
Mapping Land Cover Types using Sentinel-2 Imagery: A Case Study 

Laura Annovazzi-Lodi, Marica Franzini and Vittorio Casella 
Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 5, Pavia, Italy 

Keywords: Sentinel-2, Remote Sensing, Supervised Classification, SVM and Land Cover. 

Abstract: This paper presents a case study of automatic classification of the remotely sensed Sentinel-2 imagery, from 

the EU Copernicus program. The work involved a study site, located in the area next to the city of Pavia, Italy, 

including fields cultivated by three farms. The aim of this work was to evaluate the so-called supervised 

classification applied to satellite images and performed with Esri's ArcGIS Pro software and Machine Learn-

ing techniques. The classification performed produces a land use map that is able to discriminate between 

different land cover types. By applying the Support Vector Machine (SVM) algorithm, it was found that, in 

our case, the pixel-based method offers a better overall performance than the object-based, unless a specific 

class is exclusively taken into consideration. This activity represents the first step of a project that fits into the 

context of Precision Agriculture, a recent and rapidly developing research area, whose aim is to optimize 

traditional cultivation methods. 

1 INTRODUCTION 

The World Population Prospect document of the 

United Nations (DESA, 2017) predicts that the world 

population will rise to 9.8 billion by 2050. All over 

the planet, there will be a corresponding increment in 

food demand, and this is one of the major humanity 

challenges.  

Furthermore, climate change, environmental deg-

radation, the ever increasing demand for water and 

energy, socio-political and economic changes are just 

a few examples of factors that necessarily motivate us 

to integrate technological innovation in the produc-

tive processes of modern agriculture in a consolidated 

way that makes it more fruitful and, at the same time, 

sustainable (MiPAAF, 2017), (Chhetri et al., 2012). 

Thematic maps show the spatial distribution of a 

generic indicator and depict environmental and phys-

ical factors (geological maps, distribution of water re-

sources, entity of precipitations, etc.), biological (dis-

tribution of forests, surface of agricultural crops and 

their production, etc.) or social ones (census distribu-

tion, population’s average age, health, etc.). Land use 

maps are particular thematic maps where the terrain 

is subdivided into several categories belonging to a 

pre-defined list such as: roads, buildings, forest, fields 

and so on: the level of detail of the classification de-

pends on the goal and on the degree of detail of the 

data used to produce the map. 

The most used way to produce large-scale land 

use maps is the classification of remote sensing im-

ages. 

Among land cover maps, crop type maps are nec-

essary for different purposes and provide crucial in-

formation for monitoring and management of the ag-

ricultural sector. According to (Marais-Sicre et al., 

2016) they can be employed, for example, to estimate 

the specific use of water for a certain type of cultiva-

tion or to identify the various types of crops before 

the start of the irrigation season, so as to study the best 

strategy resource management for water, which is 

both sustainable and resourceful. They are also useful 

in creating growth models that allow for estimation of 

crop yield. 

These maps are therefore essential in the field of 

Precision Agriculture (PA). PA is the application of 

technologies and principles to manage spatial and 

temporal variability associated with all aspects of ag-

ricultural production for improving crop performance 

and environmental quality (Pierce and Nowak, 1999). 

PA is based on a bunch of Geomatics techniques: ter-

ritory survey, satellite navigation and GIS. Crop maps 

are also required by policy and decision-makers for 

economics, management and for agricultural statistics 

(Immitzer et al., 2016). Information recorded and pro-

duced in the frame of PA could facilitate different ad-

ministrative and control procedures (Zarco-Tejada et 

al., 2014). 
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The goal of this study is to assess supervised clas-

sification, both object- and pixel-based, applied to a 

Sentinel-2 image. This activity is the first step of a 

project of classification of parcels of land according 

to the type of agricultural crop practiced, that fits into 

the context of PA. 

