to the set of still
valid behaviors of the new model;

• No Longer Valid Tests: correspond to the set of
no longer valid behaviors present in the old model
of the system and which must be rejected.

At this level too we need to take advantage from
existing contributions in the literature. For example,
(Briand et al., 2009) introduce a UML-based regres-
sion test selection strategy. The latter allows to clas-
sify tests issued from the initial behavioral models as
obsolete, reusable and re-testable tests.

Similarly, (Fourneret et al., 2011) proposed a tech-
nique which selects reusable tests, discards obsolete
ones and generates only new ones.

Moreover in (Korel et al., 2005), the authors split
the set of old tests into high and low priority subsets.
A high priority is attributed to tests that manipulate
modified transitions and a low priority to tests that do
not include any modified transition.

3.4 Test Update and Generation

As illustrated in Figure 9, we need to update partially
valid tests identified during the test classification step
and to derive new test cases from the newly detected
behaviors identified during the model differentiation
step. For this purpose we need to use techniques bor-
rowed from model-based testing approaches (Krichen
and Tripakis, 2009; Krichen, 2012).

More precisely the technique we intend to adopt
consists in using a particular type of timed automata
called observer automata (Blom et al., 2005). These
automata allow to model the specific behaviors we
are interested in testing. In our case the behaviors
to model are the newly detected behaviors discovered
during the differentiation step.

The main steps to follow are the following:

1. Transforming the desired behavior into an ob-
server automaton;

2. Computing the product of the observer automaton
and the new timed automaton model of the system
under test;

3. Deriving tests cases from the obtained timed-
automaton product using classical test generation
techniques.
The previously mentioned steps can be performed

using the test generation tool UPPAAL CO
√

ER
(Hessel and Pettersson, 2007) which supports the no-
tion of observers and test case generation.

3.5 TTCN-3 Transformation

This step consists in defining a set of rules to derive
TTCN-3 tests from abstract test cases obtained dur-
ing the previous steps. Our transformation algorithm
will be inspired by the following works (Axel Ren-
noch and Schieferdecker, 2016; Lahami et al., 2012a;
Hochberger and Liskowsky, 2006; Ebner, 2004).

In table 1 we give some examples of the rules
to use to translate abstract test cases into concrete
TTCN-3 tests. These rules are briefly explained be-
low:
• R1: consists in generating a new TTCN-3 module

for each considered abstract test suite;
• R2: consists in transforming each abstract test se-

quence into a concrete TTCN-3 test case;
• R3: consists in associating a TTCN-3 timer with

each abstract timed behavior;
• R4: consists in transforming each abstract test se-

quence (with the form input-delay-output) into a
concrete TTCN-3 function;

• R5: consists in transforming the abstract channels
(declared in the UPPAAL XML file) into concrete
TTCN-3 templates.

Table 1: TTCN-3 Transformation Rules.

R# Abstract Concepts TTCN-3 Concepts
R1 Test Suite TTCN-3 Module
R2 Single Trace TTCN-3 Test Case
R3 Timed Behavior TTCN-3 Timer
R4 Test Sequence TTCN-3 Function
R5 Channel TTCN-3 Template

4 CONCLUSION

In this article, we adopted a runtime testing approach
to validate and test dynamic distributed information
systems. For this purpose, we proposed a standard-
based and resource aware test execution platform
which allows to deal efficiently with both structural
and behavioral adaptations. On the one hand struc-
tural adaptations correspond to the addition or dele-
tion of nodes and/or connections between the nodes

Towards a Runtime Standard-based Testing Framework for Dynamic Distributed Information Systems

127



of the system under test. On the other hand behav-
ioral adaptations correspond to the addition, deletion
or update of the software components or functionali-
ties installed on the physical devices of the considered
system under test.

Firstly, Our platform is standard-based since it
is built upon the TTCN-3 specification and execu-
tion testing language. Indeed we adopted the generic
standard TTCN-3 architecture extended with an iso-
lation layer which allows to avoid possible risks of
interference between testing and business processes.
To reach this goal, five possible isolation strategies
may be adopted at this level namely: 1. BIT-based,
2. aspect-based, 3. tagging-based, 4. cloning-based,
and finally 5. blocking-based.

Secondly, our platform is resource aware since it
ensures test selection and optimal placement of test
components among physical nodes of the system un-
der test. The test selection phase consists in identi-
fying a subset of tests scenarios from an already ex-
isting repository in order to test the affected parts of
the system. Besides, the placement phase consists in
computing an appropriate plan to assign test cases to
the different nodes of the execution environment us-
ing adequate optimization techniques.

