
Optimizing Regression Testing with Functional Flow Block Reliability
Diagram

Vaishali Chourey1 a and Meena Sharma2

1Department of IT, Medi-Caps University, Indore, India
2Department of Computer Engineering, IET DAVV, Indore, India

Keywords: Regression Testing, UML, Test Prioritization, Reliability Testing.

Abstract: Model based testing techniques are widely used to generate tests from models and their specifications. Regres-
sion Testing is critical in evolving software systems. It implies that Software undergoes continuous integration
and subsequent testing of modules and components to develop a final release of the software. Recent research
on test automation have revealed challenges in testing such as enormous test cases generated that are either
redundant or irrelevant tests. This prevents the critical parts of code from testing and leave faults uncovered.
Manual testing also slows the process and makes exhaustive testing for quality difficult. This paper proposes
an approach to generate regression tests from model synthesized from UML interaction diagrams and also pri-
oritize tests. The algorithm generate test suites from the proposed intermediate model. The reliability analysis
is performed on blocks and the results govern the prioritization of tests.

1 INTRODUCTION

Model-based testing (Aichernig et al., 2018)has
proved to be an advantageous approach to design tests
for evolving and complex software systems. Modern
software systems are developed for adaptable services
by integration of large number of components. Such
software systems actually require systematic, scalable
and automated testing support. Another characteris-
tic of such systems is that they need frequent updates
to maintain their evolution. In such cases, regression
testing becomes a crucial part of the development and
maintenance phases. Regression testing verifies the
code modified during the update or an upgrade. Re-
gression testing ensures that the update in the sys-
tem does not alter or deviate the inherent behavior
of the system.The test automation also poses serious
problems with enormous amounts of test cases gen-
erated that are redundant. Software are composed of
interacting components which are amenable to test-
ing. Such black box components are interface depen-
dent and their evaluation in combination with other
components is difficult. Implementing under the Ag-
ile teams, the fast delivery imposes time constraints
and the exhaustive testing is not possible. Studies for
obtaining maximum coverage and fulfillment of tests

a https://orcid.org/0000-0002-2171-9247

under such constraints are gaining attention in many
researches.

Software undergoes modifications with changing
user requirements or improvements in the function-
alities, handling errors and correcting defects (Dick
et al., 2017). This is where regression testing plays an
important role for maintaining the quality of the soft-
ware in the event of changed specifications. The re-
gression testing also concerns for quality in terms of
security, reliability, dynamic accessibility and inter-
component dependencies (Yoo and Harman, 2012). It
ensures changes may not affect the system for these
quality issues along with the consistent functional
specifications. Automated testing has eased the task
of testing but with a price of enormous tests gener-
ated as result (Gupta et al., 2018). Prioritizing tests,
maximizing coverage with minimum test cases is the
aim of regression testing today. This reduces the over-
all cost and time for testing also. When testing goes
along with development, the test case prioritization
takes place simultaneous to development of the mod-
ule and benefits the managers and the testers.

The process of regression testing is an unavoid-
able activity along with integration during develop-
ment of system functionalities (Luo, 2001). The test
case generation aligns with the development as the
cost of test generation at later stage incurs additional
cost and efforts. A complete test suite for code, spe-

526
Chourey, V. and Sharma, M.
Optimizing Regression Testing with Functional Flow Block Reliability Diagram.
DOI: 10.5220/0007763505260532
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 526-532
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



cific to the development environment is required be-
fore the testing. The effectiveness of tests generated
lies in the strategies to minimize the test cases, se-
lecting relevant tests and prioritize tests (Kandil et al.,
2017). There are challenges in the regression test-
ing around recursively growing lengthy tests. Man-
ual intervention to stop such tests leads to undefined
sections in system with un-approached tests. Tests
aborted may leave the failures concealed. Tests are
drawn at unit, integration or system levels depending
on the scope and extent of testing. Unit testing is ma-
ture with tools available for the purpose, specific to
the language and application. The difficult part is the
system testing which depends on the artefacts, specifi-
cations, and other information related to the software
system.

