
Comparing Testing and Runtime Verification of IoT Systems:
A Preliminary Evaluation based on a Case Study

Maurizio Leotta a, Diego Clerissi, Luca Franceschini, Dario Olianas, Davide Ancona, Filippo Ricca
and Marina Ribaudo

Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università di Genova, Italy

Keywords: IoT Systems, Systems Modelling, UML State Machine, Acceptance Testing, Runtime Verification, Node-RED.

Abstract: Assuring the quality of Internet of Things (IoT) systems is of paramount importance, and guaranteeing their
reliability and compliance with the requirements is mandatory, but few attempts have been made so far. In
previous works, we proposed two approaches for acceptance testing and runtime verification of IoT systems.
Both works rely on a UML state machine to specify the system expected behaviour. In the acceptance testing
approach, the interesting paths to exercise are identified and translated into executable test scripts. In the
runtime verification approach, the relevant events during the system execution are monitored and compared
against a formal specification derived from the UML state machine. In this paper, we compare the effectiveness
of our two approaches, by applying them to a mobile health IoT system for the management of diabetic patients,
employing over 100 mutated versions of the original system and analysing more than 1000 different executions.
Results show that both approaches are effective in different ways in detecting bugs. While the acceptance testing
approach is more effective to detect the bugs affecting the user interface, the runtime verification approach
tracks better the subtle deviations from the system expected behaviour, in particular those concerning network
issues.

1 INTRODUCTION

Internet of Things (IoT) systems are rapidly gaining
importance as they provide a variety of useful ser-
vices such as: real-time healthcare systems monitoring
and assisting ill patients, smart city traffic managers,
weather forecasting services, energy-saving systems
built for home/office environments. IoT systems are
generally composed of several interconnected and het-
erogeneous devices cooperating together, even from
different technological domains, like web and mobile,
in order to complete sometimes complex and safety-
critical activities.

In this setting, proposing effective strategies for
assuring IoT systems quality, for instance in terms of
reliability and compliance with the requirements, is
a challenging task. We have recently proposed two
approaches trying to make some steps towards IoT
systems quality assurance, based on Acceptance Test-
ing (Leotta et al., 2018c; Leotta et al., 2018b) and
Runtime Verification (Leotta et al., 2018a) techniques,
respectively. Both proposals require, as first step, to
specify the expected behaviour of the IoT system by
a https://orcid.org/0000-0001-5267-0602

means of a UML state machine, which plays a key role
for the subsequent steps.

Concerning Acceptance Testing of IoT systems,
we proposed an approach where the testing artefacts
are generated from the UML state machine and im-
plemented using automated acceptance testing frame-
works interacting with the User Interface (UI). Con-
cerning Runtime Verification, we proposed an ap-
proach in which the running system is observed by
monitoring the relevant events and their associated in-
formation to be verified against a formal specification
of the IoT system expected behaviour.

In this work, we compare the two approaches for
better understanding their strengths and weaknesses,
by taking, as case study, a UI-equipped mobile health
IoT system for the management of diabetic patients,
composed of a sensor, an actuator, a cloud-based
healthcare system, and smartphones. While in the
previous papers we empirically and separately evalu-
ated the two approaches by assessing their capability
in detecting bugs in a limited portion of the case study
(i.e., the logic of the cloud-based healthcare system),
in this paper we extend our analysis by including un-
expected behaviours due to problems (1) in the app

434
Leotta, M., Clerissi, D., Franceschini, L., Olianas, D., Ancona, D., Ricca, F. and Ribaudo, M.
Comparing Testing and Runtime Verification of IoT Systems: A Preliminary Evaluation based on a Case Study.
DOI: 10.5220/0007745604340441
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 434-441
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

running on the smartphones and (2) in the network
communication among the devices.

The paper is organized as follows. Section 2
presents the case study and the specification of its ex-
pected behaviour, by means of a UML state machine.
Section 3 briefly describes our two proposals for accep-
tance testing and runtime verification of IoT systems,
while all the details can be found in the original pa-
pers. Section 4 reports the empirical evaluation and
the results for comparing the effectiveness of the two
approaches in revealing bugs in the considered case
study. Finally, Section 5 presents the related works,
followed by conclusions and future work in Section 6.

2 CASE STUDY

As case study, we implemented a Diabetes Mobile
Health IoT system (from now on, DiaMH), equipped
with a UI (Leotta et al., 2018b). We chose this case
study because performing Software Quality Assurance
(SQA) tasks on healthcare systems is generally quite
complex, even more when a UI is involved (Klonoff,
2013).

