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Abstract: As data becomes vital to urban development of modern cities, Thailand has initiated a smart city project on 
pilot cities around the country. We have implemented an interoperable data platform for smart city to enable 
Internet of Things (IoT) data exchanges among organizations through APIs. One of the key success is that 
people can access and visual the data. However, data can have various attributes since standard has not 
completely established and adopted. Therefore, it is difficult to automate the process to achieve 
comprehensive visualization. Traditionally, we require developers to manually examine data streams to 
determine which data attribute should be presented. This process can be very time consuming. The 
visualization system must be manually updated whenever a source stream modifies its data attributes. This 
problem becomes an impediment to implement a scalable cloud-based visualization service. To mitigate this 
challenge, we propose an automated attribute inference approach to automatically select key visualizable 
attribute from heterogeneous streams of data sources. We have experimented with different data attribute 
selection algorithms, namely an empirical rule-based system and the chosen machine learning algorithms. We 
implement and evaluate the proposed selection algorithms through our 3D visualization program in order to 
get the feedback from users. 

1 INTRODUCTION 

In the last decade, development of embedded system 
and sensors has thrived in an unimaginable pace due 
to the growing demand of Internet-of-Things (IoT) 
market around the world. According to the Forbes 
prediction (Columbus, 2018), IoT market will reach 
about $520B in 2021, more than double the $235B 
spent in 2017 with influence of cloud service 
providers offering IoT services. Given the fast-
growing demand, IoT devices and sensors become 
smaller in size and much cheaper, making more 
attractive to general consumers and even 
organizations to adopt.  

For example, organizations and individuals start 
embrace various sensors in their surrounding 
environment for 24/7 monitoring, providing to real-
time feedback to adjust resource usage ubiquitously, 
e.g. AC/heat control and electricity consumption. 
Several Thai government agencies have utilized 
sensors and embedded system to perform real-time 
monitoring and managing public resources; for 
example, sensors to measure water level, water 

quality and air quality have been deployed throughout 
the country, especially in pilot cities.   

With strong IoT demand, many sensor 
frameworks and platforms have emerged, although 
they might not be fully compatible due to lack of 
standard. This can lead to difficulty in data exchange 
from different systems for cross-data-analytics. To 
mitigate such difficulty, we have created a data 
exchange platform for smart city 
(https://developers.smartcity.kmitl.io/) to facilitate 
data exchange between different systems, including 
data visualization. The data exchange platform was 
designed with micro-service architecture and the 
graph-based access control management to achieve 
scalability (Sangpetch, 2017). Data can come from 
legacy systems, which rely on file transfer, to 
proprietary systems, which may or may not have data 
APIs. Even worse, when users need to browse 
through different available data sources in order to 
select data streams to use or verify the continuity of 
data, it is very challenging to access data in the 
original formats. To alleviate such challenge, we 
present a data visualization service in order to easily 
comprehend data in demand.   
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In order to create the data visualization service on 
cloud, we have to overcome the challenges in 
different data sources (i.e. various sensors and 
devices), data formats and attributes. Normally, a data 
stream from a sensor can contain many data 
attributes; however, we cannot present all attributes 
on screen without overwhelming users. Traditionally, 
users or developers need to understand each data 
attribute and carefully select a few attributes to 
represent such a data stream. Seeing current data 
points easily is crucial for users or developers to 
ensure that their system is still working properly.  

According to our study on data APIs of IoT 
devices or sensors (refer to Section 3, many data APIs 
come with many data attributes and several attributes 
are quite static, e.g. description, label and no data. 
Giving the current manual process of identifying a 
key data attribute, this becomes a great impediment to 
scalability and productivity. The situation becomes 
worse with the rise of sensors / IoT devices 
deployment due to many more data streams to deal 
with.  

To reduce the manual process involved in 
determining a key data attribute for each data API, we 
propose an automated key attribute selection system 
to automatically examine a data stream and identify 
which data attributes should be presented. We have 
tried different approaches for the core algorithm of 
our automated key attribute selection, namely our 
rule-based algorithm and the machine learning 
algorithms, including Decision Tree (Quinlan, 1986), 
Naïve Bayes (Russell, 2003) and K Nearest Neighbor 
(KNN) (Altman, 1992). According to the evaluation 
results, KNN yields the highest accuracy, 87.15%, 
while the rule-based algorithm performs the worst, 
83.90%. To demonstrate our proposed automated 
system, we implement a visualization to display the 
value of the selected key data attribute for users to 
easily verify our key-data selection. 