Regarding behavioral adaptations, our methodol-
ogy comprises four steps. The first step corresponds
to the differentiation between the old and the new
models of the system in order to identify similarities
and differences between them. The second step con-
sists in sorting the old tests and splitting them into
three suitable sets. The third step lies in updating a
subset of old tests and in generating a set of new test
cases. Finally, the fourth step consists in translating
the set of obtained tests scenarios from an abstract
representation into the TTCN-3 language.

Our work is at its beginning and many efforts are
still needed on both theoretical and practical aspects
in order to achieve the different goals mentioned in
this article:

• We need to build an appropriate model for the
considered system under test. At this level we
need to choose an optimal level of abstraction for
this model. That is the latter should be neither
too small nor too big. Being too small may cause
the loss of important details of the system and be-
ing too big may lead to the famous state explo-
sion problem which may make our approach com-
pletely infeasible.

• We also need to consider some sophisticated
heuristics to solve the test component placement
problem. In fact since we are adopting a runtime
testing approach then the time to find an accept-
able placement plan should be enough short in or-

der to detect anomalies at the right moment.

• Moreover we need to propose efficient techni-
cal solutions to implement the different isolation
strategies mentioned previously in this article. In
the same manner we should develop and install
adequately the different TTCN-3 test components
upon the physical devices of the system in order
to guarantee the success of the whole approach.

• Finally we may combine load and functional test-
ing aspects as done in (Krichen et al., 2018;
Maâlej et al., 2013; Maâlej et al., 2012b; Maâlej
et al., 2012a).

REFERENCES

Alhazbi, S. and Jantan, A. (2007). Dependencies Manage-
ment in Dynamically Updateable Component-Based
Systems. Journal of Computer Science, 3(7):499–505.

Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theoretical Computer Science, 126(2):183–235.

Axel Rennoch, Claude Desroches, T. V. and Schieferdecker,
I. (2016). TTCN-3 Quick Reference Card.

Behrmann, G., David, A., and Larsen, K. (2004). A tutorial
on uppaal. In Bernardo, M. and Corradini, F., editors,
International School on Formal Methods for the De-
sign of Computer, Communication, and Software Sys-
tems, SFM-RT 2004. Revised Lectures, volume 3185
of LNCS, pages 200–237. Springer Verlag.

Blom, J., Hessel, A., Jonsson, B., and Pettersson, P. (2005).
Specifying and Generating Test Cases Using Observer
Automata. In Proceeding of the 5th International
Workshop on Formal Approaches to Software Testing
(FATES’05), pages 125–139.

Briand, L. C., Labiche, Y., and He, S. (2009). Automating
Regression Test Selection Based on UML Designs. In-
formation & Software Technology, 51(1):16–30.

Chen, Y., Probert, R. L., and Ural, H. (2007). Model-
based Regression Test Suite Generation Using Depen-
dence Analysis. In Proceedings of the 3rd Interna-
tional Workshop on Advances in Model-based Testing
(A-MOST’07), pages 54–62.

Ebner, M. (2004). TTCN-3 Test Case Generation from Mes-
sage Sequence Charts. In Proceeding of the Work-
shop on Integrated-reliability with Telecommunica-
tions and UML Languages (WITUL’04).

Fourneret, E., Bouquet, F., Dadeau, F., and Debricon, S.
(2011). Selective Test Generation Method for Evolv-
ing Critical Systems. In Proceedings of the 2011 IEEE
4th International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’11),
pages 125–134.

Ghédira, K. and Dubuisson, B. (2013). Constraint Satis-
faction Problems, chapter Foundations of CSP, pages
1–28. John Wiley & Sons, Inc.

Grusho, A. A., Grusho, N. A., and Timonina, E. E. (2017).
Information security architecture synthesis in dis-

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

128



tributed information computation systems. Automatic
Control and Computer Sciences, 51(8):799–804.

Hessel, A. and Pettersson, P. (2007). CO
√

ER A Real-
Time Test Case Generation Tool. In Proceeding of the
7th International Workshop on Formal Approaches to
Testing of Software (FATES’07).

Hochberger, C. and Liskowsky, R., editors (2006). In-
formatik 2006 - Informatik für Menschen, Band 2,
Beiträge der 36. Jahrestagung der Gesellschaft für In-
formatik e.V. (GI), 2.-6. Oktober 2006 in Dresden, vol-
ume 94 of LNI. GI.

Ioannidis, Y. E. and Rantakrishnan, R. (1988). Effi-
cient Transitive Closure Algorithms. In Proceedings
of the 14th International Conference on Very Large
Databases (VLDB’88).

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knap-
sack Problems. Springer, Berlin, Germany.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). An Overview of As-
pectJ. In Proceedings of the 15th European Confer-
ence on Object-Oriented Programming (ECOOP’01),
pages 327–353.