The DiaMH system: (1) monitors the patient’s glu-
cose level, (2) sends to the patient and to the doctor
information about the patient’s state and alarms in case
of problematic trends, and (3) regulates insulin dosing.
DiaMH is composed of a wearable glucose sensor, a
wearable insulin pump, a patient’s smartphone, a doc-
tor’s smartphone and a cloud-based healthcare system.
The glucose sensor and the insulin pump are worn by
the patient and connected to her smartphone, which
is used as a “bridge” between them and the cloud-
based healthcare system. On the patient’s side, the
smartphone is used to visualize her state (e.g., the glu-
cose level trend), and on the doctor’s side to visualize
the alarms in case of problematic trends. Finally, the
cloud-based healthcare system, which is the core of
DiaMH, processes the data and turns it into valuable
information (alarms and novel insulin doses).

Both our acceptance testing and runtime verifi-
cation proposals require to specify the expected be-
haviour of the IoT system under validation/verification.
In our works, the specification is expressed in terms of
a UML State Machine (SM) to guide the SQA activi-
ties.

Figure 1 presents the DiaMH core expected be-
haviour, i.e., the logic that: (i) determines the patient’s
state (i.e., Normal, More Insulin, or Problematic) and
decides when to provide an insulin dose, (ii) man-
ages the glucose sensor and the insulin pump, and (iii)
transmits the information to the smartphones. In our
simplified case study, we have considered the cloud-

Figure 1: DiaMH core expected behaviour.

based healthcare system as a deterministic system with
a precise and repeatable behaviour, while real systems
could rely on complex algorithms based, for instance,
on machine learning. The black transitions lead to up-
dates of the patient’s state, while the red ones manage
the incoming data from the glucose sensor.

3 ACCEPTANCE TESTING AND
RUNTIME VERIFICATION

Performing a thorough SQA process of an IoT system
like DiaMH is complex, because it generally includes
heterogeneous and interconnected components which
may have to cooperate and exchange data. Faults may
emerge from individual components fails or even dur-
ing their integrations. Hence, SQA techniques should
be conducted at two different levels: (1) Virtual Level,
where real devices are not employed. In their place, vir-
tual ones (e.g., a mocked glucose sensor, a smartphone
emulator) are implemented and used for stimulating
the system with realistic but controlled input data. At
this level, the goal is to validate/verify only the soft-
ware developed. (2) Real Level, where real devices are
employed.

In this study, we focused on a virtual level, which
is generally the first step that a SQA team has to face
and can be conducted without employing real sensors
and actuators, that are commonly complex to use/set
and expensive to acquire.
We virtualized the DiaMH system by emulating the
smartphones using Android Emulator1, and by imple-
menting in Node-RED2 the mocks that simulate the
glucose sensor and the insulin pump, the core logics
of the cloud-based healthcare system and the com-
munication among the devices. Node-RED is a plat-
form providing a flow-based visual programming lan-
guage, built on Node.js, which is expressly designed

1 https://developer.android.com/studio/run/emulator.html
2 https://nodered.org

Comparing Testing and Runtime Verification of IoT Systems: A Preliminary Evaluation based on a Case Study

435

Mocked

Mocked

Glucose

Sensor

Insulin

Pump DiaMH

Cloud

System

Input Data

Events (Read, Inject, Alarm) Input to Sensor

EmulatedEmulated

Mocks Management

Simulated Interactions

Test
Scripts

Test Cases
Interesting

Paths

Figure 2: DiaMH Virtualization (Acceptance Testing).

for wiring together hardware devices, APIs and online
services.

3.1 Paths Identification

Since we focused on validating/verifying the case
study from a virtual level, both our testing and runtime
verification approaches require to identify from the
state machine the interesting paths to exercise. We
call a path interesting if it adheres to this rational: we
want at least a path ending in every state of the state
machine. If a state can be reached through different
transitions, we want a path ending in such state for
each incoming transition. Moreover, if a state can be
reached by a transition following different combina-
tions of states, we want a path for each combination.
Finally, for each self-loop, we want a path presenting
the self-loop as last transition.
Relying on the algorithm described in (Leotta et al.,
2018b), we obtained 10 interesting paths covering all
nodes and all transitions of the SM (see Table 1 un-
der Interesting Paths column). For exercising these
paths actual input data is required. Note that several
sequences of values could be used as input data for
each path, and the choice of such values could change
the effectiveness of both approaches. Concerning the
DiaMH case study, we limited to only one sequence
of input data for each interesting path, by combining
the values received from the mocked glucose sensor,
which is instrumented by log files containing realistic
glucose patterns to simulate the readings of the glucose
level trends of different kinds of patients.

