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Abstract: Anomaly detection means a hypernym for all kinds of applications finding unusual patterns or not expected be-
haviour like identifying process patterns, network intrusions or identifying utterances with different meanings
in texts. Out of different algorithms artificial neuronal nets, and deep learning approaches in particular, tend
to perform best in detecting such anomalies. A current drawback is the amount of data needed to train such
net-based models. Moreover, data streams make situation even more complex, as streams cannot be directly
fed into a neuronal net and the challenge to produce stable model quality remains due to the nature of data
streams to be potentially infinite. In this setting of data streams and deep learning-based anomaly detection
we propose an architecture and present how to implement essential components in order to process raw input
data into high quality information in a constant manner.

1 INTRODUCTION

Threats, anomalies and outliers are growing chal-
lenges for almost all companies. Since they occur in
every corner of operations, like in their sensor and
computer networks, or in business processes, com-
panies have to be aware of intrusions and other ab-
normal or malicious activities on many different lev-
els. According to the Oxford dictionary, anomalies
are deviations from what is regarded as normal, or
more specifically, describe events or measurements
that are extraordinary, whether they are exceptional
or not (Oxford Dictionaries, 2019). In data mining,
the term describes data objects that are not compli-
ant with the general behaviour or model of the data
(Han et al., 2011). Anomalies occur in all areas of
life, whether biology or business. Even for the latter,
there is a multitude of use cases, that are dependent
on the detection of anomalies in the behaviour of run-
ning operations. In this work we present an architec-
ture with examples from two use cases from different
areas: Operating Room (OR) Management and Net-
work Intrusion Detection. In the OR area it is nec-
essary for decision makers to know about the current
states of running interventions and possible deviations
in duration and surgical task order. For cybersecurity
e.g. in corporate networks it is important to identify
abnormal network traffic to prevent attacks like denial

of services or hijacking of clients or servers. In addi-
tion, in all these – and other – cases of application,
business operations increasingly become faster with
higher demands on latest information about anoma-
lies and deviations. Hence, data streams are essential
to fulfil these requirements but are accompanied with
additional challenges in real-time data processing. In
these use cases, anomaly detection systems are used
to detect such deviations, each with specific character-
istics and peculiarities in terms of system components
and detection methods.

The relevance and contribution of this work for in-
formation systems research are twofold: An architec-
ture usable for a set of anomaly detection problems is
important to generate synergies in terms of functional
and technical components as well as in know-how to
ease the realization of anomaly detection applications.
This work postulates an architecture approach that is
applicable in several use cases, providing a frame-
work and set of components for multi-purpose deep
learning (DL)-based anomaly detection applications.
The corresponding research question is: How should
a generic architecture for DL-based anomaly detec-
tion be designed to support different use cases?

The reminder of this paper is structured as fol-
lows: After this introduction, section 2 provides a
brief overview of related work concerning DL-based
anomaly detection systems as well as of approaches
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that try to place these approaches in architectures.
Sections 3 and 4 contain the description of our solu-
tion approach, including an architecture model as well
as implications for the realization of the approach.
This is followed by an evaluation of the artefact as
well as a discussion of the results. The paper closes
with a conclusion featuring limitations, implications
and an outlook on future research.

2 RELATED WORK

In accordance with the exploding advances in the ma-
chine learning and artificial intelligence area, a recent
trend for anomaly detection is to use DL methods to
model abnormal behaviour in data. The rise of power-
ful graphics hardware, with its ability to perform fast
matrix multiplications is a technological advancement
that brought many theoretical approaches into prac-
tice. Artificial neuronal networks (ANN) outperform
other machine learning approaches in several fash-
ions. For instance, even perceptrons, a simple type
of ANN, is capable of identifying non-linear relation-
ships in a dataset (Sadegh, 1993). Deeper nets or
DL approaches respectively, i.e. nets that have many
hidden layers are even more powerful (LeCun et al.,
2015), but used to be impractical. Another interesting
feature relevant for anomaly detection is the so called
”course of dimensionality” (Goodfellow et al., 2016,
p. 151), at which DL can tackle high dimensional data
much better than other algorithms.

