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Abstract: The increasing number of small, cheap devices full of sensing capabilities lead to an untapped source of
information that can be explored to improve and optimize several systems. Yet, hand in hand with this growth
goes the increasing difficulty to manage and organize all this new information. In fact, it becomes increasingly
difficult to properly evaluate IoT and M2M context-aware platforms. Currently, these platforms use advanced
machine learning algorithms to improve and optimize several processes. Having the ability to test them for a
long time in a controlled environment is extremely important. In this paper, we discuss two distinct methods
to generate a data stream from a small real-world dataset. The first model relies on first order Markov chains,
while the second is based on GANs. Our preliminiar evalution shows that both achieve sufficient resolution
for most real-world scenarios.

1 INTRODUCTION

Internet of Things (IoT) (Wortmann et al., 2015) has
made it possible for everyday devices to acquire con-
textual data, and to use it later. This allows devices to
share data with one another, in order to cooperate and
accomplish a given objective. Machine-to-machine
(M2M) communications (Chen and Lien, 2014) are
the cornerstone of this connectivity landscape. M2M
commonly refers to information and communication
technologies able to measure, deliver, digest and re-
act upon information autonomously, i.e. with none or
minimal human interaction.

On previous works we discussed how context-
awareness is an intrinsic property of IoT (Perera et al.,
2014). As discussed an entity’s context can be used
to provide added value: improve efficiency, optimize
resources and detect anomalies, amongst others. Nev-
ertheless, recent projects still follow a vertical ap-
proach (Fantacci et al., 2014,Robert et al., 2016,Datta
et al., 2016), where devices/manufacturers do not
share context information because each one uses its
own structure, leading to information silos (hindering
interoperability between IoT platforms).

In previous publications we address this issue by
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devising a new organizational model for IoT data (An-
tunes et al., 2017, Jesus et al., 2018). In order to eval-
uate the accuracy of the previously mentioned model
we had to develop methods to generate statistically
correct streams from a considerable small sample of
real word time series. With the advent of IoT and
M2M these evaluation methods become crucial to en-
sure that a IoT platform/service predicts, detects or
reacts accurately to the proper stimuli.

In this paper we present two possible methods
to generate streams from real data. The first one is
based on a previously proposed stream characteriza-
tion model (Antunes et al., 2017, Jesus et al., 2018).
The model relies on first order Markov chains and
can be exploited for stream generation and similar-
ity. The second based on Generative Adversarial Net-
works (GAN) that uses two artificial neural networks
to generate realistic stream data.

The remainder of this paper is organized as fol-
lows. In section 2 we present the background and re-
lated work. The dataset and preprocessing methods
used in this publication are detailed in section 3 De-
tails about the implementation of our prototype are
given in section 4. The results of our evaluation are in
section 5. Finally, the discussion and conclusions are
presented in section 6.
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2 BACKGROUND AND RELATED
WORK

In this paper we compare two different methods for
stream categorization and generation, one based on
Markov chains and the other on GANs. Both models
are detailed bellow.

2.1 Markov Chains

This model was discussed in detail in the follow-
ing publication (Antunes et al., 2017, Jesus et al.,
2018). Nevertheless, a short summary is given here.
The model tries to capture the distribution of a given
stream (roughly its “shape”). In order to achieve
this it discretises the streams into same size buckets,
computing the probabilities to traverse those buckets.
Only the previous bucket is used as a state for the
probability vector, as such the model can be consid-
ered a first order Markov chain. At the same time,
the buckets themselves could store some local statis-
tics about the distribution of the points falling within
them to better represent the real streams. A visual
representation of the model is presented in Figure 1.
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Figure 1: Structure proposed to represent stream informa-
tion. A grid is overlayed over the streams, in order to build a
matrix like structure where each slot contains a probability
vector, a histogram of values, and other relevant statistical
values (e.g. the mean and standard deviation of the values
inside the slot).

2.2 Generative Adversarial Network
(GAN)

GANs (Goodfellow et al., 2014) are a new architec-
ture of networks which aims at modelling the distri-
bution of some dataset based on ideas borrowed from
game theory (Salimans et al., 2016).