UML provides the necessary information about
the system, its structure, its interactions and specifi-
cations to aid the development and testing (Arora and
Bhatia, 2018; Mingsong et al., 2006; Sarma and Mall,
2007b). The methodology proposed in the paper is a
strong justification to adopt model based testing as a
scope to handle the challenges of testing. With Ag-
ile and other development strategies, where design
are less relevant, a model is proposed to use model
information and facilitate regression testing (Teixeira
and e Silva, 2018; Wu et al., 2018). The sequence of
interactions is important to understand the behaviour
of the system. Testable model, called as Functional
Flow Block Reliability Diagram (FFBRD) is hereby
proposed to generate the tests from the model and its
annotation to estimate the reliability quality attribute.
The approach in this paper addresses the issues of test
generation, estimation of quality and prioritization of
tests.

Figure 1: Flow Diagram for FFBRD and Test Generation.

The figure 1 explains the steps in generating the
desired intermediate model. The requirements are
modelled as structural and behavioral diagrams which
acts as input to the FFBRD. The levels of abstrac-
tions in defining the components of the system are
adapted from feature model and the dynamics is mod-
elled from the activity flow (Chourey and Sharma,
2016). The annotation is formulated as constraints of
the classes. Altogether the structural aspect of FFBD

is attained. The expected quality attribute is then an-
notated to visualize quality in the design. The fea-
tures, blocks and constraints together formally defines
the FFBRD. Simulating the execution of the transac-
tions are studied as operational behavior of the sys-
tem, the test suites are generated (Kim et al., 2017).
The test cases emerging from the transactions are fur-
ther categorized as critical and non critical. This also
enables prioritization of components and flows. The
concept of FFBRD enables the use of existing seman-
tics and models from UML and SysML. This best
suits the process of test optimization (Felderer and
Herrmann, 2018).

The organization of this paper is as follows. The
next section is an overview of related work in the area
of model based testing, specifically in regression test-
ing. Brief definition and structure of FFBRD is pro-
posed in section 3. Section 3 also presents illustration
of approach in system representation and test genera-
tion. Section 4 describes proposed algorithm for test
generation and prioritization. Last section includes
conclusion and scope of the work.

2 RELATED WORK

This section reviews the research developed around
the scope of the proposed work. This paper focuses
on two aspects - Functional Flow Block Diagrams
and Reliability Assessment. FFBD (McInnes et al.,
2011) are the formal graphical representations in sys-
tems engineering for behaviour of complex hierarchi-
cal systems. The software architecture with EFFBD
are formally defined in SysML standards (Alanen and
Porres, 2005). Blocks defined in SysML has a close
resemblance to the components and their flows. The
generic definitions and syntax of SysML enables the
construction of metamodel for FFBD. The applica-
tion of FFBD to visualize reliability in design extends
the notation to a new vocabulary of FFBRD. This is
a combination of flow (dynamics) of UML specifica-
tions and analysis of reliability in terms of RBDs. The
UML based semantics for software reliability through
design is validated with reliability assessment strate-
gies (Gokhale and Trivedi, 2002). The target software
model that was a functional specification extends to
quality specific attributes. The software model gen-
erates test artifacts for regression testing. FFBDs in
this semantic make it adaptable to tools and analysis
applicable to UML designs. This prevents unambigu-
ous interpretations and fits FFBDs for software design
and test modeling.

Reliability assessment models have been proposed
to analyze and quantify reliability which is an impor-

Optimizing Regression Testing with Functional Flow Block Reliability Diagram

527



tant aspect of software quality (Lyu et al., 1996). An
array of methods exists, applicable during different
phases of software development life cycle (Goševa-
Popstojanova and Trivedi, 2001). These black box
techniques depend on failure data for analyses (Pham
and Pham, 2017). The types of software developed
nowadays need analysis based on modules, their inter-
actions and dynamically making choice of substitut-
ing modules for quality improvement. The key iden-
tifiers in the process of reliability modeling are:

• Specifying the structure of the system composed
of reusable modules/components along with their
quality and performance attributes;

• Analyzing reliability with choice of the module to
increase overall reliability;

• Analyzing interfaces and interactions across the
modules;

• Prioritizing critical modules.