3.2 Acceptance Testing Approach

Figure 2 reports an overview of the elements involved
in the acceptance testing approach: the mocked glu-
cose sensor and insulin pump, the emulated smart-
phones, the test scripts implementing the test cases
derived from the interesting paths (and implemented
with Appium3, a test framework for mobile apps), and
3 http://www.appium.io

Mocked

Mocked

Glucose

Sensor

Insulin

Pump DiaMH

Cloud

System

Input Data

Input to Sensor

Trace

Expression

EmulatedEmulated

P Probe

P

P

P

P

IoT System

Behaviour

Specification

Runtime
Monitor

Events (Read, Inject, Alarm)

Figure 3: DiaMH Virtualization (Runtime Verification).

the input data used to instrument the mocked glucose
sensor. Refer to (Leotta et al., 2018b) for a detailed
explanation of the approach.

3.3 Runtime Verification Approach

Figure 3 reports an overview of the elements involved
in the runtime verification approach: the mocked glu-
cose sensor and insulin pump, the emulated smart-
phones, the trace expression formalizing the system
expected behaviour (derived from the state machine),
the runtime monitor (implemented in Prolog4) observ-
ing all the relevant events by means of probes (P), and
the input data used to instrument the mocked glucose
sensor. Trace expressions are a formalism explicitly
devised for runtime verification. Since we are not mon-
itoring a real system, but a virtualized one, the relevant
events occurring during the system executions have to
be simulated through interesting paths fed with appro-
priate input data. Refer to (Leotta et al., 2018a) for a
detailed explanation of the approach.

4 EMPIRICAL EVALUATION

The goal of the empirical evaluation is to investigate
the effectiveness of our acceptance testing and runtime
verification approaches in revealing bugs. The context
of the study is defined as follows: four human subjects
(authors of the paper) have been involved; the software
object is the aforementioned DiaMH IoT system.

4.1 Research Questions

Our empirical study aims at answering the following
two research questions RQ1 and RQ2.

RQ1: What is the capability of our acceptance testing
and runtime verification approaches in detecting bugs
in an IoT system?

4 http://www.swi-prolog.org

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

436

The goal is to quantify and compare the capability of
our two approaches in revealing bugs in IoT systems;
moreover, in this way, it should be possible to evaluate
the differences (if any) between them. The technique
adopted for evaluating the effectiveness is mutation
testing (Offutt and Untch, 2001), while the metric used
to answer this research question is the percentage of
killed mutants out of the total. Since the location of
a bug in an IoT system may affect the capability of
the two approaches in revealing it, and given that IoT
systems heavily rely on the network, we structured
RQ1 into three sub-research questions:
What is the capability of our acceptance testing and
runtime verification approaches in:
RQ1.1: detecting bugs in the cloud portion of an IoT
system (see DiaMH Cloud System in Figures 2-3)?
RQ1.2: detecting bugs in the app running on the mo-
bile devices composing an IoT system (see Emulated
Smartphones in Figures 2-3)?
RQ1.3: detecting network problems among the de-
vices composing an IoT system (see Red Arrows Events
in Figures 2-3)?

RQ2: Is there a relation between interesting paths
complexity and bugs detection?
The goal is to investigate the relation between com-
plexity of the interesting paths and their capability in
detecting bugs. The complexity of an interesting path
is measured in terms of the number of transitions it
covers in the UML state machine, while the bugs de-
tection capability of an interesting path is measured as
the number of mutants killed during the execution of
the corresponding SQA artefacts (i.e., the test script
and the runtime monitor, respectively implementing
the path and monitoring the events raised while using
some tailored input data). To answer this research
question we computed the Pearson correlation coeffi-
cient5 between the number of transitions covered by an
interesting path and the number of bugs it has detected.

4.2 Mutation Testing

Mutation testing (Offutt and Untch, 2001) is a tech-
nique traditionally used for evaluating the quality of
the produced test scripts, by exercising them against
slight variations of the original code simulating errors
a developer could introduce during development and
maintenance. These variations, named mutants, can
identify the weaknesses in the test artefacts, by deter-
mining the software portions that are badly or never
tested (Kochhar et al., 2015).

