
Methods and System for Cloud Parallel Programming

Victor N. Kasyanov and Elena V. Kasyanova
Institute of Informatics Systems, Lavrentiev pr.6, Novosibirsk, 630090, Russia

Keywords: Annotated Programming. Graph Presentation of Functional Programs. Functional Programming. Parallel

Programming. Programming Language.

Abstract: In this paper, a cloud parallel programming system CSSP being under development at the Institute of

Informatics Systems is considered. The system is aimed to be an interactive visual environment of functional

and parallel programming for supporting of computer science teaching and learning. The system will support

the development, verification and debugging of architecture-independent parallel programs and their correct

conversion into efficient code of parallel computing systems for its execution in clouds. In the paper, the

CPPS system itself, its input functional language, and its internal graph presentation of the functional

programs are described.

1 INTRODUCTION

Parallel computing is one of the main paradigms of

modern programming, but the existing curricula of

most universities do not properly address the major

transition from single-core to multi-core systems and

sequential to parallel programming. They focus on

applying application program interface (API)

libraries and open multiprocessing (OpenMP),

message passing interface (MPI), and compute

unified device architecture (CUDA)/GPU techniques.

This approach misses the goal of developing students'

long-term ability to solve real-life problems by

“thinking in parallel”.

Functional programming is a programming

paradigm, which is entirely different from the

conventional model: a functional program can be

recursively defined as a composition of functions

where each function can itself be another composition

of functions or a primitive operator (such as

arithmetic operators, etc.). The first language of

functional programming was Lisp, developed in 1961

by the American scientist J. McCarthy. Although the

language was widely known, due to its greater

expressiveness and elegance compared with

traditional languages, its applicability was limited

mainly to the tasks of artificial intelligence.

A new period of functional programming began

with the 1978 Turing lecture of inventor Fortran

J. Beckus “Can Programming Be Liberated from the

von Neumann Style? A Functional Style and Its

Algebra of Programs” (Backus, 1978). This new

understanding and wider acceptance of functional

programming was determined, first of all, by the

process begun in those years to move to the

consideration of the programming problem in its full

context, beginning with the specification of the

problem and the logical analysis of its solvability, the

byproduct of which is the program itself. The

emergence of computational systems with parallel

architectures further increased the importance of

functional programming, as it allows the user to be

free from most of the parallel programming problems

inherent in imperative languages and to entrust the

compiler with the construction of a program

effectively executed on a computing system of a

particular parallel architecture. In addition, many

technical problems of system and application

programming become clear when presenting their

solutions in a functional style.

The development of functional methods of

parallel programming successfully continued in the

late 70s in the languages of VAL and BARS, as well

as in a number of more modern projects, such as DCF,

Pythagoras, COLAMO, and the SISAL language (an

abbreviation with the English expression Streams and

Iterations in a Single Assignment Language)

(Gaudiot et al., 1995), the first version of which refers

to 1983. SISAL is developed as a functional

programming language, specifically oriented to

parallel processing and the replacement of the Fortran

language on supercomputers in scientific computing.

Kasyanov, V. and Kasyanova, E.
Methods and System for Cloud Parallel Programming.
DOI: 10.5220/0007750506230629
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 623-629
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

623

It is still early to speak about real displacement, but

SISAL as a parallel programming language is quite

interesting itself and has already found its application

in dozens of organizations around the world. There

are several implementations of the SISAL language

(version 1.2 (McGraw et al., 1985)) for

supercomputers, in particular Denelcor HEP, Vax 11-

780, Cray-1, Cray-X / MP, TERA, * T, TAM and

MIDC. The Livermore National Laboratory and

Manchester University have developed an improved

version of the SISAL language (SISAL-90 (Feo et al.,

1995)), which has not yet been implemented.

In this paper, the cloud parallel programming

system (CPPS) being under development in the

Program construction and optimization laboratory of

the Institute of Informatics Systems with support of

the grant of the Russian Science Foundation (project

18-11-00118) is considered. Main properties of the

CPPS system itself, its input functional language

(Cloud Sisal language) and its internal graph

representation of Cloud Sisal programs are described.