The most interesting part is to bring the FFBD and
the reliability testing in the regression test suits. So
far, UML models have been an important study for
testing functionality (Yildirim et al., 2017) through
behavioural diagrams like activity diagram, state
charts and sequence diagrams (Teixeira and e Silva,
2018; Sarma and Mall, 2007a). Converting into
graphs, scenarios or interpretations from models have
aided test generation from models (Jena et al., 2014;
Nelson, 2009). The effectiveness is to map it to test
for quality attributes in the same manner as function-
ality is the application of the concept. The simulation
of flows in the system makes it amenable to be anal-
ysed for its execution time behaviour. This facilitates
understanding the performance of the system during
the design stage. Such estimations also support opti-
mization for quality-wise delivery of the functionality
(Nelson, 1983; Zheng et al., 2017). For the scope
of paper, reliability is considered for evaluation of
quality. The tool support of ReliaSoftBlockSim en-
ables the analysis of components of the system for
reliability. The conversion of behavioural models into
blocks and then modelling their transitions for serial
or parallel communications derives the system relia-
bility (Chourey and Sharma, 2015). The next section
illustrates the concept of FFBRD and the contribution
of the paper.

3 PROPOSED METHODOLOGY

The basic structural component of the FFBRD is the
Block. Blocks are modular units of system descrip-
tion. They are a collection of structural and be-

havioural features to define a system. A Block is de-
fined with the context of its functionality and quality
requirements. The Use cases provide the functional
requirements whereas the provision of defining views
and viewpoints in UML4SysML provides a generic
method to define the quality perspective. Although
the concept stems from SysML, the semantics of the
diagram is inherited from the class structure and flows
through activity diagram.

Figure 2: Notation for FFBRD.

FFBRDs can be arranged in a hierarchy to define
the levels of abstraction of system understanding as in
figure 3. This is a feature diagram that has levels and
each level initiates the next level of its definition in
case of complex activities or dependent abstractions.

Figure 3: Levels of Abstractions in FFBRD.

The FFBRD contains blocks (FBi) with commu-
nications amongst the blocks and properties (pi) of
the block to describe the structure of the system. For
a special case the reliability values of the block is
annotated in the properties as Ri. The stereotype is
Enhanced Functional Flow Block Diagram (EFFBD)
with Base Class::UML4SysML::Activity and con-
straints are applicable in parameters, actions, activ-
ity and execution. The constructs of FFBRD is given
in the notation of FFBD and is modelled as sequence
of blocks, iterations, choice, alternatives and parallel
blocks. The flow and order of execution of the blocks
as in figure 2 characterizes the behaviour specification
in the model.

An example shows a checkout scenario, its equiv-
alent use case and FFBRD to visualize the reliabil-
ity of the subsystem. The scenario consists of check-
out after the purchase. The registered customer up-

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

528



Table 1: Formalization of FFBRD in UML and SysML Se-
mantics.

Block Feature Metamodel Reference from
SysML, UML4SysML

Block Definition SysML::Blocks
Property UML4SysML::Property
Input UML4SysML::AcceptEventAction
Output UML4SysML::SendSignalAction
Control Values ControlNode and ObjectNode from

UML4SysML::ActivityNode
ControlFlow UML4SysML::ControlFlow
Probability SysML::Activities::Probability
Reliability UML4SysML::Reliability extends

UML4SysML::ParameterSet
ConstraintBlock SysML::ConstraintBlocks

dates his cart and makes payment for the calculated
amount. The payment interface accepts payment op-
tions to proceed. The use case diagram enumerates
the functionalities in the scenario. The flow of con-
trol and data is formulated as FFBD as shown in the
figure 4. An implementation of the model in SysML
is supported in Papyrus tool in Eclipse environment
(Gérard, ).

