
Software Development Process: An Action Grammars Perspective

Diana Kirk
Independent Researcher, Auckland 1010, New Zealand

Keywords: Software Process Modelling, Software Methodologies, Action Networks.

Abstract: Practitioners adapt development methodologies to suit local needs, for example, by combining agile and tra-
ditional elements. To support this, we need a deeper understanding of the underlying mechanisms behind the
various software development approaches, with the aim of finding a perspective that is common to all. In the
field of IT, it has been suggested that a change in perspectivefrom ‘technology and people’ to ‘action’ might
help address the disconnect between artifact- and people-centric approaches. In this position paper, we ex-
plore this idea for software development by considering a change in viewpoint frommethodologyto patterns
of action. Actions are the core functions that are the building blocksfor software development and are defined
in a lexicon. Possible relationships between actions are depicted in agrammarand processes are modelled as
action grammars. We represent some common development methodologies as action grammars and discuss
insights gained. Our contributions are the exploration of anovel way of viewing the software process, some
insights gained and the exposure of issues with popular terminology.

1 INTRODUCTION

There are numerous approaches to developing
computer software. Although many practices are
common to both (Clarke et al., 2016; Larman and
Basili, 2003), the underlying paradigms differ,
with the more traditional approaches viewed as
document-centric and the more recent agile methods
viewed as people-centric. The software community
thus finds itself in a dilemma. In the first instance,
there is wide acceptance that practitioners mix and
adapt methodologies to suit specific environments
(Avison and Pries-Heje, 2008; MacCormack et al.,
2012; Müller et al., 2009; Petersen and Wohlin,
2009; de Azevedo Santos et al., 2011; Turner et al.,
2010) and researchers are unable to confidently
support such adaptation. Secondly, there is a growing
move towards greater ‘agility’ by organisations that
have followed more traditional approaches due to
a need for standards compliance, for example, in
the avionics industry (Petersen and Wohlin, 2010).
Indeed, Petersen and Wohlin have identified the
need for a “research framework for agile methods”
that describes the “characteristics of the processes
studied” (Petersen and Wohlin, 2009). We would
like to be able to view all methodologies through
a common lens. We would then be in a position
to start with the problem to be solved and then
design a process solution, rather than begin with a

methodology (process solution) and try to fit the
problem into it.

The disconnect between technology- and people-
centric approaches in the field of Information Tech-
nology (IT) has been recently addressed by a sug-
gested change of perspective to that of the ‘action’
(Pentland and Feldman, 2008; Pentland, 2008). Pent-
land explores the use ofgrammars of actionas
a means of reconciling artifact- and people-centric
viewpoints. As an engineering tradition, IT focus has
largely been onartifacts. However, the human-centric
nature of IT systems has resulted in behavioural sci-
ence based studies intoactors. The author presents
an illustrative example of mice running through a
maze. Engineering-based questions might be “Is vir-
tual cheese as good as real cheese?” and “How many
buttons should the mice have?” whereas behavioural
science-based questions might be “How do mice learn
to navigate the maze?” and “How can we control the
behaviour of opportunistic mice?”.

Pentland argues that an approach based onactions
might be fruitful as a means of reconciling these view-
points. Possible actions are defined in alexiconand
anaction grammaris created by stating the rules for
combining actions. Surfacepatterns of action(i.e.
individual instantiations) based on the grammar can
be studied with the aim of exposing underlying struc-
tures i.e. agrammar is used as “tool for describing

502
Kirk, D.
Software Development Process: An Action Grammars Perspective.
DOI: 10.5220/0007759205020509
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 502-509
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



and discovering structures” (Pentland, 2008).
We see parallels between the situation described

above for IT and the current issues in software devel-
opment. In both cases, the ontologically irreconcil-
able viewpoints of artifact versus actor render it dif-
ficult, if not impossible, to evaluate software process
tailoring efforts. In this position paper, we explore
the possibility of applying the ideas of Pentland to
software development. We hope to evaluate their suit-
ability as a means of reconciliation. We use a lexicon
based on some of our previous work (Kirk and Tem-
pero, 2012) and introduce rules based on some com-
mon ideas, for example, ‘iteration’. We then repre-
sent some popular development approaches as ‘action
grammars’ and discuss insights gained. Our contribu-
tions are an abstraction that reconciles development
approaches and the exposure of issues with popular
terminology.