Kienzle, J., Guelfi, N., and Mustafiz, S. (2010). Transac-
tions on Aspect-Oriented Software Development VII:
A Common Case Study for Aspect-Oriented Modeling,
chapter Crisis Management Systems: A Case Study
for Aspect-Oriented Modeling, pages 1–22. Springer
Berlin Heidelberg.

Korel, B., Tahat, L., and Harman, M. (2005). Test Prioritiza-
tion Using System Models. In Proceedings of the 21st
IEEE International Conference on Software Mainte-
nance(ICSM’05), pages 559–568.

Krichen, M. (2010). A Formal Framework for Confor-
mance Testing of Distributed Real-Time Systems. In
Proceedings of the 14th International Conference On
Principles Of Distributed Systems, (OPODIS’10).

Krichen, M. (2012). A formal framework for black-box
conformance testing of distributed real-time systems.
IJCCBS, 3(1/2):26–43.

Krichen, M., Maâlej, A. J., and Lahami, M. (2018). A
model-based approach to combine conformance and
load tests: an ehealth case study. IJCCBS, 8(3/4):282–
310.

Krichen, M. and Tripakis, S. (2009). Conformance testing
for real-time systems. Formal Methods in System De-
sign, 34(3):238–304.

Lahami, M., Fakhfakh, F., Krichen, M., and Jmaı̈el, M.
(2012a). Towards a TTCN-3 Test System for Run-
time Testing of Adaptable and Distributed Systems.
In Proceedings of the 24th IFIP WG 6.1 International
Conference Testing Software and Systems (ICTSS’12),
pages 71–86.

Lahami, M., Krichen, M., Bouchakwa, M., and Jmaiel,
M. (2012b). Using knapsack problem model to de-
sign a resource aware test architecture for adaptable
and distributed systems. In Testing Software and Sys-
tems - 24th IFIP WG 6.1 International Conference,
ICTSS 2012, Aalborg, Denmark, November 19-21,
2012. Proceedings, pages 103–118.

Lahami, M., Krichen, M., and Jmaı̈el, M. (2016). Safe and
Efficient Runtime Testing Framework Applied in Dy-
namic and Distributed Systems. Science of Computer
Programming (SCP), 122(C):1–28.

Larsson, M. and Crnkovic, I. (2001). Configuration Man-
agement for Component-Based Systems. In Proceed-
ing of the 10th International Workshop on Software
configuration Management (SCM’01).

Li, B., Zhou, Y., Wang, Y., and Mo, J. (2005). Matrix-based
Component Dependence Representation and Its Ap-
plications in Software Quality Assurance. ACM SIG-
PLAN Notices, 40(11):29–36.

Maâlej, A. J., Hamza, M., Krichen, M., and Jmaiel, M.
(2013). Automated significant load testing for WS-
BPEL compositions. In Sixth IEEE International Con-
ference on Software Testing, Verification and Vali-
dation, ICST 2013 Workshops Proceedings, Luxem-
bourg, Luxembourg, March 18-22, 2013, pages 144–
153.

Maâlej, A. J., Krichen, M., and Jmaiel, M. (2012a). Con-
formance testing of WS-BPEL compositions under
various load conditions. In 36th Annual IEEE Com-
puter Software and Applications Conference, COMP-
SAC 2012, Izmir, Turkey, July 16-20, 2012, page 371.

Maâlej, A. J., Krichen, M., and Jmaiel, M. (2012b). Model-
based conformance testing of WS-BPEL composi-
tions. In 36th Annual IEEE Computer Software
and Applications Conference Workshops, COMPSAC
2012, Izmir, Turkey, July 16-20, 2012, pages 452–457.

Martello, S. and Toth, P. (1990). Knapsack Problems: Al-
gorithms and Computer Implementations. John Wiley
& Sons, Inc., New York, NY, USA.

Pilskalns, O., Uyan, G., and Andrews, A. (2006). Re-
gression Testing UML Designs. In Proceedings of
the 22nd IEEE International Conference on Software
Maintenance (ICSM’06), pages 254–264.

Qu, B., Liu, Q., and Lu, Y. (2010). A Framework for
Dynamic Analysis Dependency in Component-Based
System. In the 2nd International Conference on Com-
puter Engineering and Technology (ICCET’10), pages
250–254.

Rothermel, G. and Harrold, M. (1996). Analyzing Regres-
sion Test Selection Techniques. IEEE Transactions on
Software Engineering, 22(8):529–551.

Yesikov, D., Ivutin, A., Larkin, E., and Kotov, V. (2017).
Multi-agent approach for distributed information sys-
tems reliability prediction. Procedia Computer Sci-
ence, 103:416 – 420. XII International Symposium
Intelligent Systems 2016, INTELS 2016, 5-7 October
2016, Moscow, Russia.

Towards a Runtime Standard-based Testing Framework for Dynamic Distributed Information Systems

129