This paper is organized as follows. Section 2 
discusses the related works. Our survey study on 
different data APIs is described in Section 3. Section 
4 describes our proposed automated key attribute 
selection system. Section 5 focuses on the proposed 
attribute selection algorithms which are our rule-
based algorithm and the selected machine learning 
algorithms. The evaluation results of the different 
decision-making algorithms are demonstrated and 
discussed in Section 6. We conclude in Section 7. 

 
 
 
 
 

2 RELATED WORK 

There have been multiple approaches to resolve the 
interoperability issues from heterogeneous 
information systems. The issues have been 
investigated in database and data engineering where 
various schemas from different systems have to be 
consolidated and matched. Similarity flooding 
(Melnik, 2002) technique has been proposed to 
identify matching data elements based on graph 
structure of exchange objects. Linguistic feature 
(Shiang, 2008) can also be used to simplify the 
exchange object structure before trying to match. The 
approaches focused more on mapping between a few 
complex objects whereas our experiments are geared 
toward identifying common key attributes which can 
be used for visualization across a wide range of 
sources. 

Previous approaches tend to resolve the issue of 
heterogeneous data based on identifying common 
schema. The resolution could be done manually by 
specifying domain-specific mapping between 
document schemas (Yu, 2010), (Zhang, 2010), 
building common metadata dictionary (Xu, 2011), or 
allowing user-defined rule for mapping (Tan, 2011). 
Our approach utilizes both metadata dictionary to 
define common data type and apply rule-based and 
machine learning approach to identify common 
schema. 

When considering the context of IoT and Smart 
City data, researchers has utilized map-based 
interface (Noguchi, 2008) to organize urban 
information exchange and defining relationships 
between persons, places, and information. Users can 
share semantically related information through urban 
memories system. Our approach also identifies spatial 
information in the data in order to provide potential 
label mapping from different data sources. 

3 STUDY ON APIS OF IOT 
DEVICES AND SENSORS 

As mentioned earlier, there is yet no single data 
standard for IoT devices and sensors. Hypothetically, 
it is possible that every API may have its own data 
attribute names and structure with potentially some 
congruity. In order to verify our hypothesis, we 
survey 97 available data APIs of IoT devices and 
sensors so that we can examine the data attribute and 
data structure of each API to determine commonality 
and variety among them. The learning and 
observations from the study should help us define 
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rules to identify a key data attribute or select an 
appropriate algorithm.    

From the selected data APIs, 79 of them (81.44%) 
carry raw data from IoT devices or sensors and 18 of 
them (18.56%) transmit processed data, i.e. the data 
has been processed and analyzed. The selected data 
APIs belong to different countries, such as Singapore, 
China, UK, Spain, USA and Thailand. The list of the 
selected data APIs is shown in Table 1. Note that the 
APIs listed below exist as of April 2018. All APIs 
come from different domains, e.g. weather 
stations/sensors, transportations, and so on, as 
illustrated in Table 2. 

Table 1: Examples of selected APIs in our study. 

API Names Reference Websites for APIs 

1. Geoname.org:  
Postal code search 

http://www.geonames.org/export/w
eb-services.html 

2. Wunderground.com: 
Severe alert 

https://www.wunderground.com/we
ather/API/d/docs?d=data/alerts&M
R=1 

3. Travelpayouts.com: 
Hotels location 

https://support.travelpayouts.com/h
c/en-us/articles/115000343268-
Hotels-data-API 

4. Wefeelfine.org: 
Sentimental 

http://wefeelfine.org/API.html 

5. Walkscore.com: Near 
bus stops 

https://www.walkscore.com/profess
ional/public-transit-
API.php#search_stops 

6. Ura.gov.sg: Car park 
availability 

https://www.ura.gov.sg/maps/ura/ur
a_dataservice/samples/Car_Park_A
vailability.txt 

7. Aqicn.org: Air quality 
http://aqicn.org/json-API/doc/#API-
City_Feed-GetCityFeed 

8. Freegeoip.net: Search 
location from IP 

https://freegeoip.net/?q=49.49.242.2
21 

9. Citybik.es: City bikes http://API.citybik.es/v2/ 

10. Aerisweather.com: 
Currently active alerts 

https://www.aerisweather.com/supp
ort/docs/API/reference/endpoints/ad
visories/ 

11. Openweathermap.org: 
Weather data 

https://openweathermap.org/current 

12. Weather.mg: Air 
quality 

https://API.weather.mg/API-detail-
pages/air-quality-parameter.html 

13. 511ny.org: Cameras 
https://511ny.org/developers/help/A
PI/get-API-getcameras_Key_format

