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Abstract: Typical data warehouse systems are implemented either on a relational database or on a multi-dimensional 
database. While the former supports ROLAP operations the latter supports MOLAP. We explore a third 
alternative, that is, to implement a data warehouse on a NoSQL database. For this, we propose rules that 
help us move from information obtained from data warehouse requirements engineering stage to the logical 
model of NoSQL databases, giving rise to NOSOLAP (NOSql OLAP). We show the advantages of 
NOSOLAP over ROLAP and MOLAP. We illustrate our NOSOLAP approach by converting to the logical 
model of Cassandra and give an example. 

1 INTRODUCTION 

Traditionally, Data Warehouse (DW) star schemas 
are implemented either using a relational database 
which allows ROLAP operations or on a multi-
dimensional database that allows MOLAP 
operations. While the data in the former is stored in 
relational tables, the data in multidimensional 
databases (MDB) are either in the form of multi-
dimensional array or hypercubes. A number of 
RDBMS offer support for building DW systems and 
for ROLAP queries. MOLAP engines have 
proprietary architectures. This results in niche 
servers and is often a disadvantage.  

Another emerging approach is to use NoSQL 
databases for a DW system. Data of a NoSQL 
database is not modelled as tables of a relational 
database and thus, NoSQL systems provide a storage 
and retrieval mechanism which is different from 
relational systems. The data models used are key-
value, column, document, and graph.  

The motivation of using a NoSQL database lies 
in overcoming the disadvantages of relational 
database implementations. These are: 

i.Today, there is a need to store and process large 
amounts of data which the relational databases 
may find difficult (Chevalier et al., 2015; 
Stonebraker, 2012). Further, relational databases 
have difficulties in operating in a distributed 

environment. However, there is a need to deploy 
DWs on the cloud (Dehdouh et al., 2015), in a 
distributed environment (Duda, 2012). A relational 
database does not provide these features while 
guaranteeing high performance. 

ii.It may be the case that some piece of data is not 
present in underlying data sources at the time of 
extraction (ETL). In a relational database engine 
this is handled by using a NULL ‘value’. This 
causes major difficulties particularly in the use 
NULL as a dimension value and also as a foreign 
key value in fact tables. Rather than use NULL 
values, star schema designers use special values 
like -1, 0, or ‘n/a’ in dimensions. It may also be 
required to use multiple values like ‘Unknown’ 
and ‘Invalid’ to distinguish between the different 
meanings of NULL. For facts that have NULL 
values in their foreign keys, introduction of special 
dimension rows in dimension tables is often 
proposed as a possible solution to ease the NULL 
problem.  
Designers of star schemas have outlined a number 
of problems associated with these practical 
solutions to the problem of NULL values. Some of 
these are, for example, difficulty of forming 
queries, and misinterpretation of query results. 
The problem of NULL values can be mitigated in a 
NoSQL database because these systems 
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completely omit data that is missing. Thus, the 
problem of NULLS in the data cube is removed. 

iii.DW 2.0 (Inmon, 2010) states that DW is to cater to 
storing text, audio, video, image and unstructured 
data “as an essential and granular ingredient”. A 
relational database fails when it comes to 
unstructured, video, audio files. A NoSQL 
database can provide a solution to this 
disadvantage.  

iv.ETL for a relational implementation of a DW is a 
slow, time consuming process. This is because 
data from disparate sources must be converted into 
one standard structured format of the fact and 
dimension tables. We believe that since structured 
data is not mandated by NoSQL databases, ETL 
will be faster. 

v.ROLAP has heavy join operations making the 
performance of the system slow. We believe 
performance of DW systems can be improved if 
implemented in a NoSQL database. 

vi.Relational databases focus on ACID properties 
while NoSQL databases focus on BASE 
properties. Since a DW largely caters to a read-
only, analytic environment with changes restricted 
to ETL time, enforcement of ACID is irrelevant 
and the flexibility of BASE is completely 
acceptable and, indeed, may lead to better DW 
performance. 

 

There is some amount of work that has been done in 
implementing the DW as XML databases and also 
on NoSQL platform. The basic idea is to arrive at 
facts and dimensions and then convert, in the latter, 
the resulting multi-dimensional structure into 
NoSQL form. By analogy with ROLAP and 
MOLAP we refer to this as NOSOLAP. The NoSQL 
databases considered so far, in NOSOLAP, are 
column, and document databases. 