2 CLOUD PARALLEL

PROGRAMMING SYSTEM

CPPS

Modern approaches to the development of parallel

programs are mostly architecturally oriented, when

the created programs to achieve effective work are

closely related to the parallel computing architecture

on which they are executed and, as a rule, are

developed. Therefore, the requirements for the

qualification of developers of parallel programs are

very high, especially since testing and debugging a

parallel program is much more complicated than a

sequential one, and the problem of verifying parallel

programs is very far from solving not only practically

but also theoretically. At that, only a little part of

domestic users has access to high-performance

computing equipment, which in terms of the number

of supercomputers and their total capacity is quite

inferior to those available in developed countries and

is concentrated in a relatively small number of places

outside which parallel programming is not developed,

but the main part of applied programmers works.

Moreover, in modern computer technology there

is a constant change of architectural paradigms,

which, in turn, leads to the problem of portability of

already developed parallel programs. We have to

constantly adapt the already created product to the

changed hardware. This is due to the fact that

different parallel computing systems have their own

resource limitations, which must be taken into

account during the development of the program.

Carrying out such adaptations is a very intellectual

task, requiring substantial rewriting of parallel

programs and performing again their verification and

debugging. As a result, adapted parallel programs

often contain new errors and are not as effective as

they should and could be.

Therefore, it seems very promising to carry out a

project to develop language and software tools that

support the construction, verification and debugging

of architecture-independent parallel programs as well

as the correct conversion them into efficient code for

parallel computing systems of various architectures

using semantic transformations.

Methods will be developed and an experimental

version of the cloud extensible integrated visual

parallel programming system CPPS will be

developed. The input language of the CPPS system is

the Cloud Sisal language (Kasyanov, Kasyanova,

2018) which continues the tradition of previous

versions of SISAL (such as Sisal 90 (Feo et al., 1995)

and Sisal 3.2 (Kasyanov, 2013)) while remaining a

functional data-flow language focused on writing

large scientific programs and expanding their

capabilities by supporting cloud computing. The

functional semantics of Cloud Sisal guarantees

deterministic results for parallel and sequential

implementation — something that cannot be

guaranteed for traditional imperative languages like

Fortran or C. Moreover, the implicit parallelism of the

language removes the need to rewrite the source code

when transferring it from one computer to another. It

is guaranteed that the Cloud-Sisal-program, correctly

executed on a personal computer, will be guaranteed

to be correctly executed on any high-speed parallel or

distributed computer.

Wherein, annotated programming methods and

concretizing transformations used in the CPPS

system will allow us within the framework of the

declarative programming style to adapt the portable

parallel programs to the task classes and the

architecture of the supercomputer, while preserving

their correctness, and also to obtain a more efficient

parallel code by using during adaptation knowledge

of the user about the task, program and computer,

expressed in annotations.

CPPS is developed as an integrated cloud

programming environment in the Cloud Sisal

language, which contains both an interpreter that

supports interactive user interaction when creating

and debugging a functional program, and an

optimizing cross-compiler that builds a parallel

program according to its functional specification.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

624

Using the CPPS system, an application

programmer will be able to develop, verify and debug

a Cloud-Sisal-program in a visual style and without

taking into account the target supercomputer, and

then use the optimizing cross-compiler to tune the

debugged program to one or another supercomputer

available to him in network, in order to achieve high

performance execution of the parallel program, as

well as transfer the built program to the

supercomputer to run it and receive its results.

The CPPS system uses an internal graph

representation of functional programs that is focused

on their visual processing and is based on attributed

hierarchical graphs (Kasyanov, 2013). It supports the

construction of visual images of graph internal

representations of Cloud-Sisal-programs and their

use in the construction of correct functional programs

(Kasyanov, Kasyanova, Zolotuhin, 2018). It is

assumed that the system will also support the

construction of visual representations of the internal

data structures that arise in the cross-compiler when

parallel programs are constructed as well as of the

dynamic processes that occur when the parallel

programs are executed. These visual representations

can help users to control optimizations during cross-

compilation to improve efficiency of the compiled

parallel programs.