GANs work by considering two adversarial net-
works, called discriminator and generator. The for-
mer is trained to distinguish “fake” samples, those
generated by the generator, from those of real data.
Meanwhile, the latter is trained to produce samples
capable of fooling the discriminator, making it believe
its generated samples are real. This can be understood

as a minimax game, where the discriminator trains to
maximize its probability of assigning correct labels
to both real and generated samples, while simultane-
ously the generator tries to minimize the probability
of the discriminator correctly doing so. Ultimately,
one is hopefully left with a discriminator which shows
an accuracy of around 50%, meaning that it mostly
guesses the origin of the data presented to it.

In the original paper (Goodfellow et al., 2014) the
authors suggested the usage of Multilayer Perceptrons
(MLPs) for both the discriminator and generator. Nat-
urally the research community was keen to experi-
ment with other architectures, conducing in (Radford
et al., 2015) to the proposal of using Convolutional
Neural Networks (CNNs) instead of the initially sug-
gested MLPs. This new architecture, coined Deep
Convolutional GANs (DCGANs) by its authors, was
more stable than the previous to train, while still very
capable of learning generative models.

The generative capabilities of GANs have already
been extensively studied for image data, for instance
in all the previously mentioned papers (Goodfellow
et al., 2014,Radford et al., 2015,Salimans et al., 2016)
dealing with (DC)GANs.

In fact, generating images has been the standard
way of evaluating the quality of GANs’ architectures,
since it is easy to visually determine whether a gener-
ator is behaving properly or not. Moreover, it is com-
mon to employ GANs when one wants networks to
learn features which can later be used in other tasks
(employing transfer learning for instance), which usu-
ally involve image data. All the previously mentioned
papers show that GANs are in fact capable of learning
these features and generating more or less reasonable
images, with their quality of doing this evolving as
the techniques used also become more refined.

Despite this, GANs (and particularly DCGANs)
have not been as widely employed when dealing with
non-image data. Most likely stems from the fact that
deep learning is typically associated with images and
not so much with other data.

Convolutional networks in GANs behave as they
usually do in other architectures, taking advantage of
the locality which is implicit in image data (i.e. re-
gions which are close together have strong meaning,
while relations between regions far apart do not have
as much). Yet, these intrinsic properties may be found
in other scenarios as well, for instance in sequential
data such as time series.

It has already been shown in a previous paper (An-
tunes et al., 2017, Jesus et al., 2018) that the distri-
bution of a given stream of sensorial data could be
modelled by first order Markov chains. However, this
model was first developed with stream similarity in
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mind, not stream generation, but it was shown to be
quite capable at the latter task as well.

It thus becomes interesting to evaluate whether a
Markov chains-free model can be built and trained,
resorting to DCGANs, which is capable of competi-
tively learning the distribution of data streams.

3 DATA PREPROCESSING

3.1 Dataset Description

In this paper we used a dataset collected at Intel
Berkeley Research lab1. It comprises records of tem-
perature, humidity, light and voltage measured once
every 31 seconds by 54 sensors for the duration of
approximately one month (March, 2004).

Due to the amount of time it takes to train the mod-
els, we have focused primarily only on the tempera-
ture measures of the dataset.

We have separated the stream of values produced
by each sensor by day, which resulted in a total of
1674 streams. It should be noted that this is “raw”
data, with minimal to no preprocessing involved. As
such, the number of streams selected for training was
significantly smaller (more details regarding this issue
can be found in section 3).

A plot illustrating these streams is presented
in Figure 2.

The presence of outliers becomes clear by look-
ing at the plots. To further support this point, notice
that the maximum reading measured by a sensor is
294.3 ◦C, and the minimum of −38.4 ◦C. It is obvi-
ously highly doubtful that the sensors have indeed ex-
perienced such extreme temperatures inside an office.

3.2 Dataset Preprocessing

The first step into transforming this data into a more
workable format was to separate the streams by day
and by sensor. This resulted in 1674 different streams.

Afterwards, given that we intend to train different
models (involving Markov chains and GANs) with
this dataset (which will have a fixed number of in-
puts), we processed the streams so that all have the
same number of data points.