14. TransportAPI.com: 
Journey plan 

https://developer.transportAPI.com/
docs?raml=https://transportAPI.co
m/v3/raml/transportAPI.raml#/uk_c
ar_journey_from_from_to_to_json#
uk_cycle_journey_from_from_to_t
o_json 

15. Ip2location.com: 
Location from IP 

https://www.ip2location.com/web-
service 

16. Readthedocs.io: Noise 
level 

http://fiware-
datamodels.readthedocs.io/en/latest/
Environment/NoiseLevelObserved/
doc/spec/index.html 

17. Noaa.gov: Noaa 
stations 

https://www.ncdc.noaa.gov/cdo-
web/webservices/v2#stations 

API Names Reference Websites for APIs 

18. Yahoo.com: Wind 
https://developer.yahoo.com/weathe
r/ 

19. Breezometer.com: Air 
quality 

https://breezometer.com/air-quality-
API/ 

20. Data.gov.sg: Car park 
https://data.gov.sg/dataset/carpark-
availability 

21. Data.cityofnewyork.us: 
Recycling Bins 

https://dev.socrata.com/foundry/dat
a.cityofnewyork.us/ggvk-gyea 

22. 
Transport.opendata.com: 
Connections 

https://transport.opendata.ch/docs.ht
ml 

23. Data.cityofchicago.org: 
Crimes 

https://dev.socrata.com/foundry/dat
a.cityofchicago.org/6zsd-86xi 

24. Data.cityofnewyork.us: 
Harbor Water Quality 

https://dev.socrata.com/foundry/dat
a.cityofnewyork.us/peb4-ivfn 

25. Dallasopendata.com: 
Garbage 

https://dev.socrata.com/foundry/ww
w.dallasopendata.com/eqhe-99hc 

26. Propellerhealth.com: 
Forecast 

https://www.propellerhealth.com/air
-by-propeller/ 

27. OpenDataPhilly.org: 
Rain Gauges 

https://www.opendataphilly.org/dat
aset/rain-gauges 

28. Smartcitystructure. 
com: Carbon sensor 

https://www.smartcitystructure.com
/API/v1/environment/things/58b5a4
d1f4d5fd84057b23e3/telemetries?a
ccess_token=lDzl1qr0n4KUcUlR6s
C4fKcj07lMM0KvN4GniUkl&sort
=id%2C-
createdAt&page=0&perpage=1 

29. Smartcity.kmitl.io: 
Sentimental 

https://API.smartcity.kmitl.io/API/v
1/sentimental/predicted 

Table 2: Categories of the data APIs selected in our study. 

Data API Categories Data API Categories 

Weather and environment 35 

Real estate 19 

Transportation 18 

Location and places 16 

Healthcare  11 

Internet of Things (IoT) 4 

Social media 3 

Energy 1 

As illustrated in Figure 1, only 11.34% of the 
selected APIs have less than or equal to 5 attributes 
and 35.05% of the APIs have less than 10 attributes. 
This means 64.95% of the APIs have 10 or more 
attributes. We also found that 20.59% of the APIs 
have more than 20 data attributes and a few APIs have 
as many as 40-90 attributes. According to our study, 
many data APIs have too many data attributes, 
making difficult to go through data attributes 
manually. From our observations, each API has one 
or two data attributes that carry key values of the API. 
Hence, if we can automatically discover a key 
attribute of each API, it would help us check whether 
an API is still working, not stalling.  
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Additionally, 73.13% of the APIs’ the key 
attribute have string type, while 18.06%, 8.37% and 
0.44% of the key attributes have int, float and 
Boolean types respectively. 17.53% of the APIs have 
no float, integer or Boolean attributes. These findings 
suggest that a key attribute can come in different 
types and the majority is not even a number. From the 
collected data APIs, there are APIs that use words 
(string type) to indicate a quality level, for examples 
good, bad, low, medium and high. 

4 PROPOSED AUTOMATED 
ATTRIBUTE SELECTION 
SYSTEM 

In this paper, we propose an automated system to 
automatically process the data stream sent through an 
API and then identify its key attribute. As 
demonstrated in Figure 2, our system consists of two 
primary components, namely 1) the parser engine, 
and 2) the decision-making algorithm, which is 
essential to identify a key attribute correctly, referred 
to Section V for details.  