Figure 4: Usecase for Checkout Scenario.

The assessment of reliability is done by translat-
ing the FFBD to RBD (Rajput and Chourey, 2015).
This provides the reliability contribution of the blocks
in attaining desired system reliability. Next step is to
annotate the blocks with constraints as the reliability.
The added constraint benefit in deriving relevant and
specific tests (Petke et al., 2015). There were 2 simu-
lation scenarios created to evaluate reliability Ri and
Reliability Importance RIi.

The RBD analysis performed with ReliaSoft
BlockSim simulates the system for 500 hours opera-
tions. The target reliability in these scenarios is 0.95.
The reliability values for 500 hours for each of the
blocks obtained are as in figure 7.

Figure 5: FFBRD for Checkout Scenario.

Figure 6: RBD Analysis for Checkout Scenario.

The evaluations suggest the system reliability at-
tained in the scenario 1 is 0.638212 and in the second
is 0.641303. If the target reliability is considered, the
MTTFF (Hr) calculates to 1151.5 and 1313.71 respec-
tively for the scenarios. The reliability parameter also
determines MTBF, Uptime, Downtime, Availability
and Maintainability statistics for the system.

Figure 7: Reliability Analysis of Checkout Scenario.

The reliability importance computed in the sim-
ulation prioritizes the blocks (Mostafa et al., 2017).
The payment, checkout and payment modes are iden-
tified as the critical blocks with higher Reliability Im-

Optimizing Regression Testing with Functional Flow Block Reliability Diagram

529



portance. These are relevant to the regression testing
of system and prioritize the test cases corresponding
to the identified blocks.

4 TEST COVERAGE AND TEST
SUFFICIENCY

The test case generation may be categorized as a con-
straint satisfaction problem (Petke et al., 2015; Fraser
and Arcuri, 2015). The solution to the problem is ap-
proached through control flow graphs. The model el-
ements are converted into an intermediate model to
form a directed graph. The graph is marked for en-
try points, exit points, edges and nodes. The sim-
ulated graphs are applied to backtracking algorithm
with state space search for solution space. All path set
is created and the attribute of the node with maximum
reliability becomes the search node. The search node
is backtracked and the path for the graph is set as the
test case with maximum priority. Similarly, next and
subsequent reliable nodes are identified for paths and
test cases are organized accordingly. Branching and
decision nodes makes subgraphs for the test cases.
Thus, the Search Graph (SG) ordered in the reliability
value to optimize the test cases is generated (Trivedi
and Bobbio, 2017).

Another interesting advantage with the algorithm
is that it the path-oriented algorithm chooses the best
first search to make the most important test case. The
look-ahead and look-back feature of the search algo-
rithm makes the complete test case. The node that
are traversed are marked as coloured if the tests have
been generated for the graph through that node, with
a graph colouring algorithm. Thus the redundancy of
tests can be curbed through the algorithm. This pre-
vents the state space explosion of redundant and irrel-
evant tests being generated through such graph traver-
sal strategies.

4.1 Algorithm for Prioritizing Nodes in
the FBGraph

Algoritm for generating Search Graphs (SG): In this
step, all possible test sequences are derived from the
flow in FFBRD. The sequence of blocks in all inde-
pendent paths is a path in Search Graph. The guard
conditions, OR states, AND states derives the paths
in the graph. It may be noted that the graphs gener-
ated from the RBDs give maximum coverage as they
are path based. The algorithm ensures covering all
blocks and all paths from all type of user inputs and
flow as responses to the inputs.