Specifically in the field of anomaly detection there
are plenty of examples also using DL like (Zhou and
Paffenroth, 2017) (deep auto encoders for feature en-
gineering), (Revathi and Kumar, 2017) (anomalies in
videos) or (Paula et al., 2016) (fraud detection). Spe-
cific to our use cases, several approaches for utilizing
ANNs were recently presented to identify relevant in-
formation for OR management. (Bodenstedt et al.,
2018) analyse multimodal sensor data of laparoscopic
surgeries to identify their states and durations with
the help of recurrent Convolutional Neural Networks
(CNN). As well, (Twinanda et al., 2018) use CNN for
surgical phase recognition based on video data.

In the intrusion detection systems area (IDS), the
disadvantages of conventional machine learning ap-
proaches are the lack of automatic feature engineer-
ing, low detection rate, and incapability of detecting
small mutations of existing attacks and zero-day at-
tacks (Diro and Chilamkurti, 2018). Thus, (Elsherif,
2018) build a DL-based IDS system using Recurrent
Neural Networks (RNN) and Long-Short term memo-
ries neural networks (LSTM). In addition, they use bi-
directional techniques to avoid sequence dependen-

cies by considering forward and backward order of
request sequences. (Doshi et al., 2018) develop a DL
pipeline that performs data collection, feature extrac-
tion, and binary classification for DDoS detection in
IoT traffic. As well, they describe a high-level attack
detection architecture for fog networks.

In strongly business process-oriented research ar-
eas like process mining, ANNs become also more
popular for anomaly detection. Especially LSTMs are
a focal point for research, e.g. (Tax et al., 2017) cre-
ate generalizable predictive process monitoring appli-
cations for remaining cycle times and future states in
running process instances with LSTMs. Others ex-
tend these methods with Natural Language Process-
ing (NLP) methods and RNN to predict future events
based on activity sequences (Hinkka et al., 2018) or
in business processes without using explicit process
models (Evermann et al., 2017). Finally, (Nolle et al.,
2018) present an autoencoder approach that works
without prior knowledge about considered processes
and anomalies to classify business events.

Since, most of these approaches in different do-
mains provide novel concepts for specific anomaly
detection systems, but lack in describing the frame-
work to embed their results in automated and pro-
ductive environments. Indeed, there are also ap-
proaches that embed architectural decisions like (Lar-
rinaga et al., 2018) for condition-based maintenance
in cyber-physical systems or (Caselli et al., 2015) for
describing a general architecture for IDS in indus-
trial settings. But most of the work in the context of
ANN’s is about architecture of the ANN’s themselves.
By contrast, we also focus on architectural aspects in
order to come up with a complete architectural solu-
tion for anomaly detection, including data ingestion,
preprocessing and model building. For instance, (Pa-
pazoglou et al., 2015) provide much more details for a
reference architecture that also includes anomaly de-
tection. For our work we do not provide a reference
architecture but one that is reusable in multiple similar
scenarios in the context of anomaly detection. Com-
parable approaches often adopted the microservice
paradigm as a basic principle in their architecture. Re-
search in the mentioned use cases provides for ex-
ample microservice-based architectures for an end-
to-end IoT architecture that is usable for IDS (Datta
and Bonnet, 2018). (Thramboulidis et al., 2018) cre-
ated cyber-physical microservices, that are reusable in
many settings in manufacturing. Additionally, (Car-
rasco et al., 2018) provide an overview of best prac-
tices and architectural hints while (Cerny et al., 2018)
compare microservices with service-oriented archi-
tectures and also emphasize the possibility of inde-
pendent deployments. Finally, (Steffens et al., 2018)
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provide a solution for continuous integration & devel-
opment (CI / CD) with microservices, which is also
part of our solution approach.

3 ARCHITECTURE &
INFRASTRUCTURE

In this section we describe a multi-purpose architec-
ture for anomaly detection with focus on data streams.
The main purpose for developing such an architecture
is to process raw input data into high quality infor-
mation in a constant manner in different contexts. As
we especially focus on using ANNs and mostly DL,
there is still a high demand for training data and thus
for comfortable methods to process them. But the
same is true for many machine learning approaches
(e.g. random forest).

