
Architecture for Mapping Relational Database to OWL Ontology: An
Approach to Enrich Ontology Terminology Validated with Mutation Test

Cristiane A. G. Huve1,2 a, Alex M. Porn1 b and Leticia M. Peres1 c

1Department of Informatics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, 100, Curitiba, Brazil
2Polytechnic School, Uninter, Rua Luiz Xavier, 103, Curitiba, Brazil

Keywords: Mapping, Ontology, Relational Database, Mutation Test.

Abstract: Ontologies are structures used to represent a specific domain. One well-known method to simplify the on-
tology building is to extract domain concepts from a relational database. This article presents an architecture
which enables an automatic mapping process from a relational database to OWL ontology. It proposes to en-
rich the terminology of ontology elements and it was validated with mutation tests. The architecture mapping
process makes use of new and existent mapping rules and overcome lacks not previously addressed, such as
the use of database logic model to eliminate duplicated elements of ontology and mapping inheritance rela-
tionships from tables and records. We stand out the structure of element mapping, which allows maintaining
source-to-target traceability for verification. We validate our approach with two experiments: the first one fo-
cuses on architecture validation applying an experiment with three scenarios and the second one uses a testing
engine applying a mutation test methodology to OWL ontology validation.

1 INTRODUCTION

In computing, an ontology is defined based on a set of
concepts in which a domain of specific knowledge is
modeled (Gruber, 1995). Ontologies offer advantages
in their use, such as: providing an exact description
and an exact vocabulary for representation and shar-
ing of knowledge (Guarino, 1995). The process of its
elaborating is a task which requires a great amount of
effort (Staab and Studer, 2013; Telnarova, 2010).

Several approaches aim to convert relational
databases into ontologies. Most parts of these so-
lutions develop a mapping process from a set of
rules that considering a relational database (RDB)
and physical model. Michel et al. (2014), Spanos
et al. (2012) and Sequeda et al. (2011) surveyed the
motivations and the benefits of a mapping process
from relational database to ontology, considering the
challenges, and different application purposes. Al-
though some authors use the R2RML language (Se-
queda et al., 2012; Das et al., 2012; Arenas et al.,
2012) and it is an important advance for the commu-
nity, the R2RML language has restrictions and does

a https://orcid.org/0000-0002-2038-9450
b https://orcid.org/0000-0003-0832-5750
c https://orcid.org/0000-0002-8922-6975

not support to record during the mapping the relation-
ships between RDB and ontology concepts.

Concerning the creation of an ontology from
scratch since an RDB, we analyzed related work as
Astrova (2009); Būmans and Čerāns (2010); Cullot
et al. (2007); Gherabi et al. (2012); Laclavik (2006);
Li et al. (2005); Louhdi et al. (2013); Ramathilagam
and Valarmathi (2013); Ren et al. (2012); Telnarova
(2010); Vavliakis et al. (2010); Zhang and Li (2011)
and Jain and Singh (2013). Tissot et al. (2019) de-
scribes in detail such related work mentioned above,
being explained rules commonly used in the map-
ping process. Huve (2017) explores related work and
developed experiments with Astrova (2009) work,
which has made a considerable contribution to this re-
search area. Astrova (2009) proposed QUALEG DB,
a tool to deal with hierarchy, constraints, and restric-
tions of elements, however, it works with direct map-
ping. More recently, Jain and Singh (2013) compared
different approaches developed to convert RDB to on-
tology, and they proposed adding new features to an
existing framework. Nevertheless, this proposal pro-
vides a direct mapping between RDB and ontology
elements, limiting the possibilities of ontology mod-
eling.