(Chevalier et al., 2015) converted the MD 
schema into a NoSQL column oriented model as 
well into a document store model. We will consider 
each of these separately. Regarding the former, each 
fact is mapped to a column family with measures as 
the columns in this family. Similarly each dimension 
is mapped to separate column families with the 
dimension attributes as columns in the respective 
column families. All families together make a table 
which represents one star schema.  They used HBase 
as their column store.  

The work of (Dehdouh et al., 2015) is similar to 
the previous work but they introduce simple and 
compound attributes into their logical model. 
(Santos et al., 2017) transforms the MD schema into 
HIVE tables. Here, each fact is mapped to a primary 

table with each dimension as a descriptive 
component of the primary table. The measures and 
all the non-key attributes of the fact table are 
mapped to the analytical component of the primary 
table. As per the query needs and the lattice of 
cuboids, derived tables are constructed and stored as 
such. 

Now let us consider the conversion of (Chevalier 
et al., 2015) into document store. Each fact and 
dimension is a compound attribute with the 
measures and dimension attributes as simple 
attributes. A fact instance is a document and the 
measures are within this document. Mongodb is the 
document store used. 

Since the foregoing proposals start off from a 
model of facts and dimensions, they suffer from 
limitations inherent in the former. Some of these are 
as follows: 
i.Since aggregate functions are not modelled in a 

star schema, the need for the same does not get 
translated into the model of the NoSQL database. 

ii.Features like whether history is to be recorded, 
what is the categorization of the information 
required, or whether a report is to be generated are 
not recorded in a star schema 

 

Evidently, it would be a good idea to start from a 
model that makes no commitments to the structural, 
fact-dimension, aspects of a data warehouse and yet 
captures the various types of data warehouse 
contents. In going to NOSOLAP, we now state our 
position in this position paper: we propose to move 
from a high-level, generic, information model to 
NoSQL databases directly, without the intervening 
star schema being created. The consequence of this 
direct conversion is the elimination of the step of 
converting to a star schema. 

To realize our position, we will need to reject all 
Data Warehouse Requirements Engineering, 
DWRE, techniques that produce facts and 
dimensions as their output. Instead, we will look for 
a DWRE approach that outputs data warehouse 
contents in a high-level information model that 
captures in it all the essential informational concepts 
that go into a data warehouse. 

In the next section, section 2, we do an overview 
of the different DWRE approaches and identify a 
generic information model. This model is described 
in section 3. Thereafter, in section 4, we identify 
Cassandra as the target NoSQL database and present 
some rules for conversion from the generic 
information model to the Cassandra model. Section 
5 is the concluding section. It summarizes our 
position and contains an indication of future work. 
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2 OVERVIEW OF DWRE 

In the early years of data warehousing, the 
requirements engineering stage was de-emphasized. 
Indeed, both the approaches of Inmon (Inmon, 2005) 
and Kimball (Kimball, 2002) were for data 
warehouse design and, consequently, do not have an 
explicit requirements engineering stage. Over the 
years, however, several DWRE methods have been 
developed. Today, see Figure. 1, there are three 
broad strategies for DWRE, goal oriented (GORE) 
approaches, process oriented (PoRE) techniques and 
DeRE, decisional requirements engineering. 

Some GORE approaches are (Prakash and 
Gosain, 2003; Prakash et al., 2004; Giorgini et al., 
2008). In the approach of (Prakash and Gosain, 
2003; Prakash et al., 2004) there are three concepts, 
goals, decisions and information. Each decision is 
associated with one or more goals that it fulfils and 
also associated with information relevant in taking 
the decision. For this, information scenarios are 
written. Facts and dimensions are identified from the 
information scenarios in a two step process.  

In GrAND (Giorgini et al., 2008) Actor and 
Rationale diagrams are made. In the goal modelling 
stage, goals are identified and facts associated as the 
recordings that have to be made when the goal is 
achieved. In the decision-modeling stage, goals of 
the decision maker are identified and associated with 
facts. Thereafter dimensions are associated with  
facts by examining leaf goals. 

PoRE approaches include Boehnlein and 
Ulbricht (Boehnlein and Ulbrich-vom, 1999; 
Boehnlein and Ulbrich-vom, 2000). Their technique 
is based on the Semantic Object model, SOM, 
framework. The process involves goal modelling, 
modelling the business processes that fulfil the goal. 
Entities of SERM are identified which is then 
converted to facts and dimensions; facts are 
determined by asking the question, how can goals be 
evaluated by metrics? Dimensions are identified 
from dependencies of the SERM schema. 