For this, we extracted necessary components out
of several use cases and identified abstract patterns
how to combine them. The use cases described in sec-
tion 1 vary in terms of domain, data structure, amount
and velocity of data and purpose of modelling. On
a more abstract level, it can be stated that all these
use cases can be approached using same or similar
strategies and methodologies. Thus, our purpose is
to build an architecture based on common compo-
nents and infrastructure that replaces only specific el-
ements for a certain use case. For a single use case
this might seem too much effort but data processing
pipelines are needed anyway and remain the same for
each one in principle. Thus, a multi-purpose architec-
ture allows to quickly adapt to new use cases. Based
on the use cases and by using the separation of con-
cerns paradigm (Parnas, 1972), which allows to de-
compose the overall architecture in building blocks,
four essential generic building blocks were obtained:
data (pre-) processing, model building, user interac-
tion and cross-cutting (cf. figure 1).

Cross-cutting concerns are necessary to support
managing and maintaining other components (Con-
tinuous Integration/Continuous Development), gain
access to the system (Authentication), provide Stor-
age for user-specific and use case-specific data and
allow for an abstraction of the underlying hardware
and system resources (resource management). User
interaction concerns are components, where users of
the system interact with system components. Espe-
cially, this is about Monitoring training phases and
about prediction Evaluation of the trained algorithms.
Aside from that, the module for Interactive Data
Analysis allows users to gain insights on small sub-
sets of data for experimenting with algorithms and
thus for evaluating (hyper-)parameters prior to train-
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Figure 1: separation of concerns.

ing. Finally, the Workflow Management components
allows users to develop and manage data processing
pipelines based on available processing components.
Data (pre-)processing concerns include components
helping to prepare raw data in a way that they can
be fed into selected algorithms. For instance, compo-
nents such as load data from disk or interface with ex-
ternal sources (Collection), components that integrate
data from various sources, handle null values, etc.
(Aggregation) and components that provide Transfor-
mations (e.g. format conversions, decoding, cropping
or augmentations) on (raw) data. The Distribution
component acts as a kind of middleware and is re-
sponsible for ingesting data into other processing and
model building components. In particular, distribu-
tion is responsible for handling data streams within
the architecture and as such is also a special kind of
collection component. The last and most important
concern is about the model building itself. The three
components Model Training, Model Management and
Model Inference provide frameworks for training al-
gorithms, allow to store, choose and update existing
models and to put existing models into practice.

The architecture depicted in Fig. 2 provides a
high level overview of the necessary components, al-
ready described as part of the different concerns and
additionally essential data and control flows between
them. There is no predefined order for using the com-
ponents but basically data enters the system either by
pushing or pulling it, passes through a variety of pre-
processing steps before it is ingested into mass stor-
age and is injected into the training engine. Trained
algorithms are then checked into the model server or
directly passed to the inference engine to deliver in-
sights into the data. Things get interesting on a more
use case and technology specific view.

Each component addresses a specific piece of
functionality required by a use case pipeline. Collec-
tion, aggregation and transformation functionalities
have to be designed for these specific requirements
and thus have to be independent from each other.
The only way they are able to interact is by push-
ing data into the distribution component and the mass
storage respectively. Thus, our solution to handle
data streams is to consequently build the architecture
around streaming functionality (cf. the Kappa archi-
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Figure 2: architectural blueprint.

tecture (Kreps, 2014)). Unfortunately, there are some
drawbacks regarding ANN’s, which we will discuss in
section 4.2. To enforce independence of the compo-
nents we make use of the microservice paradigm and
package implemented functionality into distinct ser-
vices with a common interface. In our architecture we
use a JSON-based intermediate exchange format for
this and to annotate data with metadata. JSON is used
due to its widespread dissemination and most pro-
gramming languages already have parsers and other
utilities to easily work with it. Aside from an ar-
chitectural approach, the underlying infrastructure as
well as efficient possibilities of utilizing restricted re-
sources is as important as developing necessary com-
ponents. To enable a microservice-based approach we
restrict implementation of the architecture to use a vir-
tualization based on Docker and Kubernetes. These
infrastructural components are necessary (enforcing
and leveraging microservices) but also provide ben-
efits. In practice, we are able to dynamically assign
resources to dedicated components, e.g. for resource-
intensive transformation steps, while other compo-
nents can spare remaining resources. Especially, Ku-
bernetes allows us to assign specialized hardware like
graphics to dedicated components (e.g. model train-
ing). Moreover, we can benefit from container reg-
istries to manage already existing preprocessing com-
ponents. To sum up, isolated components on the one
hand and a flexible infrastructure allowing to quickly
adapt to resource demands on the other, enable the
realization of dynamic pipelines.