Begin

Input: p = path to be traversed
/the paths of the graphs are traversed

Output: TCi ,
testcase of all possible paths p,
search graphs SG,
State space (FBi, C, I, F)

Where FBi is the FunctionBlock
C is the connections to other Blocks
I is the initial Block
F is the final Block or end state
call all-path-search(FBi) for all connections C
until look-back(I) and look-ahead(F) is reached
return SG with start node,

end node and weights as RI
// Read the properties of the Block and

find the maximum value of the reliability Ri

End

4.2 Algorithm 2: RTO (Regression Test
Optimizer)

Algorithm for optimizing tests: Test optimization
here means eliminating the redundant paths generated
as test sequences i.e. SG. This also includes execution
of graphs in a sequential manner to improve the per-
formance of regression testing. The simulated execu-
tion of the transactions in the system generates relia-
bility and reliability importance which prioritizes the
test sequences accordingly.
Begin
Parameters:
Test Suite TS,

includes Test Cases TC
that correlates FB for each cases,

Weights in RI values
//RI is Reliability Importance for a block
for all TCi in TSi (1 ≤ i ≤ n)
corresponds to each path p in all-path-search
Sort TCi by RIi
Ri: reliability of Block FBi
//reliability of ith block
RIi: Reliability Importance of Block
//reliability importance of ith block
Create reliability-wise-graph path
// sorted on RI
//assigning priority on max(RIi)

TS = Test Scenarios for each SG path

End

The algorithm analyses scenarios in the context of
component and system reliability. The all path test
scenario assures test completeness and test coverage
for the regression testing.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

530



5 CONCLUSION AND FUTURE
SCOPE

The approach of FFBRD discussed in this paper is an
advantageous approach to use models as tools for test
generation. This is a preparedness for test during the
design phase and keeps the parameters of quality in
check. The algorithm saves time and complexity of
test generation from other sources. If automation of
the process is done, adaptability of the method in pro-
cesses like Agile will reduce the drawbacks of testing.
A rigorous study with the practices of industry and the
use of FFBRD in the development process needs to
be done. The efficiency of the method and model can
thus be validated for quality-based development. Ap-
propriate analysis of requirements can generate test
possibility and prioritized requirements. Also, tool
support of automating the process can be identified
to produce relevant regression test cases. A thorough
and systematic research in this direction will make the
studies in reliability testing in Software Engineering
efficient and productive.

REFERENCES

Aichernig, B. K., Mostowski, W., Mousavi, M. R., Tappler,
M., and Taromirad, M. (2018). Model learning and
model-based testing. In Machine Learning for Dy-
namic Software Analysis: Potentials and Limits, pages
74–100. Springer.

Alanen, M. and Porres, I. (2005). Model interchange using
OMG standards. IEEE.

Arora, P. K. and Bhatia, R. (2018). Agent-based regression
test case generation using class diagram, use cases
and activity diagram. Procedia Computer Science,
125:747–753.

Chourey, V. and Sharma, M. (2015). Component based reli-
ability assessment from uml models. In 2015 Interna-
tional Conference on Advances in Computing, Com-
munications and Informatics (ICACCI), pages 772–
778. IEEE.

Chourey, V. and Sharma, M. (2016). Functional flow di-
agram (ffd): semantics for evolving software. In
2016 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI),
pages 2193–2199. IEEE.

Dick, J., Hull, E., and Jackson, K. (2017). Requirements
engineering. Springer.

Felderer, M. and Herrmann, A. (2018). Comprehensibility
of system models during test design: a controlled ex-
periment comparing uml activity diagrams and state
machines. Software Quality Journal, pages 1–23.

Fraser, G. and Arcuri, A. (2015). Achieving scalable
mutation-based generation of whole test suites. Em-
pirical Software Engineering, 20(3):783–812.

Gérard, S. Papyrus user guide series: About uml profiling.
2011.

Gokhale, S. S. and Trivedi, K. S. (2002). Reliability predic-
tion and sensitivity analysis based on software archi-
tecture. In 13th International Symposium on Software
Reliability Engineering, 2002. Proceedings., pages
64–75. IEEE.

Goševa-Popstojanova, K. and Trivedi, K. S. (2001).
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation, 45(2-
3):179–204.

Gupta, N., Yadav, V., and Singh, M. (2018). Automated
regression test case generation for web application: A
survey. ACM Computing Surveys (CSUR), 51(4):87.