Since each sensor recorded temperatures around
once every 30 seconds (although many missing points
exist), it was decided that each stream would be com-
posed of 24×60= 1440 data points, i.e. one point per
minute.

1http://db.csail.mit.edu/labdata/labdata.html

In order to do this the time of each day
was discretized into regions with boundaries
{0,60,120, . . . ,24 × 60 × 60}. Then, points of a
stream falling within consecutive boundaries were
reduced to a single point by computing their median.
To slots without any points, the label nan was
assigned. We do not interpolate these values at this
stage since we use the amount of missing values
as an indicator of the quality of the stream, which
eventually helps deciding whether the sample should
be dropped or not.

Figure 2 plots the streams obtained up to this point
in preprocessing.

3.3 Outliers and Missing Values

Having now the streams laid in a structure which was
easier to work with, we turned our attention to iden-
tifying and removing outliers in the data (which are
quite noticeable just by looking at the plots) and to
handle missing values (the library used to train the
networks does not work with “not a numbers” —
nans).

Outlier detection was based on the modified Z-
score proposed by Iglewicz and Hoaglin in (Iglewicz
and Hoaglin, 1993). This is essentially a more ro-
bust version of Z-score which replaces the mean by
the median and the standard deviation by the median
absolute deviation (MAD). It is defined as

Mi =
0.6745(xi− x̃)

MAD

where MAD=median(|xi− x̃|) and x̃ denotes the me-
dian of x.

The authors suggest that modified Z-scores with
an absolute value greater than 3.5 should be consid-
ered (potential) outliers. This was the test that we em-
ployed. Outliers identified with the previously men-
tioned technique are labelled as nan (same as had
been done for missing values).

At this point, we filter out streams which have too
many points labelled nan. The threshold used for this
is to remove streams which do not have a count of at
least 70% of the points they are expected to have (at
one per minute this is 0.7×24×60 = 1008).

After this step we are left with 700 streams (ver-
sus the initial 1674, which further suggest the heavy
presence of outliers/missing values).

Finally, in order to resolve the missing values, the
streams were linearly interpolated, so that the points
labelled nan are replaced with hopefully reasonable
ones.

The resulting streams after preprocessing are il-
lustrated in figure 3.
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Figure 2: Raw temperature data used. To the left, in bold the mean (µ) of temperature readings at each instant of the day.
In light shade the region captured by the standard deviation (σ) of those readings, i.e. [µ−σ, µ+σ]. To the right, randomly
selected samples of the set of streams.
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Figure 3: Temperature data used after preprocessing. The meaning of the figures is the same as those in figure 2.

4 IMPLEMENTATION

This section will elaborate on both approaches
(Markov chains and GANs) to stream generation, ex-
plaining their implementations.

We will start by briefly discussing the implemen-
tation using Markov chains, referring the interested
reader to the main paper presenting this approach.
Afterwards, we will elaborate on the implementation
around GANs (with greater focus due to its novelty).
This section is more extensive since we have not pre-
sented it before.

4.1 Markov Chains

As previously stated, this model has already been de-
tailed previously in (Antunes et al., 2017, Jesus et al.,
2018). In order to keep this paper self-contained,
we will provide a small briefing of this technique
here. Essentially this method works by laying a grid
over a stream/set of streams and then, from this train-

ing sample, extrapolate the probabilities of being in
slot (xi+1, yk) given that the stream was previously in
(xi, y j). The algorithm used to generate a stream from
a previously trained model is depicted in Algorithm 1.

Algorithm 1: Stream Generation.

1: function GENERATESTREAM(model, yinit)
2: bin← (0, yinit)
3: genstream←{GeneratePoint(model,bin)}
4: for i← 1,#ColumnsO f (model)−1 do
5: bin← GenerateNextBin(model,bin)
6: genstream←

genstream
+
{GeneratePoint(model,bin)}

7: end for
8: return genstream
9: end function

The function GeneratePoint uses the histogram
of a model’s bin to generate a point in accordance with
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Figure 4: Generation process. 1. at each bucket, generate
a random value that represents the transition probability;
2. use the transition matrix to identify the next bucket; 3. at
the destination bucket, generate a new value (based on its
histogram).

its distribution. The function GenerateNextBin uses
the probability vector of a bin to determine where the
generated stream will flow through. In Figure 1 is
depicted a visual representation of the model being
used for stream generation. As a final note, the ac-
tual implementation of these methods and associated
data structures was carried out in Python3, resorting
mainly to the standard libraries, numpy and scipy.