4 FROM DATA TO MODEL TO
INFORMATION

4.1 Data Processing Pipelines

By the use of these architectural components, we
describe in this section how to build processing
pipelines and hence how to apply the proposed ar-
chitecture. Processing pipelines are built with se-
lected frameworks. Currently, the implementation
supports Apache Spark and Apache Flink in the Ku-
bernetes environment. For both, one master and some
worker nodes were deployed, whereby the number
of workers is dynamically adjustable according to
the requirements. Both frameworks can be used by
implemented clients or within the interactive, batch-
oriented data analysis component or their dedicated
streaming functionalities. Apache Kafka in conjunc-
tion with Apache Zookeeper is also deployed in Ku-
bernetes and serves as the primary streaming compo-
nent. As such, it is also focal element in every pro-
cessing pipeline and helps to move data through a
pipeline with a publish-subscribe pattern. Each col-
lection, aggregation and transformation component is
derived from a basic Docker image that incorporates
client libraries and configurations for Spark, Flink or
Kafka Streams. For instance, in order to build a Flink-
based transformation component the corresponding
base image is taken and use case specific code is
added prior to the build process. The resulting image
or container respectively can then be deployed and is
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added to the registry for further usage.
Aside from programmatically defining data pro-

cessing pipelines, e.g. by implementing fixed routes
with Kafka, the workflow management component in
the user interaction concern is a viable alternative for
deploying complete processing pipelines. At present,
Apache Airflow is evaluated for the management
component, but is subject to further investigations and
discussions. The idea behind is that, in this case,
pipelines are configured by declaring a workflow on
an abstract level. Airflow uses directed acyclic graphs
for pipeline definitions and makes use of a special Ku-
bernetes operator that is capable of starting Docker
images with a specified command. Hence, we can use
the same components as described before but the ex-
change of data happens based on mass storage, e.g.
HDFS or databases. Such a pipeline definition also
offers the ability to execute the pipeline based on a
schedule. The drawback with workflow management
is the current lack of support for streaming function-
ality, i.e. data streams have to be continually split into
chunks and ingested into storage.

4.2 Model Building & Management

Having defined and operated processing pipelines,
use case specific data is well prepared to train the
desired models. For working with ANNs our im-
plementation at present provides Tensorflow, Keras,
TFLearn and to a certain extend PyTorch. Addition-
ally, we also use the implemented machine learning
algorithms from Spark and Flink. Development of net
architectures and parameterisation of algorithms like
random forests is also supported in the interactive data
analysis component so that running training jobs can
be tested in advance for error pruning. By means of
available data, a training job is triggered e.g. every
night, depending on size of dataset and complexity of
the desired model. When it is trained we deploy the
model for the specific uses case, e.g. in form of a
container (Spark or Flink) or with the help of the in-
ference engine (Tensorflow). As a result, we currently
obtain a use case specific model for anomaly detec-
tion, i.e. we develop distinct models based on con-
crete use case requirements. In future research this is
also subject to discussion (cf. section 6).

From a technical point of view, handling of data
streams is easy if Spark- or Flink-based models are
used because they have distinct APIs for data streams.
But, for the moment, to train ANNs, data streams
have to be broken into chunks and be fed into with
(micro-)batches. Major problems arise from typical
big data characteristics (cf. (Augenstein et al., 2017))
whereas data streams can be regarded as potentially

indefinitely and thus represent big data at high ve-
locity. Although there are approaches to tackle big
data related problems, e.g. concept drift, class im-
balance or non-linearity can have a lasting effect on
model quality. Thus, we use for the approach contin-
uous monitoring and define thresholds (e.g. for accu-
racy) to spot decreasing model quality by leveraging
the monitoring and evaluation components. With this,
we have a pragmatic possibility at hand to gain infor-
mation about the quality of the models and to control
already trained models in order to adapt the model to
new or changing data.

5 EVALUATION STRATEGY

The evaluation of the proposed approach is an ongo-
ing work. For a proper evaluation, a twofold strategy
is planned, which follows the principles of design sci-
ence research artefact evaluation (Peffers et al., 2012;
Venable et al., 2016). Hence, technical experiments
will be conducted to evaluate the approach’s perfor-
mance in addition to more formative evaluation meth-
ods. As a first step, the architecture model is mapped
on the two use cases described in section 1 to imple-
ment the components necessary to fulfil their func-
tional needs.