3 CLOUD SISAL LANGUAGE

The Cloud Sisal language has the usual advantages of

functional programming languages, such as, for

example, single assignment (that is, each variable in

a program is defined only once), but contains arrays

and loops that are not inherent in functional

languages.

Consider the following fragment of the Cloud

Sisal program:

type OneDim = array [..] of integer;

type TwoDim = array of OneDim;

function generate

(N : integer

returns TwoDim, OneDim

)

for i in 1, N cross j in 1, N

do

 A := i * j;

B := i + j

 returns array [.., ..] of A;

 array of B

 end for

end function

The first two lines define the type names for the

arrays. It can be seen that the dimensions are not

specified in them, and all instances of the described

composite data types must be dynamically created,

changed, and deleted during program execution. Only

the form and types of elements are contained in these

specifications of array types. In the second line (in the

TwoDim type definition), the form is omitted and by

default it is assumed to be [..].

The header of the “generate” function indicates

that one integer argument, “N”, is expected, and two

unnamed values are calculated (returned). Each return

value is an array of integers, but again, only the

shapes of the arrays are indicated, not their sizes.

Names can be bound to these returned values at the

place where the function is called if the programmer

needs it.

A function call is semantically equivalent to the

reproduction of a function code at the call site with

the corresponding change of parameters. This

equivalence, often referred to as “reference

transparency”, is a fundamental property of

functional languages and is one of the strengths of the

Cloud Sisal language. This property in particular

simplifies the analysis processes performed by the

optimizing compiler, since the functions have no side

effects and are deterministic. In other words, any two

functions can be executed in parallel, if there is no

data dependency between functions, and the same

function with the same actual parameters always

returns the same values. This means that the body of

the loop will be executed as many times as there are

values in the range of indices, in this case N * N, and

all instances of the body will be independent, since

there are no data dependencies between them. Those

sets of independent cycle bodies that will be executed

in parallel, and which will not, will be selected on the

basis of the costs associated with the compiler and the

system, and also on the options set by the

programmer.

All Cloud Sisal program expressions, including

functions entirely, compute sets of values. In the

above case, the generate function computes two-

dimensional and one-dimensional arrays, which are

the values of the expression contained in the function

definition. The specified expression is a loop

construct that tells the compiler for Cloud Sisal about

potential concurrency. This cycle has an index range,

defined as the Cartesian product of two simpler

ranges. This means that the body of the loop will be

executed as many times as there are values in the

range of indices, in this case N * N, and all instances

of the body will be independent, since there are no

data dependencies between them. Those sets of

Methods and System for Cloud Parallel Programming

625

independent cycle bodies that will be executed in

parallel, and which will not, will be selected on the

basis of the costs associated with the compiler and the

system, and also on the options set by the

programmer.

The names “A” and “B” inside the loop body

should not be viewed as reusing these names in the

sense of assigning a variable in an imperative

program. Here, these names are used to denote values

in the loop body, and in fact they most likely will not

actually exist in the executable program. The

important point here is that each instance of the loop

body, containing specific values for i and j, will

independently calculate specific instances of integer

values, defined as i * j and i + j; then all of these

individual values will be collected together in a

couple of arrays and returned. The positions of the

values in the result arrays, as well as the total size and

dimension of the returned arrays, are determined by

their shapes and ranges of cycle indices. In this case,

two arrays are returned, each of which consists of N2

integers: a two-dimensional array with an index from

1 to N in each dimension and a one-dimensional array

with an index that varies from 1 to N2. The use of

temporary names in the loop is optional, and the

above return condition can be rewritten as follows:

returns array [.., ..] of i * j;

array of i + j

without changing the final results. With such a

change, the body of the loop will become empty, and

essentially the language treats the expressions in the

“array of” as anonymous temporal.