2 MATERIALS 

2.1 Study Area 

The study site (Figure 1) is located about 15 km north-

west of the city of Pavia, Italy; it covers a total area 

of 3220 ha. The considered site belongs to the terri-

tory of the Pianura Padana, which offers the best con-

ditions for the cultivation of rice: wet climate, loose 

soil and large water availability. The study area con-

tains different land covers/use categories such as 

cropland, woods, industrial and urban areas, roads 

and a stretch of the river Ticino including its mean-

ders.  

2.2 Ground Truth 

By interviewing farm owners, in situ reference data 

concerning the year 2017, was collected. The infor-

mation gathered for each agricultural plot was crop 

type, sowing and harvesting date. The plots are char-

acterized by a large variety of shapes (square, rectan-

gular or triangular). The main cultivated crops in this  

region are ryegrass, maize, barley, grassland, rice, rye 

and soybean. 

The reference data concerning the rest of the site,  

such as the water of the river Ticino or the asphalt of 

the roads, was obtained observing a very high-resolu-

tion satellite image, acquired by Digital Globe and 

provided by Esri within its products; its ground reso-

lution is, for the considered area, 30 cm. The so-ob-

tained data was also verified both by examining the 

relative Google Street View images and by direct in-

spection of the areas under study. 

Based on the data collected and observed, 439 

polygons were manually drawn and created, corre-

sponding to a total area of just over 800 ha. To pre-

cisely draw the polygons, the raster maps of the fun-

damental regional cartography were downloaded 

from the Geoportal of the Lombardy Region (URL-

1), related to the area of interest. Since the regional 

maps are not completely up-to-date, and are therefore 

considered only partially reliable, the high-resolution 

satellite image mentioned above was jointly used as 

base map.  

It was decided to eliminate polygons exclusively 

dedicated to rye, soybean, pea and other vegetables 

(and not the plots intended for catch crop cultivation) 

because the number of polygons was not sufficient to 

create a distinction of the spectral signature, as well 

as to avoid large class imbalances. Hence, the final 

number of polygons taken into consideration for our 

study was 418, with a total area of almost 774 ha (Ta-

ble 1).  

The so-obtained ground truth map is organized as 

a time-dependent GIS layer. The record associated 

with each polygon has a textual field describing the 

time frame of the various crops related to it. Once a 

date is chosen, a truth map containing the real classi-

fication at that time can be defined by manually filling 

a numeric field.

 

Figure 1: On the left: the study area (framed in black), next to the city of Pavia [Open Street Map]. In the middle: the extent 

of the Sentinel-2 Tile 32TMR (https://scihub.copernicus.eu/dhus/#/home). On the right: S-2 scene (TCI) of the study area. 
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Table 1: Number of polygons and surface corresponding to 

each class. 

Class 
Number of 

polygons 
(ha) 

Water 27 16.47 

Asphalt 39 8.92 

Wood 37 111.63 

Industrial 10 15.85 

Barley 25 39.12 

Grassland 62 85.44 

Bare soil 199 427.56 

Urban 19 68.48 

TOT. 418 773.47 

2.3 Satellite Data and Crop Phenology 

Sentinel-2 mission is a land monitoring constellation 

of two satellites (Sentinel-2A and Sentinel-2B, re-

spectively launched on 22.06.2015 and on 7.03.2017) 

flying in the same orbit but phased at 180°, designed 

to give a high revisit frequency of 5 days at the Equa-

tor. It carries an innovative wide-swath, high-resolu-

tion, multi-spectral imager (MSI) with 13 spectral 

bands with 10, 20 and 60 m spatial resolution.  

In this study, since the data collected was relative 

to the year 2017, all the S-2 images of that year were 

downloaded (concerning the area of interest, corre-

sponding to the tile 32TMR - ESA’s scene naming 

convention). After visual inspection, it was decided to 

exclude the images with high cloud coverage at the 

granule level and with cloud cover concentrated right 

in the study area. Therefore, 15 images (out of 109) 

were taken into consideration. Eventually, the image 

acquired on May 17 was chosen. The choice was con-

sidered optimal for our classification and was defined 

after careful considerations of several aspects listed 

below.  