In general, these works do not expose details
about the terminology of naming ontological el-

320
Huve, C., Porn, A. and Peres, L.
Architecture for Mapping Relational Database to OWL Ontology: An Approach to Enrich Ontology Terminology Validated with Mutation Test.
DOI: 10.5220/0007752803200327
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 320-327
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



ements, an important issue to ontology legibility.
These mapping processes are quite abstract and there
is no source-to-target relationship among the ele-
ments. An exception is presented by Ren et al. (2012),
which append the database relation name to the col-
umn name when mapping columns. In related work,
the name of database elements comes from database
schema and the name of ontology elements retain the
source name of database elements. When there is a
type of encoding or abbreviation on the database ele-
ment name are more difficult to understand the mean-
ing of target ontology elements. This encoding is
commonly declared to arrange the database elements
in the source RDB schema. Another point to empha-
size is the ontology validation of these mapping pro-
cess, not being presented a solution that uses a testing
engine, only being validated the mapping process.

Given the above context, the following motiva-
tions for the present study are: a) the existing map-
ping processes only perform a direct mapping of the
elements and do not reuse pre-existent definitions for
enriching the ontology terminology; b) the proposed
solutions do not consider the information from the
RDB physical and logical model at the same time;
c) in face of different contributions, we identify the
opportunity to consolidate the proposed functionali-
ties of different works in a unique architecture; and
d) we consider validate not only the mapping process
but also the final result of generated ontology apply-
ing mutation test for owl ontology validation.

This paper is organized as follows: Section 2
presents the mapping process architecture and its set
of components and mapping rules. Section 3 depicts
the experiments performed in order to validate our ap-
proach and the produced OWL ontology. Finally, sec-
tion 4 concludes with considerations and future work.

2 MAPPING ARCHITECTURE

In this section, we present our architecture to per-
form the mapping process between RDB-to-ontology.
We developed a mapping architecture based on re-
lated work mentioned in section 1 and from observed
needs. It allows store the mapping between RDB
and ontology elements, offering a more complete so-
lution than the one proposed by Cullot et al. (2007)
and Būmans and Čerāns (2010). We rewrite rules
mentioned in related work and we considered 3 rules
proposed by Tissot et al. (2019). Our main contri-
bution consists in the architecture modeling and in
the adequacy of rules to overcome lacks not previ-
ously addressed. One of them consists in the use
of database logic model rather than using uniquely

database schema or physical model. The terminol-
ogy used in the logic model is more related to the
real world definitions than the terminology used in the
physical model, improving the semantics produced
in the target ontology. Another concerning in the
mapping of hierarchy relationships from tables and
records is the elimination of produced duplicated on-
tology elements, however, maintaining the traceabil-
ity between RDB and ontology elements. From these
considerations, in Figure 1 we present our mapping
architecture capable of overcoming all of these needs.

In the next subsection, we describe the main ar-
chitecture components and second, we present a set
of mapping rules handling the issues argued as our
motivation.

2.1 Architecture Components

The architecture is divided into two parts: External
and Internal Components. The External components
is related to the source data to support the mapping
process, being composed by the database schema,
records and logic model. All data extract from the Ex-
ternal Component process (being this a manual pro-
cess), it is inserted into a single file, that we call as
Configuration Template. Once the file is created, it is
used as input of the Mapping process, being this pro-
cess conducted automatically from the input of con-
figuration template file, being this file analyzed by a
set of rules, detailed in section 2.2, to perform the
mappings. The input data and the mappings results
are automatically stored in the Mapping Model, be-
ing it a metamodel prepared to produce a database
schema from it and keep the database and ontology
elements as well as the mapped relations. The Gen-
eration of Ontology process uses the data stored in
Mapping Model containing the mapped ontology ele-
ments to produce the target OWL ontology.

2.2 Architecture Mapping Rules

In this section we present an set of mapping rules used
to map each RDB element to the corresponding on-
tology element, being defined more than one rule to
map each RDB element. We also considering crite-
ria to name the ontology elements, which enables to
establish conventions to be used by the community
and which contribute to a greater legibility and under-
standing of the target ontology.