Another approach is by Bonifati (Bonifati et al., 
2001). They carry out goal reduction by using the 
Goal-Quality-Metric approach. Once goal reduction 
is done, abstraction sheets are built from which facts 
and dimensions are identified. In the BEAM* 
approach (Corr and Stagnitto, 2012) each business 
event is represented as a table. The attributes of the 
table are derived by using the 7W framework. 7 
questions are asked and answered namely, Who is 
involved in the event? (2) What did they do? To 
what is done? (3) When did it happen? (4) Where 
did it take place? (5) Why did it happen? (6) HoW 

did it happen – in what manner? (7) HoW many or 
much was recorded – how can it be measured? Out 
of these, the first six form dimensions whereas the 
last one supplies facts. 

Whereas both GORE and PORE follow the 
classical view of a data warehouse as being subject 
oriented, DeRE takes the decisional perspective. 
Since the purpose of data warehouse is to support 
decision-making, this approach makes decision 
identification the central issue in DWRE. The 
required information is that which is relevant to the 
decision at hand. Thus, DeRE builds data warehouse 
units that cater to specific decisions. Information 
elicitation is done in DeRE using a multi factor 
approach (Prakash, 2016; Prakash and Prakash, 
2019). For each decision its Ends, Means, and 
Critical Success Factors are determined and these 
drive information elicitation  

Figure 1 shows the two approaches to 
representation of the elicited information, the multi-
dimensioned and the generic information model 
approaches. The former lays emphasis on arriving at 
the facts and dimensions of the DW to-be. The latter, 
on the other hand, is a high level representation of 
the elicited information.  The dashed vertical lines in 
the figure show that in both GORE and PoRE the 
focus of the requirements engineering stage is to 
arrive at facts and dimensions.  On the other hand, 
the DeRE approach represents the elicited 
information in a generic information model. 

 

 

Figure 1: DWRE Techniques and their Outputs. 

(Prakash and Prakash, 2019) model information 
as early information. Information is early in the 
sense that it is not yet structured into a form that can 
be used in the DW to-be. An instantiation of this 
model is the identified information contents of the 
DW to-be.  

Since the model is generic, it should be possible 
to produce logical models of a range of databases 
from it. This is shown in Figure 2. As shown, this 
range consists of the multi-dimensional mode, XML 
schema, and NoSQL data models. Indeed, an 
algorithmic approach was proposed in (Prakash, 
2018) to identify facts, dimensions and dimension 
hierarchies from the information model. 
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Figure 2: Converting the Information Model. 

We propose to use the information model of 
(Prakash, 2018) to arrive at the logical schema of 
NoSQL databases. 

3 THE INFORMATION MODEL 

The information model of (Prakash and Prakash, 
2019), shown in Figure 3, tries to capture all 
information concepts that is of interest in a data 
warehouse. Thus, instead of just focusing on facts 
and dimensions, it details the different kinds of 
information. 

Information can either be detailed, aggregate or 
historical. Detailed information is information at the 
lowest grain. Aggregate information is obtained by 
applying aggregate functions to either detailed or 
other aggregate information. For example, items that 
are unshipped is detailed information whereas total 
revenue lost due to unshipped items is aggregate 
information as function sum need to be applied to 
the revenue lost from each unshipped item. 
Information can also be historical. Historical 
information has two components, time unit that 
states the frequency of capturing the information and 
duration which states the length of time the data 
needs to be kept in the data warehouse.  

Information can be computed from other 
detailed, aggregate or historical information. 
Information is categorized by category which can 
have one or more attributes. A category can contain 
zero or more categories. Information takes its values 
from a value set. 

Let us consider an example from the medical 
domain. The average waiting time of the patients is 
to be analysed. This is calculated as the time spent 
by the patient between registration and consultation 
by a doctor. Let us say that waiting time has to be 
analysed department wise and on a monthly basis. 
Historical data of 2 years is to be maintained and 
data must be captured daily. Instantiation of the 
information model gives us: 
 

 

Figure 3: Information model. 

Information: waiting time of patients 
Computed from: registration time, consultation time 
Aggregate functions: average 
Category: Department wise, Month-wise 
Category Attributes: Department: code, name 
   Month: Month  
History: Time Unit: Daily 

   Duration: 2 years 

4 MAPPING RULES 

Having described the information model to be used 
as input to our conversion process, it is now left for 
us to identify the target database model and the 
mapping rules that produce it.  