Jena, A. K., Swain, S. K., and Mohapatra, D. P. (2014).
A novel approach for test case generation from uml
activity diagram. In Issues and challenges in intel-
ligent computing techniques (ICICT), 2014 interna-
tional conference on, pages 621–629. IEEE.

Kandil, P., Moussa, S., and Badr, N. (2017). Cluster-based
test cases prioritization and selection technique for ag-
ile regression testing. Journal of Software: Evolution
and Process, 29(6):e1794.

Kim, J., Jeong, H., and Lee, E. (2017). Failure history data-
based test case prioritization for effective regression
test. In Proceedings of the Symposium on Applied
Computing, pages 1409–1415. ACM.

Luo, L. (2001). Software testing techniques. Institute for
software research international Carnegie mellon uni-
versity Pittsburgh, PA, 15232(1-19):19.

Lyu, M. R. et al. (1996). Handbook of software reliabil-
ity engineering, volume 222. IEEE computer society
press CA.

McInnes, A. I., Eames, B. K., and Grover, R. (2011). For-
malizing functional flow block diagrams using pro-
cess algebra and metamodels. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and
Humans, 41(1):34–49.

Mingsong, C., Xiaokang, Q., and Xuandong, L. (2006). Au-
tomatic test case generation for uml activity diagrams.
In Proceedings of the 2006 international workshop on
Automation of software test, pages 2–8. ACM.

Mostafa, S., Wang, X., and Xie, T. (2017). Per-
franker: Prioritization of performance regression tests
for collection-intensive software. In Proceedings of
the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 23–34. ACM.

Nelson, W. (1983). How to analyze reliability data, vol-
ume 6. Asq Pr.

Nelson, W. B. (2009). Accelerated testing: statistical mod-
els, test plans, and data analysis, volume 344. John
Wiley & Sons.

Petke, J., Cohen, M. B., Harman, M., and Yoo, S. (2015).
Practical combinatorial interaction testing: Empirical
findings on efficiency and early fault detection. IEEE
Transactions on Software Engineering, 41(9):901–
924.

Pham, T. and Pham, H. (2017). A generalized software reli-
ability model with stochastic fault-detection rate. An-
nals of Operations Research, pages 1–11.

Optimizing Regression Testing with Functional Flow Block Reliability Diagram

531



Rajput, B. S. and Chourey, V. (2015). Uml based approach
for system reliability assessment. International Jour-
nal of Computer Applications, 131(2):0975–8887.

Sarma, M. and Mall, R. (2007a). Automatic test case gener-
ation from uml models. In 10th International Confer-
ence on Information Technology (ICIT 2007), pages
196–201. IEEE.

Sarma, M. and Mall, R. (2007b). Synthesis of system state
models. ACM SIGPLAN Notices, 42(11):5–14.

Teixeira, F. A. D. and e Silva, G. B. (2018). Easytest: An
approach for automatic test cases generation from uml
activity diagrams. In Information Technology-New
Generations, pages 411–417. Springer.

Trivedi, K. S. and Bobbio, A. (2017). Reliability and Avail-
ability Engineering: Modeling, Analysis, and Appli-
cations. Cambridge University Press.

Wu, L., He, W., Liu, B., Han, X., and Tang, L. (2018).
Scenario-based software reliability testing and evalu-
ation of complex information systems. In 2018 IEEE
International Conference on Software Quality, Relia-
bility and Security Companion (QRS-C), pages 73–78.
IEEE.

Yildirim, U., Campean, F., and Williams, H. (2017). Func-
tion modeling using the system state flow diagram. AI
EDAM, 31(4):413–435.

Yoo, S. and Harman, M. (2012). Regression testing mini-
mization, selection and prioritization: a survey. Soft-
ware Testing, Verification and Reliability, 22(2):67–
120.

Zheng, Z., Trivedi, K. S., Qiu, K., and Xia, R. (2017). Semi-
markov models of composite web services for their
performance, reliability and bottlenecks. IEEE Trans-
actions on Services Computing, 10(3):448–460.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

532