2.2.1 Mapping Rules

The mapping process consider the Configuration
Template to get information from tables, columns,

Architecture for Mapping Relational Database to OWL Ontology: An Approach to Enrich Ontology Terminology Validated with Mutation
Test

321



Figure 1: Architecture components.

records, check constraint and hierarchies. Thus, we
separate the rules accord these database elements.
Rules 1 and 2 are related to database table elements.
Rules 3 and 4 are related to database columns ele-
ments. Rules 5 and 6 consider database columns ele-
ments marked as check constraint and at last, rules 9
and 10 deal with hierarchies. In Huve (2017) is for-
mal described the rules using pseudocode and also in
it is presented details of the sequence of mappings and
Configuration Template. In the rules specification al-
ways is mentioned the logic model. However, when
the logic name of database elements are not inserted,
the mapping is performed considering the physical
name of the database elements. The 10 mapping rules
are presented below:

• Rule 1 - Mapping Non-associative Tables: each
non-associative table is mapped to one ontological
class, wherein the class name is composed of: a)
it starts with a capital letter and b) the value which
correspond to the logic table name.

• Rule 2 - Mapping Associative Tables: we map the
primary key columns of associative tables to an
object property (mutually inverse) for each pri-
mary key column, unless the table columns are
only foreign key. The first object property name
is composed of: a) it starts with fixed value has
- with lowercase letter; and b) the corresponding
value for the logic column name - it starts with
a capital letter. The second object property name
is composed of: a) it starts with fixed value is -
with lowercase letter; b) the corresponding value
for the logic column name - it starts with a capital
letter; and c) the fixed value of - with a capital let-
ter. For each object property is specified minimum
cardinality, declared as inverse, and the domain
and range are assigned. The range is specified us-

ing the created class to the foreign key of the ref-
erenced table; and domain is specified using the
created class to the referenced table to the other
foreign key which compose the associative table.
We can identify in the Mapping Model database
schema whether an non-associative table has ad-
ditional columns, finding a column which is not
checked as a primary key. Whether the result re-
turns a value we apply the steps above, and to-
gether with it these steps: a) we create a class to
the non-associative table, according to Rule 1; and
b) we create a datatype property for each non pri-
mary key column, according to Rule 3.

• Rule 3 - Mapping Columns to Datatype Proper-
ties: Table columns that are not part of these col-
umn types (primary, unique, foreign key or check
constraint) are mapped to a datatype property, at
first moment, wherein the datatype property name
is composed of: a) it starts with lowercase letter;
and b) the value corresponding to the logic col-
umn name.

• Rule 4 - Mapping Columns to Object Proper-
ties: primary or unique key columns are mapped
to two functional object properties (mutually in-
verse), wherein the first object property name is
composed of: a) it starts with fixed value has
- with lowercase letter; and b) the value corre-
sponding to the logic column name - it starts with
a capital letter. The second object property name
is composed of: a) it starts with fixed value is -
with lowercase letter; b) the value corresponding
to the logic column name - it starts with a capital
letter; and c) the fixed value of - with a capital let-
ter. Each object property is declared as functional,
inverse and its range is specified using the created
class from the table column. Each object property

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

322



has minimum cardinality of restriction assigned.

• Rule 5: Mapping Records to Instances: Every tu-
ple from tables classified as specific concepts of a
domain (D) are mapped to instances. For this, the
instance name is composed of: a) tuple values,
whereby we recommend the value corresponding
to the primary key column and the column con-
tent (or columns) - with a capital letter. In case of
instance name, as we can have many values, we
separate the values with underscore.

• Rule 6 - Mapping Records to Classes: A propor-
tion of tables in the database have a small num-
ber of tuples which represent specific definitions
of a particular domain. Considering classes are
concrete representations of concepts, we classi-
fied tables with specific definitions of a domain
as common concepts of multiple domains (C) and
all tuples from these tables are mapped to classes,
wherein the class name is the tuple content - it
starts with a capital letter.