We use Cassandra as our target NoSQL database. 
First, since it belongs to the class of NoSQL 
databases, Cassandra does not suffer from the 
deficiencies of the relational model identified earlier. 
Cassandra, a blend of Dynamo and BigTable, gets 
its distributed feature from Dynamo. Cassandra uses 
a peer-to-peer architecture, not master/slave 
architecture and handles replication through 
asynchronous replication.  

Cassandra is column-oriented and organizes data 
into tables with each table having a partitioning and 
clustering key. The language to query the tables is 
CQL which has aggregate functions like min, max, 
sum, average.  

Cassandra has the possibility of supporting 
OLAP operations. In this paper, our concern is the 
conversion to the Cassandra logical model and we 
do not take a position on OLAP operations. 
However, we notice that the SLICE OLAP operation 
can be defined as a set of clustered columns in a 
partition that can be returned based on the query. 
Cassandra does indeed support the SLICE operation 
well. This is because it is very efficient in ‘write’ 
operations having its input/output operations as 
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sequential operations. This property can be used for 
the SLICE operation. 

We give a flavour of our proposed rules that 
convert the information model of the previous 
section to the logical model of Cassandra. These are 
as follows: 
 

Rule 1: Each Information, I, of the information 
model, becomes a table of Cassandra named I. In 
other words, each instantiation of the information 
model of figure 2 gives us one table. 
 

Rule 2: Each ‘Computed from’ Ɛ I is an attribute of 
the Cassandra table, I. 
 

Rule 3: Each category attribute, attr, of the 
information model, becomes attributes of Cassandra 
table, I. 
 

Rule 4: Let us say that category C contains category 
c. In order to map a ‘contains’ relationship, two 
possibilities arise: 

a) There is only one attribute of the category c. 
We propose the use of set to capture all the 
instances of c. The set, s, thus formed is an 
attribute of Cassandra table, I. For example, 
consider that a Department contains Units 
and Units has one attribute unit-name. Set, 
named say unit_name, will be an attribute of 
table I. Set unit_name is defined as  

unit_name set <text> 
where, each name is of data-type text.  
The set ‘unit_name’ will capture all the units 
under the department.  
Notice that since Sets are used to store a 
group of values, it is a suitable data structure 
for this case. 

b) There is more than one attribute of the 
category c. Since a Map is used to store key-
value pairs, we propose to use Map data 
structure of Cassandra. The Map created will 
form an attribute of the Cassandra table, I. 
Consider the same example of a Department 
contains Units. But this time let Units have 
attributes, code, name and head. A Map will 
be defined as 

Units map<int, text, text> 
where each code, name and head can be 
stored using data-type int, text and text 
respectively. 

 

Rule 5: The category of the information model 
makes up the primary key of table I. Notice, that the 
model allows more than one category for 
information, I. Now, the primary key of Cassandra 
has two components namely, partitioning key and 
clustering key. Therefore, we need to specify which 

category maps to which key of Cassandra. There are 
two possibilities: 

a) If there is only one category, then that category 
is the partitioning key.  

b) In the second case, there may be more than one 
‘category’. Note that the partitioning key is used 
to identify and distribute data over the various 
nodes. The clustering key is used to cluster 
within a node. Thus, the decision on which 
category or pair of ‘category’ becomes the 
partition key and which becomes the clustering 
key influences the performance of the DW 
system. We recommend that all the categories 
should become partitioning keys. However, 
notice that after selecting a category as the 
partitioning key, a specific attribute of the 
category must be selected to designate it as a 
key. This task will have to be done manually. 
 

For deciding on the clustering key, any attribute of 
the Cassandra table can be a clustering key. This 
will have to be determined by the requirements 
engineer in consultation with domain experts. 

There is a special case to (b). There can be 
certain categories for which the value of their 
attribute is taken from the system date and time. 
Such attributes get mapped to Cassandra’s 
timestamp/timeuuid datatype. Assigning such a 
category/category attribute as a partitioning key 
creates as many partitions as the number of dates 
and time. To minimize the number of partitions we 
recommend to not use such attributes as the 
partitioning key. This is because such partitions 
provide no real value. Instead, we recommend that 
such a category attribute be assigned as a clustering 
key. 

Applying our broad rules to the example taken in 
section 3 above, we get a table named waiting time. 
There are two ‘computed from’ information pieces, 
registration time and consultation time. Thus, these 
two become attributes of table waiting time. Further, 
category attributes: department code and department 
name belonging to category department also become 
attributes of the table.  