In section 2, we describe our lexicon and gram-
matical elements and in Section 3, we model some
popular development methodologies and discuss in-
sights. In section 4, we discuss findings and in section
5, we summarise the paper and discuss future work.

2 RESEARCH GRAMMAR

In this section, we explore the notion ofaction gram-
mars for software development. Our study is driven
by a long-held frustration with the focus within the
discipline on thedifferencesbetween agile and plan-
driven approaches, when it is clear that all approaches
involve the same kinds offunction(for example, scop-
ing) and indeed implement the same kinds ofsolu-
tion building blocks (for example, iteration, incre-
mental delivery). Incremental, iterative and evolu-
tionary approaches to developing software intensive
systems have been implemented since the early 1970s
(Larman and Basili, 2003). The notion of delivering
products in increments grew from the 1930s quality
guru Walter Shewart. Shewart introduced a series of
short ‘plan-do-study-act (PDSA)’ cycles in a bid to
control product quality. This approach heralded the
‘continuous improvement’ paradigm and the cyclical
delivery paradigm was adopted by NASA engineers
for software development in the 1960s. Short itera-
tions (1 month), time-boxing and test-first develop-
ment were practised during this decade, mostly on
extremely large military projects (Larman and Basili,
2003). Even the much-maligned single-pass water-
fall model has its roots in a paper by Winston Royce,
who in fact recommended that linear process was suit-
able for only the simplest projects and that in general
long project should be delivered in several iterations

to solicit feedback and manage technical risk (Royce,
1970).

Based on the above, our allowedactions(lexicon)
relate to common developmentfunctionsand ourac-
tion grammarcontains the ‘organising’ notions, for
example, iteration.

2.1 Lexicon

Our lexicon should contain the various possible ac-
tions for software development. If we relate ‘action’
to ‘software development activity’ the number of pos-
sible actions prescribed by the standard process as-
sessment models is extremely large. For example,
the assessment standard ISO/IEC 15504 (SPiCE) con-
tains 46 processes, organised into ten process areas
(International Standards Organisation, 2006). In ad-
dition, we have discovered in previous research that
these models are unsuitable when the aim is tounder-
standhow software organisations go about develop-
ing software-intensive products (Kirk and Tempero,
2012). We found that the terminology used in the
standard was often not understood by practitioners
and so it was extremely difficult to align what was
practised with the standard. We also found that, when
discussing, for example, an engineering activity such
as design, practitioners wanted to discuss all aspects
of the activity at the same time. The attempt to split
the discussion into into engineering and support as-
pects such as documentation led to frustration for all
parties.

Our response to the problem of how to discover
what is actually happening in industry in a flexible,
repeatable way was to focus on what organisations
need to achieverather than on the processes required
to achieve it. We applied an abstraction based on the
high level functions that must be carried out when
producing any software. (Kirk and Tempero, 2012).
The organisation must:

• Define what is to be made.

• Make it.

• Deliver it.

For example, an organisation may elicit the re-
quirements for a pending release in a formal way, cap-
turing requirements in a software specification docu-
ment from which developers implement the product.
A smaller organisation may have developers speak di-
rectly with clients and implement required function-
ality according to understanding and feedback. There
is no ‘right’ way — the ‘best’ way depends on the
project environment.

In our earlier study, we expandedDefine into
Roadmap(e.g. strategic and product-line planning)

Software Development Process: An Action Grammars Perspective

503



Table 1: Lexicon.

Roadmap Plan for product evolution.
Scope Establish requirements for next release.
Architect Create high level structure.
Implement Design and implement modules.
Integrate Integrate the modules.
Release Hand over to intended recipient.
Support Support the situated product.

andScope(release scoping). We expandedMakeinto
Architect, Implement(design and code) andIntegrate.
We expandedDeliver into Release(hand over to in-
tended recipient(s)) andSupport(support the situated
product). These functions become theactionsfor our
lexicon and are shown in table 1.

A similar categorisation based on function is also
applied by Petersen and Wohlin in a study into is-
sues in agile and iterative development (Petersen and
Wohlin, 2009). In this study, the authors divide inter-
viewee roles according to:

What. Decide what to develop from a strategic per-
spective (maps toRoadmap).