 

Figure 1: The CDF graph of the attribute number of each 
selected API in our study. 

For the parser engine, it is responsible for parsing 
data attributes and determining the type of attributes 
as well as counting the frequency of the same attribute 
path found in one data API response. The data input 
format for the parse engine is in JSON format. 
According to our study in Section 3, we found that the 
JSON data types (i.e. integer, float, Boolean and 
string) are not adequate to imply a meaning of an  
 

 

Figure 2: The overview of our proposed automated system 
for identifying a key attribute of an API. 

attribute, thereby difficult to gauge the attribute 
significance. From our study, many attributes of the 
collected APIs have string type but only a text or 
string that indicates a quality level tends to be a key 
attribute. Otherwise, they are just descriptions or 
annotations. As a result, we introduce our metadata 
types to help us understand the meaning of each 
attribute. Our metadata types are defined as follows; 

1. Geo-location: Pinpoint a geographical location. 
There are one or more data attributes representing 
a coordinate pair or latitude/longitude numbers, 
e.g. “latitude: 13.7458, longitude: 100.5343”, 
“coordinates: 13.7458,100.5254” 

2. Timestamp: Indicate the time. 
Examples are "05/01/2009 14:57:32.8" and "1 
May 2008 2:57:32.8 PM". 

3. Number: Represent numeric value 
Examples are 120 and 34.456. 

4. Ranking: Indicate a level of quality or quantity.  
Examples are good, bad, low, medium, high, 
moderate and normal. 

5. Nominal value: Miscellaneous texts 
Any texts that do not implicate ranking, such as 
description or annotation. 

The parser assigns a path to each attribute. Path is 
defined as a hierarchy of an attribute access 
embedded in a data response. After an attribute is 
mapped with one of our metadata types, the parser 
engine also counts the number of times that the same 
attribute path appears in one data API response, called 
“repetition”.  For example, if data is { “status”:“ok”, 
"data":[ { “value”: 1.0 }, { “value”: 2.0 } ], 
“desc”:“my value” }, then the repetition of 
“data/value” is 2. Attributes with high repetition 
values are likely candidates to be used as data sources 
for visualization. 

Then, the parser engine will send the information 
of each attribute, namely an attribute name, a 
programming data type, metadata type and repetition, 
to the decision-making algorithm, as shown in Figure 
2. In the decision-making stage, one of the algorithms 
proposed in Section V will determine a key attribute 
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for a given API. Then, the key attribute output will 
become an input to our 3D visualization which 
displays the value stream of the key attribute to 
developers automatically. 

We implement the parser engine and the 3D 
visualization with C# on Unity. We also use WRLD 
in our 3D visualization to help populate 3D objects. 
Our 3D visualization will automatically query the 
latest value of the key attribute and display it in a 
proper format. For example, if a key attribute also 
comes with a geo-location, our 3D visualization will 
display the value at the given location. A screenshot 
sample of our 3D visualization is illustrated in Figure 
3. Our automated key attribute selection system and 
our 3D visualization together can help developers 
reduce time to go through data and check the value 
stream manually in order to see whether a data API is 
still working properly. 

 

Figure 3: A screenshot sample of our 3D visualization, 
displaying the crowd density in the Bangkok downtown 
area in three levels: high, medium and low levels. 

5 KEY ATTRIBUTE SELECTION 
ALGORITHMS 

A key attribute selection algorithm is the heart of 
our automated system. The accuracy of predicting a 
key data attribute using the information sent from the 
parser engine, is essential. In this work, we evaluate 
four different approaches to identify key data attribute 
from API responses. For our purpose of constructing 
visualization engine from multiple APIs, we need to 
identify key data attributes whose values match 
metadata type number, ranking, and nominal values. 
Note that the geo-location and timestamp as these 
values are often used to plot against the key data 
attribute. For example, the geo-location information 
will be used to identify the location of the key data 
attribute in the map. The timestamp will be used as 
the x-axis of a chart plotted against the key data 
attribute. 

5.1 Rule-based Algorithm 

We create our rule-based algorithm where the rules 
encompass the observations and insights we have 
learned from the study in Section III. Based on the 
observed APIs, we have manually tagged and 
identified key data attribute from the responses. The 
rule-based algorithm has been formulated based on 
the statistical result of occurrence of the key data 
attribute names and type of manually tagged attribute. 
From our available data API, we have identified the 
priority and name of the key data attributes as shown 
in Table 3. 