The language offers the user a rich set of various

standard reductions, and also allows the definition

and use of its own reductions. The use of reductions

is good in that their implementation may depend on

the target computing system. When a program is

executed in a single-threaded environment, the

reduction can be performed sequentially, but when

executed in several threads it can be executed in

parallel.

The Try-catch mechanism is quite popular today

for error handling, but this approach has conflicts

with parallel program execution. When an exception

occurs, all execution threads must be stopped, the

pipeline is cleared, etc. Also, there are difficulties

with maintaining software determinism in the case of

parallel execution and the occurrence of exceptions.

For the Cloud Sisal language, such problems do not

exist, because it uses the semantics of “always

completed calculations”, which means that the Cloud

Sisal program execution flow never stops and always

returns the resulting value (possibly containing

“error” values) even if any erroneous situations. For

this, there is a distinguished erroneous value in each

type, for example, a Boolean type consists of the

values of true (true), false (false) and error value

(error [Boolean]). Unless otherwise stated, and any

arguments of operations on built-in types or

predefined functions are erroneous, their results will

also be erroneous values. It is always possible to find

out if the value of an expression is wrong, using a

special operation.

The language supports annotated programming

(Kasyanov, 1989) and concretizing transformations

(Kasyanov, 1991), allowing the user to describe the

semantic properties of the program, which are known

to him, in the form of formalized comments. A

comment that begins with the dollar symbol “$” is

called an annotation (or a pragma) and sets the

properties of the construction that follows (one

construction can be compared with several

annotations). The result of a unary expression in the

annotation to which it refers is denoted by a single

underscore “_”, and the arity of an n-ary (n> 1)

expression is denoted as “_ [1]”, ..., “_ [n]”. An

annotation can have the form “name” or “name = list

of expressions”, where names that are visible at the

location of the annotation can take part in list

expressions. Unrecognized annotations cause

compiler warnings.

Let us give some examples of annotations.

Before each expression there can be an annotation

“assert = Boolean condition”, which should be true

immediately after the expression is evaluated.

The assertions can be placed in function

declarations both before the returns keyword and

impose conditions on the returned values, and in front

of the first formal parameter and set conditions on the

formal parameter names specified in them, which

should be valid when the function is called

immediately before executing body function.

It is allowed also to replace the Boolean condition

in the assertion with the so-called extended Boolean

condition, which has either the form “(all <name>:

<Boolean condition>: <extended Boolean

condition>)” or the form “(is <name>: <Boolean

condition>: <extended Boolean condition>)” and

defines the scope for the name specified in it. For

example, the extended Boolean condition (all i: i> 2:

A [i] = 0) is true if all elements in the array or stream

A are zero for which the index is greater than two and

condition (is i: i> 2 : A [i] = 0) true if there is at least

one zero element in A with an index greater than two.

For example, the assertion in the header of the

function definition indicates that the specified

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

626

function is always used for exponentiation when

exponent is a power of two:

function power

(

//$ (is k : k>=0 & k<n : n = 2**k)

x : real n : integer returns real

)

 if n =0 then returns 1

 elseif n%2 =0 then

 returns (power(x, n/2)**2

 else returns (power(x, n-1))*x

 endif

end function

and therefore it can be equivalently converted to the

following function:

function power

(

//$ (is k : k>=0 & k<n : n = 2**k)

x : real

n : integer

returns real

)

 if n =0 then returns 1

 else returns (power(x,n/2)**2

 endif

end function

Before each expression there may be a “non_used

= list of values” annotation, which indicates the

values becomes unnecessary immediately after the

calculation of the expression (they are not used in the

future when the program is executed) and can be

removed from the program. For example, as indicated

in the annotation below the second result of the

“generate” function is never used

function generate

(N : integer

 //$ non_used = _[2]

 returns TwoDim, OneDim

)

 for i in 1, N cross j in 1, N

do

 returns array[.., ..] of i * j;

array of i + j

 end for

end function

and its calculation in the function body can be

deleted:

function generate

(N : integer

 //$ non_used = _[2]

 returns TwoDim, OneDim

)

 for i in 1, N cross j in 1, N

do

 returns array [.., ..] of i * j

end for

end function.