When. Plan the timeline from a technical perspective
(maps toScope).

How. Architect and implement the system (maps to
Make).

Quality Assurance. Test the software and review
documentation (maps toRelease).

Mappings are not exact. For example, a final cate-
gory used by Petersen and Wohlin isLife-cycle man-
agement, which addresses a range of activities, in-
cludingconfiguration management, maintenance and
supportandpackaging and shipment. In our scheme,
the first would be viewed as covering several func-
tions (for example, configuration control maps toRe-
leaseand change control maps toScope(functional-
ity evaluated) andSupport(mechanism for client re-
quests). However, the precedent of categorising ac-
cording tofunctionis set.

A resulting characteristic of the actions included
in the lexicon is that each describeswhat must be
achieved but does not place any constraints as tohow.
Our aim is that this approach will provide some in-
sights into similarities and differences that are not
generally apparent when we view methodologies at
the process implementation level. We would like to
expose process ‘families’ that we may reason about
and which lead to increased understanding of where
replacing activities is appropriate. For example, we
do not include activities such as ‘testing’ or ‘inspec-
tions’ because these representhowa goal is achieved
(Kirk and Tempero, 2012).

We include in our lexicon only actions that re-
late directly to the product being developed. We also

Figure 1: Relationships for software methods.

do not include actions describing management activ-
ities, for example, planning and monitoring, because
we view these as activities that affect function imple-
mentation (how), rather than relating directly to the
product-under-development.

2.2 Grammatical Elements

For the relationships between actions, we include pat-
terns commonly found in software process method-
ologies. These are shown in figure 1. Actions may
be carried out as a sequence (one following the other,
as in a traditional approach) or my be combined as
a single action (for example, the ‘implement and in-
tegrate’ pattern commonly practised in an agile con-
text). To support comprehension, relationships can
be hierarchically abstracted into a higher level block,
P(attern). A patterns can be carried out multiple times
in sequence (i.e. iterated) or multiple times in parallel
(i.e. simultaneous development).

3 ANALYSIS

In this section, we model some popular development
approaches as action grammars and examine these for
insights.

3.1 Waterfall

In figure 2(a), we show the basic grammar for the wa-
terfall model. Functions are carried out in a linear
way, with no merging of functions. Integration gen-
erally uncovers implementation issues and so ‘Imple-
ment’ and ‘Integrate’ iterate with progressive builds
until a ‘successful’ build is achieved. ‘Release’ gen-
erally involves some quality-related decisions.

Waterfall projects were generally delivered as ‘al-
pha’, ‘beta’ and final releases, with feedback from

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

504



Figure 2: Grammar for waterfall.

clients or users resulting in some alterations in im-
plementation. ‘Support’ generally involves providing
a mechanism for such feedback. In figure 2(b), we
show the same grammar with the iterated element ab-
stracted as ‘R’ (for ‘createrelease’).

However, in practice, as each function was imple-
mented, issues from previous functions were exposed
and the problem may have originated at any point ear-
lier in the process. For example, a problem uncovered
during integration might have originated in a misun-
derstanding of functionality i.e. during product scop-
ing. This means that the grammar for waterfall-as-
practised requires a set of feedback loops from each
action to all previous actions. Far from being the
‘simple’ model it is reputed to be, the grammar for
waterfall-as-practised indicates many possible paths
(patterns).

3.2 Parallel Development

Large projects are often spit into modules for imple-
mentation. EachModule is implemented and inte-
grated and then integration takes place for all mod-
ules. This grammar is shown in figures 3a and 3b.
However, if a module is complex in its own right, it
might be that it will include its own architecture func-
tion 3c. There is no one single grammar that is appro-
priate in all cases. In addition, the possible feedback
mechanisms discussed in the previous section apply.

3.3 Incremental Development

In this approach, a specified and architected software
system is developed incrementally, with each incre-
ment delivering a more complete subset of the com-
plete requirements than the previous. As each in-
crement is completed, new functions are added and

Figure 3: Grammars for parallel development.

Figure 4: Grammar for incremental delivery.

design modifications made (Basili and Turner, 1995;
Larman and Basili, 2003). Yet again, there are mul-
tiple possible scenarios i.e. grammars. If the incre-
ments remain within the development organisation,
the grammar is as shown in figure 5. If the product is
released, we haveincremental delivery. In this gram-
mar, the iteration includes the release activity (figure
4). If a mechanism for client feedback is included,
Supportwould also be included in the iteration.