Generalizing to SQA, the idea is the following: for
each mutant, the SQA artefacts are executed (e.g., the
5 https://en.wikipedia.org/wiki/Pearson correlation
coefficient

test scripts or the runtime monitor). A SQA artefact is
effective w.r.t. a mutant if it kills the mutant, i.e., it can
detect the change in the system behaviour introduced
by the mutant. Otherwise, the mutant survives, proving
the SQA artefact weakness in exercising such portion
of the code. The goal is to kill the highest number of
generated mutants; a measure to evaluate the overall
SQA artefacts quality is given by the percentage of
mutants killed over the total (i.e., the higher the better).

4.3 Experimental Procedure

Starting from the implementation of DiaMH and the two
kinds of SQA artefacts created by following our ap-
proaches (i.e., the test scripts and the runtime monitor),
we proceeded as follows.

To answer RQ1.1, we selected Stryker6 as muta-
tion tool, which is a Javascript mutator suited for sys-
tems developed using Node-RED, like DiaMH. Stryker
supports various mutant operators and plugins, and
is largely configurable to properly generate and store
the mutated code. It offers mutation operators for log-
ical instructions, boolean substitutions, conditional
removals, arrays declarations, block statements re-
movals, and so on. In particular, we focused on:

Mutating Javascript functions nodes: from the orig-
inal Node-RED flows implementing the core of Di-
aMH, by using an automated script, we selected all
the function nodes embodying Javascript code and
we applied Stryker on them, using all the supported
mutators, obtaining 29 mutants. We implemented a
script that automatically and separately injects each
mutated Javascript node into the original Node-RED
flows, resulting in 29 mutated versions of DiaMH.

Mutating switch nodes: we translated the logic
embedded in the switch7 nodes used in the original
Node-RED flows as if-then-else Javascript statements.
We mutated them with Stryker, obtaining 27 mutants,
and consequently, 27 corresponding mutated versions
of DiaMH, automatically generated as described above.

To answer RQ1.2, we selected MDroid+8 muta-
tion tool (Linares-Vásquez et al., 2017) to mutate the
Java code implementing the DiaMH app running on the
smartphones, with assignments substitutions, logical
operators changes and conditionals removals, resulting
in 40 mutants.

To answer RQ1.3, we manually created 7 versions
of DiaMH simulating network problems, i.e., delayed
and undelivered messages. More in detail, we created:
2 versions simulating delays by 2 and 4 seconds of
each network message sent from the glucose sensor
to the cloud, 2 versions simulating delays by 2 and 4
6 https://stryker-mutator.github.io
7 https://nodered.org/docs/user-guide/nodes#switch
8 https://research-appendix.com/mdroid

Comparing Testing and Runtime Verification of IoT Systems: A Preliminary Evaluation based on a Case Study

437

seconds of each network message sent from the cloud
to the insulin pump, and finally 3 versions simulating
an undelivered message every 5, 10, and 15 messages
sent from the glucose sensor to the cloud.

Finally, each mutated version of DiaMH (103 over-
all) was validated separately by both kinds of SQA
artefacts produced with our approaches, i.e., the Ap-
pium test scripts and the Prolog monitor, using the
proper input data to instrument the mocked glucose
sensor, in order to purposely exercise exactly one by
one the 10 interesting paths of DiaMH, resulting in 1030
overall executions (10 interesting paths for 103 mu-
tants) for each approach, noting down: (i) whether the
mutant was killed, and if so, during the execution of
which interesting path, and (ii) the results of a detailed
analysis to explain why each mutant was killed or not.

To answer RQ2, we checked the number of transi-
tions covered in the SM of Figure 1 by each interesting
path and compared it with the number of mutants each
SQA artefact had killed in such case.

4.4 Results

Table 1 column RQ1.1 Cloud Mutants Killed summa-
rizes the number of mutants in the cloud killed by the
Appium test scripts and by the Prolog monitor. Among
the generated 56 mutants, 14 outlived acceptance test-
ing and 12 outlived runtime verification.

We analysed each outliving mutant from a code
perspective and, after some code inspection, we dis-
covered that the behaviour of 8 of them was exactly
equivalent to the original system (Grün et al., 2009;
Jia and Harman, 2011), hence undetectable by any
black-box SQA approach. An example of an equiva-
lent mutation is changing if (i == 20) i = 0 to if (i >= 20)
i = 0 in a Node-RED function; since the condition is
evaluated for each single increment of i, and the initial
value of i is below 20, the behaviour of the mutant is
equivalent to the original code.