Table 3: Names of key data attributes, ranked by 
occurrences of manually-tagged key data attributes. 

Priority Ranking Number Nominal 
1 status index description (s)
2 condition (s) main details 
3 level value text 
4 result (s) total alerts 
5 label average, avg message (s) 
6 - normal - 
7 - speed - 

The result from Table 3 suggests that most API 
providers adopt a similar naming strategy for key data 
attributes. Our rule-based algorithm identifies the key 
data attribute by first extracting a pair of the attribute 
name and its metadata type from the API responses. 
We then try to match the extracted pair with another 
pair of attribute name and metadata type in the 
priority table. If the pair matches, then we identify the 
attribute as a key data attribute. 

The pseudo code of our rule-based algorithm is 
show below; 

5.2 Machine Learning-based Approach 

For machine learning-based approach, we use 4 
different features as the input for machine learning-
based approach: 1) attribute name 2) JSON data type 
3) metadata type and 4) repetition value of the 
attribute. 

We utilize Weka for running machine learning 
algorithms to identify key data attributes. The 
attribute name features are translated to word vectors 
using bag of words approach. JSON and metadata 
type are assigned nominal value for different data 
type. There are 4 JSON data types (string, boolean, 
float, int) and 5 metadata types (Geolocation, 
timestamp, number, ranking, nominal) used as values 
for the features. 

The goal of the classifier is to classify whether the 
given attribute is a key data attribute. We have 
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experimented with three different binary classifiers 
including Decision Tree, K-Nearest Neighbor and 
Naïve-Bayes. 

5.2.1 Decision Tree 

We utilize Weka J48 class which uses C4.5 algorithm 
[14] to create statistical classifier decision trees from 
the training data set. The labelled data set has been 
tagged to classify whether the attribute is a key data 
attribute. 

5.2.2 Naïve Bayes 

We also experiment with Naïve Bayes using the 
provided training data set. Naïve Bayes classifier 
considers each of the input features independently to 
the probability that the given attribute is a key data 
attribute. 

5.2.3 K-Nearest Neighbor (KNN) 

K-Nearest Neighbor is used to identify the closest 
training examples to the attribute in feature spaces. 
This is an instance-based learning approach. Due to 
the similarity of many observed attributes, we set k = 
1 which means finding the closest training instance. 

6 EVALUATION 

The objective of the evaluation is to measure how 
accurately each algorithm can identify a key attribute. 
The algorithms that we would like to compare are our 
rule-based algorithm and three machine learning 
algorithms; namely Decision Tree, Naïve Bayes and 
K-Nearest Neighbor (KNN). The details of the 
algorithms are described in Section 5. We define the 
following terms; 

• A true positive (TP) as a key attribute that is 
correctly classified as a key attribute. 

• A true negative (TN) as a non-key attribute that is 
correctly identified as a non-key attribute.  

• A false positive (FP) as a non-key attribute that is 
incorrectly labeled as a key attribute. 

• A false negative (FN) is a key attribute that is 
incorrectly identified as a non-key attribute. 

Then, we calculate the following metrics using 
(1), (2), (3), and (4) to evaluate all four algorithms; 

Recall = TP / (TP + FN)

Precision = TP / (TP + FP)

Accuracy = (TP + TN) / (TP + TN + FP + FN)    

False Positive Rate = FP / (FP + TN)             

False Negative Rate = FN / (FN + TP)             

The data set for the evaluation is extracted from 
the same APIs in Section 3. There are 97 data APIs. 
From all APIs, there are 233 key attributes and 1,246 
non-key attributes. As shown in Figure 4, 54.64% of 
the APIs has one key attribute and 74.23% of the APIs 
has less than three key attributes. 90.72% of the APIs 
has less than 5 key attributes. Most of the APIs has a 
few key attributes. This means there are more than 
one attributes that are meaningful for developers to 
consider. From our observations, the number of key 
attributes is proportional to the number of attributes.  

 

Figure 4: The cumulative distribution plot of each API’s 
key attributes. 

 

Figure 5: The percentage values of recall, precision 
accuracy, false positive rate (FPR) and false negative rate 
(FNR) for the rule-based algorithm, Decision Tree, Naïve 
Bayes and KNN algorithms. 