• Rule 7 - Mapping Check Constraint Concept: The
check constraint concept represents a term which
we use to represent a set of values defined in a
check constraint. We propose to map the database
check constraints and create a class to represent
the set of values defined in the check constraint.
For this, in the Configuration Template can be
filled the check constraint concept and can be
filled the set of values defined for this check con-
straint. For the check constraint concept we map
this information to one ontological class, wherein
the class name is composed of the value corre-
sponding to the check constraint concept - with
a capital letter. Every possible value of this check
constraint is mapped to an instance, wherein the
instance name is composed of: a) the value corre-
sponding to the class constraint name - with low-
ercase letter; b) we separate the values with un-
derscore; and c) the value corresponding to the
constraint name - with a capital letter.

• Rule 8 - Mapping Check Constraint Column: In
the Configuration Template, the field checked as
check constraint is mapped to one object property,
wherein the object property name is composed of:
a) the value corresponding to the logic column
name - it starts with lowercase letter. For this ob-
ject property the domain and range are assigned,
where the domain is specified using the class cre-
ated from the table column; range is specified us-
ing the class created with the Rule 7, which repre-
sents the global concept of this set of check con-
straints values.

• Rule 9 - Mapping Inheritance Relationships from

Tables: For each foreign key which is equivalent
to the primary key in non-associative tables, the
class representing the referenced table is defined
as a superclass of the class representing the non-
associative table.

• Rule 10 - Mapping Table Record Hierarchy: In
Rule 6 the mapping of all tuples to classes, from
tables of common concepts of multiple domains
(C), was proposed. These tables have relation-
ships with another tables and to their relation, as
we describe in Rule 9, for each related table we
create a subclass hierarchy based on foreign keys
definition. Creation of class hierarchy based on
classes mapped from tuples of these tables is pro-
posed in this rule. The table record hierarchy can
be mapped when both related tables belong to ta-
bles classified as (C). We performed this mapping
for non-associative tables and for tables in which
the foreign key columns number is not greater
than one in the referenced table.

3 VALIDATION

First, we present the obtained results executing the
mapping process to validate the rules and the proto-
type. For this, we use a Database Schema and Logic
Model from dental care domain. Second, we use a
testing engine to apply mutation operators and exe-
cuting mutation tests methodology, proposed by Porn
and Peres (2017), to validate the owl ontology auto-
matically generated by architecture.

3.1 Experiment 1: Prototype Validation

We develop a tool to put into operation our architec-
ture. Then, we evaluate our tool and check whether
the ontology was correctly built, using a reasoner to
infer logical consequences. For this, we consider
three different scenarios: a) in the first one we used
only the database schema; b) in the second one we
used the database schema and logic model; and c) in
the third one an analysis by a specialist was performed
to remove from second scenario RDB elements that
were not part of the application domain, such as in-
formation about system configuration and logs. We
used a Database Schema (private source) from a den-
tal care system, containing a scenario of 25 tables,
45 primary keys, 1 unique key, 19 foreign keys, 28
check constraints, 225 columns with no constraints in
the first two scenarios and 74 at the third, and 696
tuples. The logic model of this database schema has
232 columns with the logical name in the first two

Architecture for Mapping Relational Database to OWL Ontology: An Approach to Enrich Ontology Terminology Validated with Mutation
Test

323



scenarios and 140 columns with the logical name at
the third.

Each scenario was manually extracted and it was
submitted to the architecture prototype. Then we per-
formed an ontology verification in two steps: first,
an analysis of mapped elements enable verifying
whether the defined mapping rules were applied cor-
rectly by the Mapping Process; and second a verifi-
cation applying in each OWL file using the reasoner
Pellet1. The inferences carry out the ontology clas-
sification, the computation of inferred instances and
the validation of ontology consistency. Both activi-
ties were performed using the Protégé tool (Musen,
2015).

Table 1 presents the number of generated ontology
elements for each scenario (columns) and in four cate-
gories of ontology elements (lines). In the Class cate-
gory we presented the total of Class and Subclass that
were generated. The elements of the Class category
were generated from Rules 1, 2, 6, 7, 9 and 10, as cov-
ered in the 2.2.1 section. We also presented the total
number of Object property elements and their defini-
tions of Functional, Inverse, Domain, Range and Min
cardinality for Object property. The elements of the
Object property category were generated from Rules
2, 4 and 8. In the Datatype property category we pre-
sented the total number of Datatype property elements
and their SubProperty, Domain and Range definitions.
The elements of the Datatype property category were
generated from Rules 3. Finally, we presented the to-
tal number of Instances and Class assertion generated
from Rules 5 and 7.