For the planning and optimization tasks in Online
Surgery Scheduling of OR management, the architec-
ture approach described in section 3 is utilized as fol-
lows. In this use case, functionalities for data distribu-
tion and storage layer are needed, which are realized
by components of Data Collection, Data Transfor-
mation and Data Distribution. The previously used
Complex Event Processing-based (cf. (Spangenberg
et al., 2017a) component for anomaly detection is re-
placed by the Model Server and the Training respec-
tively Inference Engine. These building blocks al-
low a highly automatized approach relying on ANNs
(see (Spangenberg et al., 2017b)) which reduces the
need of expert knowledge for defining a hard rule-
set to identify current surgical phases as well as re-
maining intervention times. By using Spark, based
on its Kubernetes version, and an implementation of
a Multilayer Perceptron Regression algorithm (Span-
genberg et al., 2017b), a processing pipeline and a
DL-model training approach for anomaly detection
in surgical interventions was realized. The inference
component uses Kafka Streams for loading the per-
sisted DL-model from file system and processes each
detected surgical phase to infer a remaining interven-
tion time prediction based on the model. An ongoing
challenge at the moment is to find an appropriate cy-
cle for model recomputation to avoid streaming-based

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

474



problems (cf. section 4.2).
Besides, we utilized an existing IDS approach

(Radford et al., 2018) that uses a LSTM to detect
abnormal activities and intruders in network traf-
fic. The necessary transformation functionality that
extracts features from the generated network traffic
maps to the Data Transformation component of the
architecture blueprint. With the help of the Interac-
tive Data Analysis component it is possible to succes-
sively identify details of the dataset and the problem.
The resulting Tensorflow model of the DL application
is mapped to the Training Engine to train a valid clas-
sification model for anomaly detection. This model
is finally utilized by the Inference Engine to realize
anomaly detection on network data streams in a real-
time fashion. This approach uses Word2Vec, an al-
gorithm used in NLP to create word embeddings to
classify text anomalies, as part of the preprocessing.

Based on these implementations, public datasets
for IDS (Sharafaldin et al., 2018) and artificial
datasets for OR management (Spangenberg et al.,
2017a) have been utilized and scaled to benchmark
the approach in different settings and loads. Further,
formative methods will be utilized that focus on the
outcome of the artefact for the described problems.
The resulting artefacts and implementations will be
demonstrated to domain experts to assess diverse cri-
teria for Information Systems artefacts (Prat et al.,
2015) like operational feasibility, usefulness or adapt-
ability on other contexts. The reason for this is to
identify potential consequences for further anomaly
detection use cases, e.g. to derive additional compo-
nents as architectures building blocks.

6 CONCLUSION

In this paper we presented a novel solution approach
for a multi-purpose architecture for anomaly detec-
tion. The novelty of this approach lies in a holistic
view on the overall processing of data beginning with
pushing or pulling it from source and ending with a
common representation being fed into ANNs or ma-
chine learning based algorithms. A general applica-
bility of this architectural approach is given because
of the restriction to anomaly detection and the focus
on finding a common representation of data over sev-
eral use cases. For future work our focus will be on an
exhaustive approach that also encompasses the model
learning, i.e. we also want to produce a neuronal net
architecture that is capable of uniformly handling data
from different uses cases. For this, we choose multi-
task learning (cf. (Caruana, 1997)) as a starting point.
It has already been shown that ANNs trained with dif-

ferent data for the same reason tend to provide even
better results than training multiple nets (e.g. (Yang
et al., 2018) (image captions), (Kong et al., 2018)
(sparse data), (Luo et al., 2018) (multiple domains,
text processing). For instance, transferred to our sce-
nario, we have multiple classification problems (tasks,
one per use case) and train with different datasets in
order to receive a good classification per use case. Be-
ing able to apply such a multi-task learner, we are still
confronted with the draw backs of (big) data streams.
A major question arises from the problems of con-
tinuous model updates. Updates usually force (re-
)training of the underlying model which might not be
applicable at all hours, so the question remains how
to adapt to fast changing data.
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