For the differentiation of crop types, phenology is 

considered as a key factor.  

Phenology is defined as the periodicity of key 

events in the life cycle of living species, their chro-

nology and their relationship between climate factors 

and seasonal events over time (Schwartz, 2003). For 

this reason, a chronogram was created, ranging from 

March to November and related to the major crop 

types (Figure 2).  

During the interviews, it was possible to collect 

information on the timing of the vegetation cycles and 

the phenology of the agricultural crops that are pre-

sent in the study area. The so-obtained knowledge 

base has been further implemented by materials found 

on the internet and on common agricultural books. 

Ryegrass is an autumn-winter forage crop that 

grows rapidly. It is sown from the end of September 

to the beginning of November, while the harvest usu-

ally takes place in April. This plant is suitable for ro-

tation with maize, with which it is replaced from May 

until mid-June.  

Maize is one of the most important and wide-

spread cereal crops in our country. Since it requires a 

warm and temperate climate, to facilitate its growth 

at ever-mild temperatures, sowing usually takes place 

from the end of March to April-May, but may con-

tinue until mid-June. The emergency phase can occur 

up to about 20 days later. Harvest takes place from 

the beginning of August to October.  

Grassland is a stable lawn whose phenology de-

pends on certain factors such as climatic conditions, 

type of soil and use (hayfields, grazed grassland or 

water meadow).  

The water meadow is a land permanently irrigated 

in winter months by a veil of water, which flows by 

gravity in order to prevent the excessive cooling of 

the ground. Such a technique allows the grass to grow 

even at low temperatures. The water is kept moving 

by the slight slope of the ground. During the summer 

season, however, periodic irrigations of the area are 

carried out, as in a common lawn. In the area of the 

river Ticino, given the particular conformation of 

humps and valleys typical of these dedicated fields, 

the cultivation of water meadows is difficult, but for 

its historical importance, about 300 hectares have 

been preserved. 

 

 

Figure 2: Chronogram of sowing and harvesting periods of crops belonging to the largest number of polygons. 
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Barley is an unripe crop and the calendar of its 

vegetation cycle is rather short, giving it an excellent 

adaptability to very different environments. The vari-

eties used in the study area have a good resistance to 

cold, so barley is sown between the end of October 

and early November. The harvesting phase takes 

place at the beginning of summer. Coming to rice, its 

sowing season is from April to May. In September, 

when the plant has reached full ripeness, the harvest 

begins, which lasts until October.  

Based on the reported considerations, the autumn-

winter dates have been excluded because almost all 

polygons belong to the "bare soil" category, leading 

to poorly significant results. May 17th was chosen be-

cause the existing crops are well defined. Indeed, 

mid-May is the sowing period of maize and rice 

crops, so their related plots are still identifiable as 

“bare soil”. Barley, on the other hand, is ready to be 

harvested, so well developed and distinguishable. 

Even grassland, sown in April, is lush and flourishing.  

In conclusion, eight categories were considered 

for the described classification experiment. They are 

listed in Table 1 and include as agricultural crops: 

barley, permanent grass and wood. Also, the ground 

truth map was defined according to the general sched-

ule described by the farmers; but real activities 

(shown in the image) can be slightly misaligned, 

therefore the map was tuned by observing the selected 

Sentinel-2 image; the adopted map is shown in Fig. 3. 

3 METHODS 

Different processes were applied to the collected data, 

by using the ESRI ArcGIS Pro software program, in 

order to create the land cover map. The workflow is 

summarized below (Figure 4): 

 

Figure 4: Workflow of our study. 