Scenarios 1 and 2 has the same number of
database elements. The difference is on the name on
the output elements for scenario 2 since we used the
RDB logic model as additional input. However, we
can observe in Table 1 a different number of ontology
elements that were generated. On the one hand, the
logical name can present specification which differen-
tiates the elements, generating a greater amount, such
as the elements of Object property, which go from
68 in the first scenario to 74 in the second scenario.
On the other hand, the logical name of few elements
can be the same, generating a smaller number of ele-
ments, such as the Datatype property elements, which
go from 142 in the first scenario to 122 in the second
scenario. We noticed that the naming of the elements
using Logic Model increase the ontology legibility.

During the analysis by a specialist in the third sce-
nario, out of the 151 columns that were excluded: 75
controlled the security of database tuples and 76 con-
trolled operations of the system which populates data
in the database. As a result of this, RDB columns with

1https://www.w3.org/2001/sw/wiki/Pellet

no constraints in the third scenario is 74, resulting in a
smaller amount of data properties. However, besides a
domain representation with greater legibility and defi-
nitions more coherent than first and second scenarios,
which produced a large amount of information not re-
lated to the domain.

The prototype validation was performed in each
of the architecture components. We then executed
the Pellet reasoner and there was no identification
of inference errors in target ontologies. Other ap-
proaches Astrova (2009); Jain and Singh (2013) per-
formed only 1:1 mapping, but our architecture can
map 1:N. Due to this structure, n database elements
can be mapped to 1 element in the ontology, and
vice versa. A practical example is the representation
of a property generated from a primary key column.
This column may exist in different tables, being rep-
resented by a foreign key column. We understand that
it does not make sense to represent n times the same
element that represents the same concept, but inserted
in different domains.

This experiment allowed to analyze the coherence
of the defined rules and regarding the well function-
ing of the proposed architecture. Through this, we
observed a greater clarity in the name of ontology el-
ements in the second scenario compared to the first
scenario, highlighting the obtained benefit from the
use of the logic model, which increases the ontology
legibility.

3.2 Experiment 2: OWL Ontology
Validation using Mutation Test

Mutation testing is a technique for software testing
to evaluate the quality of a set of test cases (DeMillo
et al., 1978; Jia and Harman, 2011). This technique
has been shown effective in detecting faults (DeMillo
et al., 1978; Budd, 1980) through systems evaluation
and their sets of tests in various domains (Jia and Har-
man, 2011). Recent studies (Porn and Peres, 2014,
2017; Bartolini, 2016) adopted Mutation testing to
ontology evaluation.

The ontology evaluation is an important process of
ontology engineering that allows identifying whether
the objectives have been reached and whether there
are no occurrences of failures. From this, we applied
the mutation test for evaluating the ontologies ob-
tained through the mapping process aiming to identify
the existence of faults. Based on this, we performed
the mutation test for ontologies in this experiment us-
ing the generated ontologies of the three scenarios of
Experiment 1, as presented in Table 1.

We performed the mutation test for ontologies as
proposed by Porn and Peres (2017): 1) Mutation op-

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

324



Table 1: Number of ontology elements.

Number of elements
Ontology elements First scenario Second scenario Third scenario

Class 109 109 108
SubClass 121 121 121

Object property 68 74 73
Functional 50 54 54

Inverse 30 32 32
Domain 105 107 107
Range 84 86 85

Min cardinality 76 76 76
Datatype property 142 122 64

SubProperty 5 5 5
Domain 141 128 67
Range 142 128 66

Instances 668 668 668
Class assertion 668 668 668

erator selection; 2) Mutants generation; 3) Test data
generation; 4) Original ontology execution; 5) Mu-
tants ontology execution; and 6) Result analysis. We
used 12 mutation operators, as detailed below:

• ACSD: it changes to DisjointWith the definition
of an axiom defined as SubClassOf;

• AEDN: it adds the operator “not” in the definition
of an axiom;

• CEUO: it removes the operator “OR” in the defi-
nition of an axiom;

• CIS: it changes to SubClassOf the definition of an
individual;

• CUC: it changes the superclass of a subclass;

• PDD: it changes the properties domain to a sub-
class of the domain class;

• PDUP: it changes the properties domain to a su-
perclass of the domain class;

• ACMiEx: it replaces the “minCardinality” opera-
tor with the “Cardinality”;

• ACMiMA: it replaces the “minCardinality” oper-
ator with the “maxCardinality”;

• PDU: it removes the domain definition in proper-
ties;

• PRU: it removes the range definition in properties;

• PDC: it converts a primitive class to a defined
class.

As presented in Porn and Peres (2017), the test data
set used was generated from each existing Descriptive
Logic (DL) constraint of the ontology under test, and
from each mutated DL constraint.

Table 2 presents the results of mutation test for
each scenario. In the first scenario (Scen. 1) 2846
mutants were obtained to the 12 mutation operators,
941 mutants were killed with the test data used and
1905 mutants remained alive. Based on these results
it was possible to obtain a mutation score of 33%.

In the second scenario (Scen. 2) the obtained re-
sults were similar to the first scenario, because there
were few changes between the ontologies from each
scenario. In it, 2791 mutants were obtained, 941
killed and 1850 mutants that remained alive, thus ob-
taining a mutation score of 34%.

Table 1 presents a smaller number of ontology el-
ements in the third scenario than the first two scenar-
ios. This smaller amount of ontology elements gener-
ates less mutants during the mutation test execution.
Thus, in the third scenario (Scen. 3), 2136 mutants
were generated, with 898 killed and 1238 remaining
alive, resulting in a mutation score of 42%.

This analysis made it possible to identify a lack of
rules for the creation of logical axioms and associa-
tions between classes and individuals into ontologies.
However, we do not consider this occurrence as a type
of fault existing in the ontology, but as implementa-
tions to be made in the mapping process. Therefore,
for the mutation score calculation, we consider the
quotient between the number of killed mutants and
the remainder between the number of generated mu-
tants and the number of equivalent mutants (DeMillo
et al., 1978). In this case, we obtained a mutation
score of 100% in each scenario, thus validating the
set of test data used and the absence of faults in the
tested ontologies.

All of the mutants shown in Table 2 that remained
alive have been changed in the definitions of domain

Architecture for Mapping Relational Database to OWL Ontology: An Approach to Enrich Ontology Terminology Validated with Mutation
Test

325



Table 2: Mutation test results.

Mutation
Operator

Mutants Kill Alive
Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

ACSD 121 121 121 121 121 121 0 0 0
AEDN 109 102 21 0 0 0 109 102 21
CEUO 109 102 21 0 0 0 109 102 21

CIS 686 686 668 686 686 668 0 0 0
CUC 101 101 101 15 15 15 86 86 86
PDD 921 889 642 0 0 0 921 889 642

PDUP 168 159 124 0 0 0 168 159 124
ACMiEx 126 126 76 0 0 0 126 126 76
ACMiMa 126 126 76 0 0 0 126 126 76

PDU 107 107 107 0 0 0 107 107 107
PRU 153 153 85 0 0 0 153 153 85
PDC 119 119 94 119 119 94 0 0 0

TOTAL 2846 2791 2136 941 941 898 1905 1850 1238
Mutation Score 0,33 0,34 0,42

and range of object and data properties. As in none
of the 3 scenarios the object and data properties were
used in the definition and representation of classes, all
the mutants that remained alive were defined as equiv-
alent, due to the fact that these mutations did not have
an effect on the ontologies. The criteria used to de-
fine the mutants as equivalent must it is because there
are no rules in the mapping process for the creation
of descriptive logical axioms that define the ontology
conceptual representation.