Thus, only 6 and 4 mutants were considered as
real survivors for acceptance testing and runtime veri-
fication approaches, respectively. From our analysis,
we discovered that 3 of them survived, in both our
approaches, due to weaknesses in the provided input
data, which was not complete enough to cover all the
possible conditions and properly exercise the bound-
aries of the original system. Indeed, mutations often
affect operators used in conditions; if the mutation
drastically changes the system behaviour (e.g., > in
<), the mutant can be easily detected, but if it is just
a little variation of the system behaviour (e.g., > in
>=), the input data must be carefully chosen in order
to detect the inconsistency. To test our conjecture, we
manually created an ad-hoc sequence of values for

each of the 3 mutants that survived because of weak
input data, and all of them were identified by both our
approaches. Concerning the 3 other mutants surviving
only the acceptance testing approach, we recognized
that they were slight mutations of the DiaMH behaviour
having no effect on the UI, hence impossible to be
killed by the test scripts, that are highly based on as-
sertions over UI properties. For example, a mutant
changed the number of readings required to determine
a patient’s state from 20 to 19: while no test script
has assertions to verify the exact number of received
readings that bring to a change of a patient’s state,
the Prolog monitor looks at each message exchanged
among the devices and can identify when something
expected is missing. Finally, the last mutant surviving
only runtime verification had caused the crash of the
app and the freezing of the UI at the end of its exe-
cution, due to a continuous and erroneous increment
of the size of an array. In that case, while the mutant
was detected by some test scripts, since the UI had
stopped displaying the proper contents after the crash,
no unexpected events were detected by the monitor.

Table 1 column RQ1.2 App Mutants Killed summa-
rizes the number of mutants in the app running on the
smartphones killed by the Appium test scripts and by
the Prolog monitor. Among the generated 40 mutants,
15 and 33 outlived acceptance testing and runtime ver-
ification, respectively. As for RQ1.1, we analysed
them and we found that 15 out of 40 were equiva-
lent. For example, there were mutants applying trivial
and undetectable UI changes (e.g., font colour/style
or unchecked visual content) or initializing variables
by negative or null values, which were reinitialized
before their usages. Hence, excluding the equivalent
mutants, in this case, the acceptance testing approach
resulted by far more effective than the runtime verifi-
cation (100% versus 28%), because the 18 mutants out
of 33 surviving runtime verification involved changes
in the UI of the app without affecting the components
communication (e.g., the label describing the current
patient’s state was forcefully changed by a mutant inde-
pendently of the exchanged readings). These mutants
could not be detected by the Prolog monitor, which
was able instead to detect those producing unexpected
events altering the system expected behaviour, as in
the case of a mutant setting to false a conditional ex-
pression used for establishing the communication.

Table 1 column RQ1.3 Network Mutants Killed
summarizes the number of mutants concerning net-
work problems, i.e., delayed and undelivered messages,
killed by the Appium test scripts and by the Prolog
monitor. In this case, the runtime verification approach
was able to detect all the mutants, while the acceptance
testing approach detected only 5 out of 7. The

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

438

Table 1: Mutants killed by the Appium test scripts and by the Prolog monitor.

Acceptance

Testing

Runtime

Verification

Acceptance

Testing

Runtime

Verification

Acceptance

Testing

Runtime

Verification

Acceptance

Testing

Runtime

Verification

from starting the app (S) to Normal 1 4 1 12 0 0 0 16 1
from S to More Insulin 2 10 19 14 7 0 4 24 30
from S to Problematic 3 32 41 20 7 2 7 54 55
from S to More Insulin and back to Normal 3 19 39 14 7 1 6 34 52
from S to Problematic and directly to Normal 4 41 43 20 7 2 7 63 57
from S to Problematic and back to More Insulin 4 37 43 20 7 1 7 58 57
from S to Problematic and back to Normal (via More Insulin) 5 42 44 21 7 4 7 67 58
from S to self-loop to Normal 2 4 4 12 0 0 0 16 4
from S to self-loop to More Insulin 3 19 38 14 7 1 7 34 52
from S to self-loop to Problematic 4 34 42 18 7 4 7 56 56

Total Mutants killed (a) 42 44 25 7 5 7 72 58
Total number of Mutants 56 56 40 40 7 7 103 103
Total number of Mutants (excluding equivalent) (b) 48 48 25 25 7 7 80 80

Mutants detection rate (a/b) 88% 92% 100% 28% 71% 100%

Interesting Paths
Tran-

sitions

RQ1.1:

 Cloud Mutants Killed

RQ1.2:

App Mutants Killed

RQ 1.3:

Network Mutants Killed

Total

Mutants Killed

surviving mutants were those respectively delaying by
2 seconds the messages sent from the glucose sensor
to the cloud and from the cloud to the insulin pump.
Differently from the runtime verification approach,
the acceptance testing approach required to introduce
some temporal waits into the test scripts (e.g., to per-
form a refresh of the UI), which affected their actual
execution time and reduced the overall precision in
detecting small timing deviations from the DiaMH ex-
pected behaviour. Concerning undelivered messages,
for the acceptance testing approach, only the test script
exercising the longest interesting path (i.e., from S to
Problematic and back to Normal (via More Insulin)) was able
to kill the mutant which simulated an undelivered mes-
sage every 15 messages sent from the glucose sensor
to the cloud. Instead, the SQA artefacts exercising
shorter interesting paths (e.g., from starting the app (S)
to Normal and from S to self-loop to Normal) were not
able to kill any mutant concerning network problems,
neither in acceptance testing nor in runtime verifica-
tion, since they used input data having very similar
values and their execution ended before the mutation
had occurred.

Summary: the results show the effectiveness of
both acceptance testing and runtime verification ap-
proaches. Acceptance testing proves to be by far more
effective than runtime verification in detecting mutants
in the app affecting the UI (100% versus 28% for ac-
ceptance testing, RQ1.2). Instead, runtime verification
is much more precise in tracking subtle changes in
the system behaviour, in particular in the messages
exchanged among the DiaMH components: indeed, it
is slightly better in killing mutants in the cloud (92%
versus 88% for runtime verification, RQ1.1) and those
concerning network problems, where even small devi-
ations from the expected behaviour, like delayed and
undelivered messages, are detected (100% versus 71%
for runtime verification, RQ1.3). If we exclude the
equivalent outliving mutants (8 from the cloud and 15
from the app, see Table 1) from the total (56 from the
cloud, 40 from the app, and 7 from the network, see

Table 1), by combining our approaches, only 3 mutants
out of 80 survive (see results of RQ1.1 concerning in-
put data selection), hence over 96% of the generated
mutants that actually modify the behaviour of DiaMH
are killed. The results hint that each approach has to
be chosen depending on the kind of IoT system that
has to be developed and validated/verified. In many
cases, both approaches may be combined to improve
the overall capability in detecting bugs in IoT systems.

Table 1 also provides the information for answer-
ing to RQ2. It is interesting to notice that, in both
our approaches, all the interesting paths involving a
Problematic pattern in terms of a patient’s state (i.e.,
at least 3 transitions of the SM) were able to kill more
mutants than shorter paths (54 out of 80 in the worst
case, see the row corresponding to from S to Problematic
path in Table 1 for the Acceptance Testing approach).
This can be trivially explained by Figure 1: to reach
a Problematic state, it is necessary to traverse more
transitions than in simpler paths; hence, whenever a
Problematic pattern is taken in input, a larger portion
of the system will be exercised, and, similarly, more
instructions will be performed and more events will
occur (e.g., inject an insulin dose, discard immediately
subsequent values, send alarms, and so on), which may
potentially lead to detect a large number of mutants.
Two paths presented a very low mutants detection rate
in both our approaches: from starting the app (S) to Nor-
mal and from S to self-loop to Normal. The low mutants
detection rate for these paths is explainable by their
simplicity: they verify that DiaMH is running and, after
a certain amount of time, they check that the patient is
still in a Normal state.

Figure 4 shows a scatter plot that displays the re-
sults concerning three variables for each interesting
path: the number of traversed transitions (x-axis), the
number of killed mutants (y-axis), and the adopted
SQA approach (black for acceptance testing, red for
runtime verification). From Figure 4, a linear relation-
ship emerges (R2 coefficient9 is quite close to 1 for
9 https://en.wikipedia.org/wiki/Coefficient of
determination

Comparing Testing and Runtime Verification of IoT Systems: A Preliminary Evaluation based on a Case Study

439

Testing
y = 15,256x - 5,093

R² = 0,8663

Runtime
y = 16,109x - 7,7364

R² = 0,7374
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

K
il
le

d
 M

u
ta

n
ts

Number of Transitions

Testing

Runtime

Linear (Testing)

Linear (Runtime)

Figure 4: Paths complexities and mutants detection.

both testing and runtime verification approaches, indi-
cating that the regression lines fit well the data) and the
Pearson correlation index confirms a strong positive
correlation between the number of transitions traversed
and the number of mutants killed: 0.93 for acceptance
testing and 0.86 for runtime verification. Indeed, the
approaches present very similar regression lines; the
differences are mainly based on the kinds of mutants
to detect (i.e., cloud, app, and network mutants, see
Table 1): in general, and for shorter paths is even more
evident, the monitor is incapable to detect the mutants
affecting the app, while the testing approach presents
better results in the majority of paths, since is able to
detect all the mutants in the app, which are almost a
third of the total mutants (25 out of 80), but misses
some of those affecting the communication.