4.2 GANs

Some notions about GANs and DCGANs were al-
ready provided in Section 2. Here we will be more
specific regarding the architecture of the networks
used as well as how its training was conducted.

4.2.1 Generative Adversarial Networks (GANs)

GANs, the super type of DCGANs, work by pitting
two networks, a discriminator and a generator, against
one another. The first, the discriminator, will try to
classify input samples presented to it as being real or
synthesized ones. Meanwhile, the generator will try
to learn how to generate samples which trick the dis-
criminator into labelling fake data as valid. The over-
all concept is illustrated in figure 5.

Typically, for training, one network is deployed
for the discriminator, and two (stacked) for the gen-
erator. The latter is composed of the actual generator
per se stacked with the discriminator. As will be seen,
while training the generator only its actual generative
network is modified. Training the discriminator is car-

Figure 5: How a GAN works at an high level. Source:
https://medium.freecodecamp.org/an-intuitive-introduction-
to-generative-adversarial-networks-gans-7a2264a81394

ried as usual, providing it with real samples alongside
“valid” labels and generated samples with “fake” la-
bels.

Meanwhile, training the generator involves more
actions underneath. In essence the generator is pro-
vided with noise (typically from a normal distribu-
tion) alongside labels stating “valid” samples. Notice
that despite the generator also comprising the discrim-
inator network as seen above, the latter is locked for
training at this stage. As a result, the weights that can
change and adapt are only those of the actual gener-
ator part of the network, which will as a result try to
learn how to produce samples that fool the discrimi-
nator succeeding it.

It becomes apparent at this stage that the generator
will only be as good as the discriminator is. The better
the latter is, the more the former will feel pressured
into producing realistic samples.

4.2.2 Deep Convolutional GANs (DCGANs)

Having in mind the overall idea behind GANs, it is
time for discussing actual architectures for the dis-
criminator and generator networks.

The initial paper presenting GANs (Goodfel-
low et al., 2014) suggested Multilayer Perceptrons
(MLPs) for both discriminator and generator. Yet,
more recent research (Radford et al., 2015, Salimans
et al., 2016) has found success with Convolutional
Neural Networks for both networks. This is the ap-
proach also followed in the present work. As for the
generator network, its architecture is inspired on the
original DCGAN paper (Radford et al., 2015) and is
presented in figure 6.

In the original paper the authors had started with a
convolutional layer of depth 1024, yet here only 512
is used. This is also the approach followed by (Sali-
mans et al., 2016), the paper on improved techniques
for training GANs by (some of) their original authors.
The network receives 100 latent values (noise) and
from these it is expected to produce, at its last layer, a
32×32 image with three channels (RGB).
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Figure 6: Concept design for the DCGAN’s genera-
tor. Source: Adapted from the original paper on DC-
GANs (Radford et al., 2015)

In the present case we are not interested in gener-
ating images and as a result we had to adapt the archi-
tecture in order to fit our requirements. The overall
design is kept the same, but the actual dimensions of
the layers comprising the generator are

(180,512) -> (360,256) -> (720,128) -> (1440,1)

Notice that the first dimension keeps on increasing
due to upsampling, a procedure where the units on a
layer are replicated a certain number of times (in this
case 2) along certain directions. Interestingly, usually
in CNNs one does the opposite and employs down-
sampling in order to reduce the number of units.

In all but the last layer a kernel of size 5 was used
as well as batch normalization and ReLU as the acti-
vation function. The last layer uses Tanh for activa-
tion, which is in accordance with suggestions found
in the previously mentioned papers.

Regarding the discriminator network, it is a some-
what more common CNN. It is comprised of 4 con-
volutional layers and 1 dense layer. The convolu-
tional layers are progressively more deep, starting at
32 and multiplied by two up to 256. For these lay-
ers LeakyReLU is used as activation function and
dropout as regularization mechanism. The dense
layer has a single node and uses the sigmoid function
for activation.