4 CONCLUSIONS

We have presented an approach for mapping rela-
tional databases to ontologies using database schema
and logical data model. The use of the Logic Model
contributes to the generation of a more legible ontol-
ogy. The Mapping Model contributes to the mapping
traceability and the elimination of duplicate elements.
Our solution takes stock of previous works and it pro-
vides new rules, handling cases uncovered by the lit-
erature and collaborating in a significant way for ade-
quate ontology modeling.

We validated our approach with real-world scenar-
ios. We evaluate the target ontology from our proto-
type applying mutation test technique. This method-
ology simulates possible errors which can occur in
OWL ontologies. We did not find faults in the target
ontologies, but our evaluation method identified the
absence of rules in the mapping process for the cre-
ation of logical descriptions and associations between
classes and individuals into ontologies.

As future work, we aim to investigate and propose
new mapping rules for ontology build and consider-

ing new mutation operators as also other techniques
for ontology evaluation. We also intend to work in
the creation of descriptive logical axioms to define the
conceptual ontology representation. The architecture
is generic enough and could be applied in the back-
ward scenario, using the mapping for bidirectional
transformation and traceability on querying the rela-
tional database through the ontology concepts.

ACKNOWLEDGEMENTS

We thank the partial support provided from CAPES
and Department of Informatics of Federal University
of Paraná. Leticia M Peres has a grant of PET/MEC.
Cristiane A G Huve was supported by Uninter. This
work was conducted using Protégé resource, which is
supported by grant GM10331601 from the National
Inst. of General Medical Sciences of the US National
Inst. of Health.

REFERENCES

Arenas, M., Bertails, A., Prud’hommeaux, E., and Se-
queda, J. (2012). A direct mapping of relational data
to rdf. http://www.w3.org/TR/2012/REC-rdb-direct-
mapping-20120927. W3C Recommendation working
draft 27 September 2012.

Astrova, I. (2009). Rules for mapping sql relational
databases to owl ontologies. In Metadata and Seman-
tics, pages 415–424. Springer.

Bartolini, C. (2016). Mutation owls: semantic mutation
testing for ontologies. In Proceedings of the Interna-
tional Workshop on domain specific Model-based ap-

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

326



proaches to verification and validation, pages 43–53,
Rome - Italy.

Budd, T. A. (1980). Mutation Analysis of Program Test
Data. PhD thesis, Yale University, Yale, NH - USA.

Būmans, G. and Čerāns, K. (2010). Rdb2owl: A practical
approach for transforming rdb data into rdf/owl. In
Proceedings of the 6th Int. Conf. on Semantic Systems,
pages 1–3, New York, NY, USA.

Cullot, N., Ghawi, R., and Yétongnon, K. (2007). Db2owl:
A tool for automatic database-to-ontology mapping.
In Proceedings of the 15th Italian Symposium on Ad-
vanced Database Systems - SEBD, pages 491–494,
Torre Canne - Italy.

Das, S., Sundara, S., and Cyganiak, R. (2012). R2rml:
Rdb to rdf mapping language. www.w3.org/TR/r2rml.
W3C Recommendation 27 September 2012.

DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978).
Hints on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41.

Gherabi, N., Addakiri, K., and Bahaj, M. (2012). Map-
ping relational database into owl structure with data
semantic preservation. Int. Journal of Computer Sci.
and Inform. Security - IJCSIS, 10(1):42–47.

Gruber, T. R. (1995). Toward principles for the design of
ontologies used for knowledge sharing. Int. Journal
of human-computer studies, 43(5-6):907–928.

Guarino, N. (1995). Formal ontology, conceptual analysis
and knowledge representation. Int. Journal of human-
computer studies, 43(5):625–640.

Huve, C. A. G. (2017). An architecture for mapping rela-
tional database to ontology. Master’s thesis.

Jain, V. and Singh, M. (2013). A framework to convert rela-
tional database to ontology for knowledge database in
semantic web. Int. Journal of Scientific & Technology
Research, 2:9–12.