4 INTERNAL

REPRESENTATIONS OF

CLOUD SISAL PROGRAMS

The CPPS system uses an internal graph

representation (IR) of Cloud Sisal programs, which is

focused on their semantic and visual processing and

is based on the attributed hierarchical graphs

(Kasyanov, Kasyanova, 2013). It is assumed that the

IR representations of the Cloud Sisal programs are

shown to users of the system along with their textual

representations and are used by users for the purpose

of visual debugging of the Cloud Sisal programs and

their controlled optimization (Kasyanov, Kasyanova,

Zolotuhin, 2018). It is assumed also that the Cloud

Sisal program is assembled from IR-modules (both in

the interpreter and the compiler) before interpreting it

or optimizing translation.

In developing the internal presentation, the

following essential requirements were taken into

account.

1. Machine independence for both representation of

parallelism (there is no explicit splitting of

computations into several streams), and for the values

(independence from the capacity of the machine

architecture) data types.

2. Completeness of the internal representation,

allowing to translate any design of the source

language into a semantically equivalent fragment of

the internal representation.

3. The possibility of relaying into a syntactically

correct program after the transformations of the

internal representation of the program, preserving its

semantics.

4. Simplicity of interpretation (execution given by the

internal representation of calculations) without any

additional transformations of the internal

representation.

5. Structuredness of objects of internal representation

for the task of the natural nesting of some

constructions of the original programming language

into others.

6. All implicit actions on data, such as type

conversions, must be explicitly expressed using

objects of internal representation.

Methods and System for Cloud Parallel Programming

627

7. Extensibility, in the sense of easily introducing new

objects of internal representation to define new

programming language constructs and data types.

There are several ways of defining an internal

representation, for example, in this capacity we can

consider the parse tree of the program being

broadcast. However, in our case, it does not satisfy

the requirement of interpretability, since this

requirement implies the availability of contextual

(semantic) information. At the same time, the

requirement of machine-independent parallelism and

the functionality of the represented programming

languages lead us to use data flow graphs as a natural

basis for the structure of the internal representation.

Thus, the IR graph, in contrast to the control flow

graph (CFG), commonly used in optimizing

compilers for imperative languages (such as C or

Fortran languages), expresses not the control flow,

but the data flow in the program. Data flow graphs

have several useful properties for the required internal

representation, including the following.

1. Explicitly specified information (semantic) links

(arcs) between operand operations (vertex ports)

make the interpretation process feasible without

additional transformations. This implies the absence

of side effects of computations (due to the absence of

the concept of a variable) — the natural property of

purely functional languages.

2. Parallelism at the level of individual informational

independent operations, independent of the machine

architecture.

The vertices of the IR graph correspond to the

program expressions, and the arcs reflect data

transmissions between the vertex ports, the ordered

sets of which are assigned to the vertices as their

arguments (input ports or inputs) and results (output

ports or outputs). By virtue of the property of the

Cloud Sisal language, this graph is acyclic and does

not contain two arcs entering the same input.

Vertices denote operations on their inputs

(arguments), the results of which are at the outputs of

the vertices. There is, however, a special kind of

vertices denoting literals (constants) of any type, each

of which has one output and an empty set of

inputs.Vertices are simple and composite. Simple

vertices (or simply vertices) have no internal structure

and represent elementary operations, such as, for

example, plus or minus. Composite vertices (or

fragments) correspond to the composite expressions

of the Cloud Sisal program, such as, for example, a

loop expression or function body, and additionally

directly contain sets of vertices corresponding to the

expressions they consist of. For each fragment F, the

number and types of the set of vertices M that are

directly contained in it, as well as the set of arcs (p, q)

that exist between its ports and the ports of these

vertices, are determined by the type (or semantics) of

the compound expression, but satisfy the following

property: p is the output of some vertex from M or the

input of the fragment F, and q is the input of some

vertex from M or the output of the fragment F. It is

clear that the fragment F in addition to the above

vertices of M and the arcs incident to their ports,

which are directly contained in F, will contain other

vertices and arcs of the graph if there are fragments

among the vertices of M, but due to the properties of

the Cloud Sisal language there are no arcs among

them which are incident to the ports of fragment F

and are not directly nested in F.