We calculate the recall numbers using (1) for all 
four algorithms. The recall number suggests how well 
an algorithm can find the key attributes within a data 
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set. As seen in Figure 5, Decision Tree has the highest 
recall (92.86%), followed by Naïve Bayes and KNN, 
while the rule-based algorithm performs the worst 
(47.42%). According to these results, Decision Tree 
can find the key attributes better than Naïve Bayes, 
KNN and the rule-based algorithm. One reason that 
Decision Tree yields the best recall is because 
Decision Tree constructs a decision tree by trying to 
select the best feature that can best classify the data. 
In this case, the attribute name is the root of the tree, 
coinciding with our observations in Section 3.   

The precision number expresses the proportion of 
the attributes that an algorithm labels as key attributes 
are actual key attributes, calculated using (2). As 
illustrated in Figure 5, KNN has the most precision 
(33.91%) and the runner-up is the rule-based 
algorithm (19.74%), while Decision Tree and Naïve 
Bayes perform similarly. The reason that KNN yields 
the best precision is because KNN is running with 
K=1. This means KNN only finds the one nearest 
neighbor while all neighbor are true key attributes. In 
our case, KNN tries to find the closest attribute name, 
the closest attribute type, the closest meta data type, 
and the closest repetition. From our observations, 
several key attribute names share similar names but 
they are not exactly the same. This is why the rule-
based algorithm performs worse than KNN. The rule-
based algorithm checks the exact match of certain 
attribute names, including data type, meta data type 
and repetition. 

We also compute the accuracy values for the rule-
based algorithm, Decision Tree, Naïve Bayes and 
KNN, using (3). As shown in Figure 5, KNN has the 
best accuracy (87.15%), while the rule-based 
algorithm has the worst accuracy (83.91%). Both 
Decision Tree and Naïve Bayes perform closely.   

The false positive rate (FPR) is calculated using 
(4). False positive is a non-key attribute which is 
classified as a key attribute. Higher FPR implies 
worse usability because the system shows a value of 
a non-significant attribute. As illustrated in Figure 5, 
the rule-based algorithm has the highest false positive 
rate (13.53%), while KNN has the least FPR 
(11.29%). Both Decision Tree and Naïve Bayes have 
the similar false positive rates. The accuracy rate of 
the rule-based algorithm, Decision Tree, Naïve Bayes 
and KNN algorithms in percentage. 

The false negative rate (FNR) is computed using 
(5). As shown in Figure 5, the rule-based algorithm 
yields the worst false negative rate (52.58%), while 
Decision Tree has the lowest false negative rate 
(7.14%). Both Naïve Bayes and KNN have similar 
FNR, 30.56% and 31.30% respectively. The reason 
that the rule-based algorithm performs badly is 

because the rules do not cover all cases of key 
attributes. Thus, the rule-based algorithm cannot label 
actual key attributes correctly. 

In summary, according to the statistical 
calculations in Figure 5, we can see that KNN 
outperforms the other algorithms, namely the rule-
based algorithm, Decision Tree and Naïve Bayes. 
KNN yields the highest precision and accuracy values 
and the lowest false positive rate. KNN also has the 
second highest recall and the moderate false negative 
rate. In contrast, the rule-based algorithm has the 
worst recall, the lowest accuracy and the highest false 
negative rate. The rule-based algorithm seems to 
perform the worst because the rules are defined 
statically and cannot adapt to the unseen data, 
resulting in high false rates. Although Decision Tree 
has the highest recall, it also yields a very low 
precision number. This suggests that the constructed 
decision tree is overfitting. 

7 CONCLUSION 

Integration of data and information exchange 
amongst various IoT devices and systems is one of 
the core problems in providing pervasive computing 
environment. The proliferation of APIs and IoT 
devices in heterogeneous environments require 
different systems to integrate and utilize various API 
services. In this paper, we propose a technique which 
utilize recent development in machine learning to 
facilitate the key integration point and allow systems 
to automatically identify and utilize key data 
attributes from heterogeneous sources. Different 
machine learning approaches have been evaluated as 
an alternative to a manual integration of data 
heterogeneity and reduce the time for new services to 
be implemented and integrated with existing source 
of information. From our experiments, KNN is the 
most promising algorithm to use to classify a key 
attribute which is essential to data verification. The 
rule-based algorithm seems to perform the worst 
because the rules are rigid and static to exactly match 
unseen attribute names. In contrary, KNN has more 
flexibility to find a key attribute by using the training 
data to guide. 
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