Based on Rule 5, department and month are the 
partitioning keys. Let us say, department_code 
attribute represents the department. So, the 
partitioning key will be (department code, 
dateMonth). Registration time is the clustering key. 
The table is created with the CQL statement shown 
below in Table 1. Notice that there is a column 
dateMonth that represents month wise category. 
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Table 1: Table generated after applying Rules 1 to 5. 

CREATE TABLE hospital.waiting_time ( 
 department_code text, 
 dateMonth int, 
 registration_time timeuuid, 
 consultation_time timestamp, 
 department_name text, 
 PRIMARY KEY (( department_code, dateMonth), 
registration_time) 
) 

 

The following table, Table 2, shows the sample 
of the data inserted. 

Table 2: CQL commands for insertion of data. 

INSERT INTO hospital.waiting_time 
(department_code, dateMonth 
,registration_time,consultation_time,department
_name) VALUES ('Sur',201901,33e90fc0-1efa-11e9-
8ca9-0fdba4c6d409,1547265902000,'Surgery'); 
INSERT INTO hospital.waiting_time 
(department_code,dateMonth,registration_time,co
nsultation_time,department_name) VALUES 
('Sur',201901,4317a0b0-1efa-11e9-8ca9-
0fdba4c6d409,1547267162000,'Surgery'); 
INSERT INTO hospital.waiting_time 
(department_code,dateMonth,registration_time,co
nsultation_time,department_name) VALUES 
('Med',201901,1599f7a0-1efa-11e9-8ca9-
0fdba4c6d409,1547264902000,'Medicine'); 
INSERT INTO hospital.waiting_time 
(department_code,dateMonth,registration_time,co
nsultation_time,department_name) VALUES 
('Med',201901,216427e0-1efa-11e9-8ca9-
0fdba4c6d409,1547265902000,'Medicine'); 
 

 

In order to clearly understand the partition based 
on department code and month of registration, let us 
look at the partition token obtained when rows are 
inserted into the table. Partition tokens can be 
obtained by CQL: 
 

Select token (department_code, dateMonth) from 
hospital.waiting_time 
 

The result of running the above statement can be 
seen in Figure 4. For all rows that have the same 
partition token Cassandra creates one row for each 
department and each month. So, for example, 
Medicine department and month of January will be 
one row. All the associated attributes will be stored 
as columns of the row. 
 

 

Figure 4: Partition tokens obtained for the data inserted in 
Table 2. 

Now, the aggregate function of the example of 
section 3 is to be mapped. Aggregate functions of 
the information model can be directly mapped to the 
aggregate functions of Cassandra. In our example, 
waiting time is calculated as the difference between 
registration and consultation time. Since there is no 
difference operator in Cassandra, we wrote a 
function, minus_time, to calculate the same. Once 
this was done, the aggregate function, avg, was 
applied and group by department code and month. 
Figure 5 shows the CQL code for the same. 
 

 

Figure 5: Obtaining the final aggregate information 
department wise and monthly. 

Suppose we want information about waiting time 
but with a different categorization say, patient wise 
in addition to department wise and month wise. For 
the information model of figure 3, a completely new 
piece of information, compared to the earlier one, is 
generated. Thus, when we map this new information 
to Cassandra, a new table will be created with its 
own attributes and partition keys. In other words, 
each Cassandra table caters to one instantiation of 
the information model. 

A tool to map the information model to 
Cassandra logical model based on the rules proposed 
is being developed. 

5 CONCLUSION 

There are traditionally two ways in which a DW 
system is implemented. One way is to directly use 
the data cube in a multi-dimensional database. Even 
though these systems give high performance, the 
databases are proprietary databases making a server 
niche. The other way to implement a DW is to use a 
relational database. Here, facts and dimensions are 
implemented as relational tables.  

Relational databases suffer from the 
disadvantages of not being distributed, being 
sensitive to NULLs, not catering to all the different 
types of data that is to be stored, involving heavy 
join operations which impacts system performance. 
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ETL for a relational implementation is very time 
confusing and a slow process. 

Therefore, we propose to use a NoSQL database. 
After all the information needs of the DW to-be have 
been identified by the requirements engineering 
phase, we propose mapping rules to take us to the 
logical model of NoSQL databases. For this, the 
information model is examined. Our preliminary 
work is for Cassandra, a column oriented database.  
Once the mapping is complete, OLAP operations 
can be performed.  

Future work includes: 

a) Defining the way in which OLAP operations will 
be implemented in Cassandra 

b) Applying our mapping rules to a real-world 
example and evaluating our rules 

c) Developing mapping rules for a document store. 
We have selected Mongodb as the database. 

d) Developing mapping rules for XML databases. 
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