3.4 XP (eXtreme Programming)

For XP, we use the original definition of practices as
cited by (Beck, 2000). XP was selected because its

Software Development Process: An Action Grammars Perspective

505



Figure 5: Grammar for incremental development.

practices are well-defined but do not obviously fit into
a standard process paradigm. For example, what is the
function that is described byMetaphor?

From our earlier analysis (Kirk and Tempero,
2006):

• Planning Game, Metaphor support the under-
standing of what is to be made. These relate to
theScopefunction.

• Simple Design, Pair Programming, Collective
Ownership, On-Site CustomerandCoding Stan-
dards are practices to support developers in de-
signi and code and relate toImplement.

• Continuous Integrationdemands that code is inte-
grated after every change with a view to quickly
identifying and resolving defects. This maps to
ImplementandIntegratecarried out as a single ac-
tion.

• Small Releasesis a statement about iteration
length and40-Hour Weekhas the aim of ensur-
ing team members remain motivated. These do
not relate to any actions.

• Testinghas two aspects. The first is the instruction
to a developer to continually write unit tests. This
relates toImplement. The second is the need for a
client to test all software at the point of delivery.
The aim is somewhat unclear. As the software is
delivered no matter what, the main aim appears to
relate to planning for the next iteration i.e. relates
to theScopeaction. However, it is also a require-
ment of handover and so relates toRelease. This

Table 2: Mapping of lexicon to XP practices.

Roadmap
Scope Planning game, Metaphor, Testing (client).
Architect
Implement Simple design, Testing, Pair programming,

Collective ownership, Coding standards.
Integrate Continuous integration.
Release Testing (client)
Support

Figure 6: Grammar for eXtreme Programming.

is an example of a practice that has two functions
— we discuss in section 4.

The relationship between XP practices and actions
are shown in table 2.

In figure 6 we show the grammar for XP. The in-
clusion of Scopeinside each iteration characterises
the evolutionary nature of product definition. The
practice of continuous integration means that theIm-
plementandIntegrateactions can be viewed as a sin-
gle action. The functions ofRoadmap, Architectand
Supportare not represented.

There are many situations that result in modifica-
tions tht effectively change the basic grammar. For
example, if there is an overarching plan for the prod-
uct, or the intended product is large and/or complex,
RoadmapandArchitectmay need to be included.

3.5 Continuous Delivery

This approach has emerged more recently with the
emergence of startup organisations. The aim is to re-
lease an innovative product with minimal functional-
ity quickly to the market, and to ‘test the waters’ as
regards delivered functionality. Each release is deliv-
ered as a working product to a large number of cus-
tomers. As a result of feedback, scope is altered to an
improved product. We show a possible grammar for
continuous delivery in figure 7.

The figure as shown does not include theArchi-
tecturefunction. This may be required if the product
is large and complex or will for the basis of a product
line.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

506



Figure 7: Grammar for continuous delivery.

4 DISCUSSION

The objective of this study is to explore the use of ac-
tion grammars in the quest for a lens that will enable
us to view all development methodologies in a com-
mon way. The hope is that such a lens will provide a
mechanism for supporting a problem-space approach
to architecting custom development methodologies.

We observe from the analysis in section 3 that,
when we try to represent popular implemented ap-
proaches as action grammars, we realise the terms
we have been using are less defined than we thought.
Waterfall, far from being simple, is characterised by a
myriad of possible action paths i.e. the basic grammar
is complex; ‘incremental’ can be interpreted in at least
three ways i.e. by three possible grammars; XP as-
defined requires amendment in many instances, with
amendments likely to require different basic gram-
mars. The widely quoted ‘iterative development’ term
is essentially meaningless, as all methodologies are
iterative in essence. The lack of a clear definition of
the terms we use during research efforts would sug-
gest that we are building empirical castles upon shift-
ing sand. We posit that designing a custom process
by first focussing on establishing a suitable grammar
may be a first step in addressing this problem.