Jia, Y. and Harman, M. (2011). An analysis and survey of
the development of mutation testing. IEEE Transac-
tions on Software Engineering, 37(5):649–678.

Laclavik, M. (2006). Rdb2onto: Relational database data to
ontology individuals mapping. Tools for Acquisition,
Organisation and Presenting of Inform. and Knowl-
edge, pages 86–89.

Li, M., Du, X., and Wang, S. (2005). A semi-automatic
ontology acquisition method for the semantic web.
In Advances in Web-Age Inform. Management, pages
209–220. Springer.

Louhdi, M. R. C., Behja, H., and Alaoui, S. O. E. (2013).
Transformation rules for building owl ontologies from
relational databases. Computer Sci. & Inform. Tech-
nology (CS & IT), 3:271–283.

Michel, F., Montagnat, J., and Faron-Zucker, C. (2014). A
survey of rdb to rdf translation approaches and tools.
Technical Report ISRN I3S/RR 2013-04-FR, Labora-
toire d’Informatique, Signaux et Systèmes de Sophia-
Antipolis, Université Nice, Sophia Antipolis, France.
Research Report.

Musen, M. A. (2015). The protégé project: a look back
and a look forward. AI Matters. Association of Com-
puting Machinery Specific Interest Group in Artificial
Intelligence, 1(4):4–12.

Porn, A. M. and Peres, L. M. (2014). Mutation test to
owl ontologies. In 13th Int. Conf. on WWW/Internet
- ICWI, pages 123–130, Porto - Portugal.

Porn, A. M. and Peres, L. M. (2017). Semantic mutation
test to owl ontologies. In 19th Int. Conf. on Enterprise
Inform. Systems - ICEIS, volume 2, pages 434–431,
Porto - Portugal.

Ramathilagam, C. and Valarmathi, M. (2013). A framework
for owl dl based ontology construction from relational
database using mapping and semantic rules. Int. Jour-
nal of Computer Applications, 76(17):31–37.

Ren, Y., Jiang, L., Bu, F., and Cai, H. (2012). Rules and im-
plementation for generating ontology from relational
database. In 2th Int. Conf. on Cloud and Green Com-
puting - CGC, pages 237–244. IEEE.

Sequeda, J. F., Arenas, M., and Miranker, D. P. (2012). On
directly mapping relational databases to rdf and owl.
In Proceedings of the 21st Int. Conf. on World Wide
Web, pages 649–658. ACM.

Sequeda, J. F., Tirmizi, S. H., Corcho, O., and Miranker,
D. P. (2011). Survey of directly mapping sql databases
to the semantic web. The Knowledge Engineering Re-
view, 26(4):445–486.

Spanos, D.-E., Stavrou, P., and Mitrou, N. (2012). Bringing
relational databases into the semantic web: A survey.
Semantic Web, 3(2):169–209.

Staab, S. and Studer, R. (2013). Handbook on ontologies.
Springer Sci. & Business Media.

Telnarova, Z. (2010). Relational database as a source of
ontology creation. In International Multiconference
on Computer Sci. and Inform. Technology - IMCSIT,
pages 135–139.

Tissot, H., Huve, C. A. G., Mara, P. L., and Del Fabro,
M. D. (2019). Exploring logical and hierarchical in-
formation to map relational databases into ontologies.
Int. Journal of Metadata, Semantics and Ontologies,
(ISSN 1744-2621 - to appear).

Vavliakis, K. N., Grollios, T. K., and Mitkas, P. A. (2010).
Rdote - transforming relational databases into seman-
tic web data. In Polleres, A. and Chen, H., ed-
itors, 9th International Semantic Web Conference -
ISWC Posters&Demos, volume 658 of CEUR Work-
shop Proceedings. CEUR-WS.org.

Zhang, L. and Li, J. (2011). Automatic generation of on-
tology based on database. Journal of Computational
Inform. Systems, 7:4:1148–1154.

Architecture for Mapping Relational Database to OWL Ontology: An Approach to Enrich Ontology Terminology Validated with Mutation
Test

327