Although the papers mentioned previously do not
discuss in depth architectures for the discriminator
network, the considerations they make about it (e.g.
the usage of batch normalization) were taken into ac-
count.

The Keras library2 was used for the prototyping of
the networks. The DCGAN implementation at https://
github.com/eriklindernoren/Keras-GAN was used as
starting point for development. Modifications to make
it work with stream data (1D) as opposed to im-
age data (2D) were required, as well as adjustments
to training parameters as will be seen in Section 5,
mainly since the default ones in the original imple-
mentation did not allow the networks to converge fast
enough.

2https://keras.io/

5 RESULTS AND EVALUATION

Due to time constraints it was impossible to evaluate
both models with proper detail, and compare them
with other generators. Nevertheless, in this section
we present and discuss the initial results. Both mod-
els were trained on the previously mentioned dataset
(subsection 3.1). It is important to notice that we pro-
vide more details to the GAN model since it is being
published for the first time.

Two batch sizes were considered for training the
GANs: 32 and 64. In Figure 7 it is depicted the result
of the model after training. Multiple generations pro-
duced by the the model were overlapped on top the
original data. The same was done to the Makov based
model (see Figure 8)
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Figure 7: Multiple generated stream (GANs) overlapped on
top the original data.
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Figure 8: Multiple generated stream (Markov) overlapped
on top the original data.

It is possible to verify that both models appear to
capture the overall “shape” that characterizes this par-
ticular phenomenon. It is also important to mention
that there are no visible difference when considering
the used batch sizes. Nevertheless, the resolution of
the model appear to be better when GANs are used.
This is to be expected, the deep structure that an ar-
tificial neural network allows it to learn a model with
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higher resolution (and accuracy). Keep in mind that
the Markov model was designed with stream similar-
ity in mind. Taking this into account, and the simplic-
ity of the model (which implies faster training times)
makes the Markov model more than sufficient for sev-
eral real world scenarios.

Table 1 presents a comparison between both mod-
els. In short, the model based on GANs provides
more flexibility and resolution when considering only
stream generation. Nevertheless, keep in mind that in
order to achieve the desired resolution may be nec-
essary to tune the hyper-parameters until sufficient
accuracy is achieved. On the other hand, the model
based on Markov chain was designed for stream sim-
ilarity, only provides moderate resolution. Although
the size of the bucket can be adjusted, the model only
used the previous state in order to compute the next
bucket, in this regards the model is shallow. The lack
of flexibility is compensated with a simpler training
method and faster execution.

Table 1: Comparison between Markov and GANs model for
stream generation.

Features/Model Markov GANs

Training time Fast Slow
Model size Small Large
Generation time Fast Fast
Resolution (accuracy) Moderate High
Stream Similarity Capable NA
Hyper-parameters Limited Flexible

6 CONCLUSION

The number of sensing devices is increasing at a
steady step. Each one of them generates massive
amounts of information. This lead to a new genera-
tion of IoT and M2M platforms that capture the pre-
viously mentioned information and provide context-
aware services. Currently these platforms use ad-
vanced machine learning algorithms to improve and
optimize several processes. Having the ability to test
them for a long time in a controlled environment is
extremely important. The ability to generate streams
resembling a given set of learning ones can be useful
in this situation. Stream generators can be used ver-
ify and improve the repeatability and validity of IoT/
M2M and context-aware platforms.

Both models discussed in this publication can be
used for this task. Nevertheless, there are several dif-
ferences between them. GAN based models provide
better resolution and flexibility at the cost if longer
training times and fine-tuning. On the other hand,

Markov models provide moderate resolution, can be
used to estimate similarity between streams and are
fast to train.

Due to time constrains the evaluation and com-
parison between the models lacked sufficient detail.
We intend to address this issue in a future publication,
with a larger dataset for validation. It is important to
notice that generator based on the first order Markov
chain is still under research. Several improvements
will be proposed in the future, such as methods to es-
timate the bucket size autonomously.
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