The change in perspective from ‘implement fixed
methodology’ to ‘identify grammar and explore com-
mon and unused patterns of action’ provides us with
at least two possible benefits. First, as researchers, we
would like to compare approaches, perhaps to identify
practices that are best suited to specific environments.
We hypothesise that an understanding of the under-
lying grammars will support this. Second, a common
lens provides us with a mechanism for identifying im-
portant, specific questions. Some examples are:

• For grammars that include delivery to the client in
the iteration, what are the problem-space charac-
teristics that define the ‘best’ iteration length? For
example, not all clients wish to accept delivery on
a regular basis (Shahin et al., 2017).

• How do choices in one part of the grammar affect
other parts? For example, for modules developed
in parallel, if one implements a grammar contain-
ing an iteration that includesArchitect, how might
this affect the final integration of the parts?

• Can problems occur if we are not clear about the
function that is represented by an implemented ac-
tivity? For example, we identified the ‘Client test-
ing’ practice in XP as trying to fulfil two func-
tions, relating to release handover and scoping.
Is the client allowed to refuse a release if release
testing fails? Forced to pay for a further release
just to fix bugs i.e. no scope changes? What hap-
pens if the client is not empowered to make scop-
ing decisions? What if the product has no user
interface?

• When is it appropriate to combine theImplement
and Integratefeedback loop into a single action
and when should these be treated as two actions?

We would hope that having a grammar from which
to make decisions about practices to implement might
force consideration of such matters in advance. Of
course, the action grammars and questions above re-
late only towhatmust be done, in what order, rather
than how. The perspective supports questions re-
lating to the organisation of functions but does not
support questions such as ‘Should we have a cus-
tomer on-site?’ or ‘When are daily stand-up meet-
ings contra-indicated?’. Such questions would come
after the establishment of a grammar. The useful-
ness of our approach is dependent upon whether we
can successfully map problem space characteristics
to the organisational aspects (i.e. pieces of an action
grammar). Process design would then involve com-
bining the pieces together into a grammer tailored to
the problem. We might then investigate, for example,
under what circumstances a specific pattern within a
grammar is more / less likely. This represents an ex-
citing area for future work.

Some initial thoughts on possible problem-space
mappings are overviewed below.

• If what is to be built is unclear, an iteration that
includesScopeis indicated.

• If the organisation is a startup, or is ‘testing the
waters’ in a new country, it probably wants feed-
back relating to adeployedproduct i.e. the itera-
tion includeSupport.

Software Development Process: An Action Grammars Perspective

507



• Continuous integration (implemented byImple-
ment:Integrateas a single action) may not be ap-
propriate when the product is legacy software with
many dependencies between components (Shahin
et al., 2017).

• If the product represents the start of a new
product-line involving safety-critical software,
perhapsArchitectmust be an integral part of every
module.

• A large, complex product suggests a need forAr-
chitect up front, regardless of any desires to be
‘agile’.

Our analysis has raised many questions. We be-
lieve the need to answer these is a pressing one. The
ability to adapt development process has been shown
to affect performance (Clarke et al., 2015) and a com-
mon lens is needed to support such adaptation.

5 SUMMARY

In this position paper, we have explored the possibil-
ity of using Action Grammarsto provide a common
lens on the various paradigms underlying software
development methodologies, for example, agile and
plan-driven. Our position is that, rather than starting
with a process solution (methodology) and attempt-
ing to retrofit the problem, we would like to start with
the problem and design an appropriate process solu-
tion. We modelled some popular methodologies as
Action Grammars. We found that many commonly
used terms, for example, ‘incremental development’
can be interpreted in multiple ways i.e. have different
underlying grammars. This means that we are dis-
cussing methodologies without a clear understanding
of the applicable rules and constraints. Our contri-
butions are a novel abstraction that reconciles devel-
opment approaches and the exposure of issues with
popular terminology.

For future work, we will a) analyse some com-
mon scenarios with respect to our lens, and b) apply
Pentland’s notion of using surface patterns of action
as a tool for “describing and discovering” how pro-
cesses are typically enacted. The first will serve as
a means of evaluating the potential of the approach.
The second will help us to understand, for example,
the factors that affect ‘best’ iteration length. Our over-
all aims are to more deeply understand the relation-
ships between problem space characteristics and cus-
tom grammar design.