Summary: to summarise, the obtained results show
that high complexities in interesting paths, measured
as the number of different transitions traversed in the
UML state machine, correspond to high mutants de-
tection rates (Pearson correlation coefficient close to
0.9 for both the considered SQA approaches). These
results may help in choosing the right trade-off be-
tween simplicity and effectiveness of SQA artefacts
and in prioritizing the executions of those paths that
best answer to a project needs.

4.5 Threats to Validity

In the following, for space reasons, we sketch only
some of the most relevant threats to validity of the
present study.

Authors’ bias threat. To limit this threat, we di-
vided the following tasks among the authors: the sys-
tem expected behaviour specification, the system vir-
tualization and implementation with Node-RED, the
acceptance testing and runtime verification approaches
application to the case study, and the evaluation of
the approaches by means of mutation testing, which

mostly involved automated mutation tools (Stryker and
MDroid+) with default settings.

Internal validity threat. To limit this threat, we
adopted a systematic approach for the generation of
realistic input data and for the application of the muta-
tion technique.

External validity threat. To limit this threat, we
implemented DiaMH by following some existing di-
abetes control systems descriptions (Parasoft, 2016;
Istepanian et al., 2011), considering also other domains
where UI-based components, sensors and actuators are
involved.

5 RELATED WORK

For space reasons, we briefly describe only few of the
scientific works existing in literature that are related to
our approaches.

The acceptance testing approach has been inspired
by a Parasoft white paper (Parasoft, 2016), where the
components of a healthcare system are isolated and
stimulated for testing purposes, verifying any alert ir-
ruption. Rosenkranz et al. (Rosenkranz et al., 2015)
present a test system architecture for open-source IoT
software. They recognize the two levels for testing IoT
systems that we introduced in our works, i.e., virtual
and real, but a general approach for acceptance testing
is not provided. Silva et al. (Silva et al., 2014) propose
a model-based architecture for generating regression
models to simulate patients vital signs and emulate
medical devices and actuators, by means of stored
clinical data, medical guidelines and statistical tech-
niques. A controller model is introduced to check the
events and coordinate the actions among the devices
and the patient models, which could also be reused and
adapted depending on the clinical scenario. Siboni et
al. (Siboni et al., 2016) propose and evaluate a testbed
framework for security testing of wearable devices in
terms of design requirements, where external attackers
and sensors are simulated and stimuli are generated
accordingly to the testing purposes.

Concerning monitoring and formal verification,
Kane et al. (Kane et al., 2014) present a runtime moni-
tor verification technique and a formal method to de-
scribe and detect violations of high-level critical prop-
erties of a safety-critical system (a vehicle simulator)
and analyse resulting log data. A graphical tool is im-
plemented by Hoxha et al. (Hoxha et al., 2014) to guide
the user in formulating, visualizing, and monitoring
temporal logic sentences, used to express design re-
quirements properties of cyber-physical systems (e.g.,
reachability, safety).

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

440

6 CONCLUSIONS

In this work, we have compared our SQA approaches
to IoT systems acceptance testing and runtime verifi-
cation, in order to highlight their strengths and weak-
nesses while applied on realistic scenarios.

As case study, we have chosen a simplified mobile
health IoT system for the management of diabetic pa-
tients, composed of a sensor, an actuator, a cloud-based
healthcare system, and smartphones, having its logics
partially implemented in the Node-RED environment.
We have then separately applied our approaches to the
case study and extended our preliminary analyses to
collect data in terms of mutants detection. Results
have shown that the acceptance testing approach is
more effective to detect mutants affecting the UI of the
app running on the smartphones, part of the system,
while runtime verification proves to be more powerful
in tracking subtle deviations from the system expected
behaviour, in particular those affecting network issues,
like delayed and undelivered messages. By combining
our approaches, the mutants detection for the consid-
ered case study is over 96%.

As future research, we intend to experiment our ap-
proaches on other IoT systems to verify their real appli-
cability and scalability, and to overcome the emerged
limitations (in particular those concerning the selection
of realistic input data and precise timing constraints).