5 CONCLUSIONS

The CPPS system is intended to provide means to write

and debug parallel programs regardless target

architectures on low-cost devices and then execute

them in clouds on high performance parallel computers

without extensive rewriting and debugging.

So, it can open the world of parallel and functional

programming to all students and scientists without

requiring a large investment in new, top-end computer

systems. Using the CPPS system, any user will be able

to develop, verify and debug a Cloud-Sisal-program in

a visual style and without taking into account the target

supercomputer, and then use the optimizing cross-

compiler to tune the debugged program to one or

another supercomputer available to him in network, in

order to achieve high performance execution of the

parallel program, as well as transfer the built program

to the supercomputer to run it and receive its results.

The CPPS system can be used also for teaching and

learning of optimizing compilation and high

performance computing.

The use of the CPPS system can also increase the

efficiency of using supercomputers by transferring the

work of programmers to design and debug programs

from expensive supercomputers to cheaper and more

familiar personal computers, as well as by eliminating

the need for a programmer to build, verify and debug a

program to solve the same problem each time when

switching from one supercomputer to another.

ACKNOWLEDGEMENTS

The authors are thankful to all colleagues taking part

in the project described. This work was carried out

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

628

with a grant from the Russian Science Foundation

(project 18-11-00118).

REFERENCES

Backus, J., 1978. Can programming be liberated from the

von Neumann style? Commun. ACM, 21 (8), 613–641.

Feo, J. T., Miller, P. J., Skedzielewski, S. K., Denton, S. M.,

Solomon, C. J., 1995. SISAL 90. In: Proceedings of

High Performance Functional Computing. pp. 35-47,

Denver.

Gaudiot, J.-L., DeBoni, T., Feo, J., et al., 2001. The Sisal

project: real world functional programming. In: Pande,

S., Agrawal, D.P. (Eds.) Compiler Optimizations for

Scalable Parallel Systems: Languages, Compilation

Techniques, and Run Time Systems. LNCS, vol.1808,

pp. 45-72, Springer, Heidelberg.

Kasyanov, V. N., 1989. Program annotation and

transformation. Programming and Computer Software,

15 (4), 155-164.

Kasyanov, V. N., 2013. Sisal 3.2: functional language for

scientific parallel programming. Enterprise Information

Systems, 7 (2), 227-236.

Kasyanov, V. N., 1991. Transformational approach to

program concretization. Theoretical Computer Science

90 (1), 37-46.

Kasyanov, V. N. Kasyanova, E. V., 2013. Information

visualization based on graph models. Enterprise

Information Systems, 7 (2), 187-197.

Kasyanov, V. N., Kasyanova, E. V., 2018. Programming

Language Cloud Sisal. Preprint IIS 181, Institute of

Informatics Systems, Novosibirsk. (in Russian)

Kasyanov, V. N., Kasyanova, E. V., Zolotuhin, T. A., 2018.

Visualization of graph presentations of data-flow

programs. WSEAS Transactions on Information

Science and Applications, 15, 140-147.

McGraw, J., Skedzielewski, S., Allan, S., Grit, D.,

Oldehoeft, R., Glauert, J., Dobes, I., and Hohensee, P.,

1985. SISAL — Streams and Iterations in a Single

Assignment Language, Language Reference Manual:

Version 1.2. Technical Report TR M-146, University of

California, Lawrence Livermore Laboratory, March.

Methods and System for Cloud Parallel Programming

629