REFERENCES

Avison, D. and Pries-Heje, J. (2008). Flexible informa-
tion systems development: Designing an appropriate
methodology for different situations. In Filipe, J.,
Cordeiro, J., and Cardoso, J., editors,Enterprise infor-
mation systems : 9th International Conference, ICEIS
2007, pages 212–224, Berlin, Heidelberg. Springer.

Basili, V. R. and Turner, A. J. (1995). Iterative enhance-
ment: A practical technique for software develop-
ment. IEEE Transactions on Software Engineering,
SE-1(4):390–396.

Beck, K. (2000). eXtreme Programming eXplained - Em-
brace Change. Addison-Wesley, United States of
America.

Clarke, P., Mesquida, A.-L., Ekert, D., Ekstrom, J., Gornos-
taja, T., Jovanovic, M., Johansen, J., Mas, A., Mess-
narz, R., Villar, B. N., O’Connor, A., O’Connor, R. V.,
Reiner, M., Sauberer, G., Schmitz, K.-D., and Yilmaz,
M. (2016). An Investigation of Software Development
Process Terminology. volume 609 ofCommunications
in Computer and Information Science (CCIS), pages
351–361. Springer International Publishing, Switzer-
land.

Clarke, P., O’Connor, R. V., Leavy, B., and Yilmaz, M.
(2015). Exploring the Relationship between Software
Process Adaptive Capability and Software Organisa-
tional Performance.IEEE Transactions on Software
Engineering, 41(12):1169–1183.

de Azevedo Santos, M., de Souza Bermejo, P. H.,
de Oliveira, M. S., and Tonelli, A. O. (2011). Ag-
ile practices: An assessment of perception of value of
professionals on the quality criteria in performance of
projects.Journal of Software Engineering and Appli-
cations, 4:700–709.

International Standards Organisation (2004-2006).
ISO/IEC 15504: Information Technology - Pro-
cess Assessment (Parts 1-5)). The International
Standards Organisation.

Kirk, D. and Tempero, E. (2006). Identifying Risks in
XP Projects through Process Modelling. InProceed-
ings of the Australian Software Engineering Confer-
ence (ASWEC’06), pages 411–420, Sydney, Australia.
IEEE Computer Society Press.

Kirk, D. and Tempero, E. (2012). A lightweight framework
for describing software practices.Journal of Systems
and Software, 85(3):581–594.

Larman, C. and Basili, V. R. (2003). Iterative and Incremen-
tal Development: A Brief History.IEEE Computer,
36(6).

MacCormack, A., Crandall, W., Henderson, P., and
Toft, P. (2012). Do you need a new product-
development strategy?Research Technology Man-
agement, 55(1):34–43.

Müller, S. D., Kræmmergaard, P., and Mathiassen, L.
(2009). Managing Cultural variation in Software Pro-
cess Improvement: A Comparison of Methods for
Subculture Assessment.IEEE Transactions on Engi-
neering Management, 56(4):584–599.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

508



Pentland, B. T. (2008). Desparately Seeking Structures:
Grammars of Action in Information Systems Re-
search.The DATA BASE for Advances in Information
Systems, 44(2):7–18.

Pentland, B. T. and Feldman, M. S. (2008). Designing rou-
tines: On the folly of designing artifacts, while hoping
for patterns of action.Information and Organization,
18:235–250.

Petersen, K. and Wohlin, C. (2009). A comparison of issues
and advantages in agile and incremental development
between state of the art and an industrial case.Journal
of Systems and Software, 82:1479–1490.

Petersen, K. and Wohlin, C. (2010). The effect of moving
from a plan-driven to an incremental software devel-
opment approach with agile practices.Empirical Soft-
ware Engineering, 15:654–693.

Royce, W. (1970). Managing the Development of Large
Software Systems. InProceedings, IEEE WestCon,
pages 328–339. The Institute of Electrical and Elec-
tronic Engineers, Inc.

Shahin, M., Babar, M. A., and Zhu, L. (2017). Continu-
ous integration, delivery and deployment: A system-
atic review on approaches, tools, challenges and prac-
tices. IEEE Access, 5:3909–3943.

Turner, R., Ledwith, A., and Kelly, J. (2010). Project
management in small to medium-sized enterprises:
Matching processes to the nature of the firm.Interna-
tional Journal of Project Management, 28:744–755.

Software Development Process: An Action Grammars Perspective

509