ACKNOWLEDGEMENTS

This research was partially supported by Actelion Phar-
maceuticals Italia.

REFERENCES

Grün, B. J., Schuler, D., and Zeller, A. (2009). The impact of
equivalent mutants. In Proc. of 2nd Int. Conf. on Soft-
ware Testing, Verification and Validation Workshops,
ICSTW 2009, pages 192–199. IEEE.

Hoxha, B., Bach, H., Abbas, H., Dokhanchi, A., and
Kobayashi, Y. (2014). Towards formal specification vi-
sualization for testing and monitoring of cyber-physical
systems. In Proc. of Workshop on Design and Imple-
mentation of Formal Tools and Systems, DIFTS 2014.

Istepanian, R., Hu, S., Philip, N., and Sungoor, A. (2011).
The potential of Internet of m-health Things ”m-IoT”
for non-invasive glucose level sensing. In Proc. of 33rd
Int. Conf. of the IEEE Engineering in Medicine and
Biology Society, EMBC 2011, pages 5264–5266.

Jia, Y. and Harman, M. (2011). An analysis and survey of the
development of mutation testing. IEEE Transactions
on Software Engineering, 37(5):649–678.

Kane, A., Fuhrman, T., and Koopman, P. (2014). Mon-
itor based oracles for cyber-physical system testing:
Practical experience report. In Proc. of 44th Annual
IEEE/IFIP Int. Conf. on Dependable Systems and Net-
works, DSN 2014, pages 148–155. IEEE.

Klonoff, D. C. (2013). The current status of mHealth for
Diabetes: Will it be the next big thing? Journal of
Diabetes Science and Technology, 7(3):749–758.

Kochhar, P. S., Thung, F., and Lo, D. (2015). Code coverage
and test suite effectiveness: Empirical study with real
bugs in large systems. In Proc. of 22nd Int. Conf. on
Software Analysis, Evolution and Reengineering, pages
560–564. IEEE.

Leotta, M., Ancona, D., Franceschini, L., Olianas, D., Rib-
audo, M., and Ricca, F. (2018a). Towards a runtime
verification approach for Internet of Things systems. In
Proc. of 2nd Int. Workshop on Engineering the Web of
Things (EnWoT 2018), volume 11153 of LNCS, pages
83–96. Springer.

Leotta, M., Clerissi, D., Olianas, D., Ricca, F., Ancona,
D., Delzanno, G., Franceschini, L., and Ribaudo, M.
(2018b). An acceptance testing approach for Internet
of Things systems. IET Software, 12:430–436.

Leotta, M., Ricca, F., Clerissi, D., Ancona, D., Delzanno, G.,
Ribaudo, M., and Franceschini, L. (2018c). Towards
an acceptance testing approach for Internet of Things
systems. In Proc. of 1st Int. Workshop on Engineering
the Web of Things (EnWoT 2017), volume 10544 of
LNCS, pages 125–138. Springer.

Linares-Vásquez, M., Bavota, G., Tufano, M., Moran, K.,
Di Penta, M., Vendome, C., Bernal-Cárdenas, C., and
Poshyvanyk, D. (2017). Enabling mutation testing for
android apps. In Proc. of 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, pages
233–244. ACM.

Offutt, A. J. and Untch, R. H. (2001). Mutation 2000: Unit-
ing the orthogonal. In Mutation testing for the new
century, pages 34–44. Springer.

Parasoft (2016). End-to-end testing for IoT integrity. Techni-
cal report. https://alm.parasoft.com/end-to-end-testing-
for-iot-integrity.

Rosenkranz, P., Wählisch, M., Baccelli, E., and Ortmann,
L. (2015). A distributed test system architecture for
open-source IoT software. In Proc. of 1st Workshop
on IoT Challenges in Mobile and Industrial Systems,
IoT-Sys 2015, pages 43–48. ACM.

Siboni, S., Shabtai, A., Tippenhauer, N. O., Lee, J., and
Elovici, Y. (2016). Advanced security testbed frame-
work for wearable IoT devices. ACM Trans. Internet
Tech. (TOIT), 16(4):26.

Silva, L. C., Perkusich, M., Bublitz, F. M., Almeida, H. O.,
and Perkusich, A. (2014). A model-based architecture
for testing medical cyber-physical systems. In Proc.
of 29th Symposium on Applied Computing, SAC 2014,
pages 25–30. ACM.

Comparing Testing and Runtime Verification of IoT Systems: A Preliminary Evaluation based on a Case Study

441