 

Figure 3: Ground Truth corresponding to 17 May 2017. The background image is the S-2 scene (TCI) of the study area.
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3.1 Pre-processing 

Firstly, it should be noted that each S-2 tile covers an 

area of 100 km x 100 km. With the aim to alleviate 

the load of data during the processing stages of clas-

sification, the tile was clipped in order to circum-

scribe only the area of interest for our study. Atmos-

pheric correction was not necessary because the im-

age was clear within the study site: cloud-free Level 

1 image (ToA reflectance) was used. Thanks to the 

flat terrain and the good geolocation accuracy, geo-

metric pre-processing was not needed either. 

For this study, it was decided to exclude the three 

atmospheric bands at 60 m, i.e. B1 Coastal Aerosol, 

B9 Water Vapor and B10 SWIR Cirrus. The four 

spectral bands B2 Blue, B3 Green, B4 Red and B8 

NIR have a resolution of 10 m. The remaining six 

bands acquired at 20 m, i.e. the three of Red Edge 

such as B5, B6 and B7 and B8A Narrow NIR, and the 

two of SWIR such as B11 and B12, have been 

resampled. This was done in order to obtain a layer 

stack of 10 spectral bands at 10 m. After being 

resampled, each band layer has been equalized. In-

deed, pixel values in each band layer were linearly 

stretched to the [0, 65535] interval, to give each layer 

the same weight, being classification sensitive to the 

range of gray levels. 

The next step in the workflow was to apply the 

Principal Component Analysis (PCA). This is a math-

ematical method used in multivariate statistics to con-

vert a set of variables that are probably correlated to 

a set of independent variables, called principal com-

ponents, by using a linear transformation (Abdi and 

Williams, 2010). All the principal components are 

linear combinations of the original variables and are 

orthogonal to each other and therefore independent. 

The newly-generated components are sorted so that 

most of the information is mainly concentrated in the 

first few bands. In our case, the first three compo-

nents, containing more than 99% of the original infor-

mation, were only kept. It should also be noted that 

the first component itself contains 95% (Table 2). 

Table 2: Results of the PCA step. 

PERCENT AND ACCUMULATIVE EIGENVALUES 

PC 

Layer 

Eigen Value Percent of 

Eigen Values 

Accumulative of 

Eigen Values 

1 15545565733,63619 95,1596 95,1596 

2 431399292,54862 2,6407 97,8003 

3 300945980,90906 1,8422 99,6425 

4 48264348,94573 0,2954 99,9379 

5 4919188,92151 0,0301 99,9680 

6 2071351,24574 0,0127 99,9807 

7 1343666,65108 0,0082 99,9889 

8 1082935,84931 0,0066 99,9956 

9 425339,96901 0,0026 99,9982 

10 297827,18188 0,0018 100,0000 

In the present work, pixel-based classification is 

tackled, as well as object-based. The latter implies 

that image is segmented: adjacent pixels with similar 

spectral bands are grouped. Then segments are treated 

as a whole and classified. 

ArcGIS adopts the mean shift algorithm that is a 

non-parametric, feature-space analysis technique for 

locating the maxima of a density function (Fukunaga 

and Hostetler, 1975), (Comaniciu and Meer, 2002). 

The software requires three parameters: spectral de-

tail, spatial detail and minimum segment size. The 

first one sets the level of importance given to spectral 

differences between pixels. The second parameter 

controls the level of relevance given to the proximity 

between pixels. The last one represents a merging cri-

terion. It is good practice to test different combina-

tions of the parameters until the desired result is 

found. 

Based on our experience and after visually evalu-

ating the result of segmentation, the final parameters 

chosen are shown in Table 3.  

Table 3: Parameters sets for the segmentation. 

Spectral  

detail 

Spatial  

detail 

Minimum segment 

size in pixels 

19 2 20 

3.2 Classification 

In general, the main objective of supervised tech-

niques (adopted in the present work) is to learn from 

a training data set and to be able to make predictions, 

i.e. give unclassified pixels or segment a label. 

Ground Truth datasets are typically split into two dis-

tinct group and intended for two different functions: 

-Training samples: once selected and labeled, 

they are used to train the algorithm and to generate 

a classification scheme, based on spectral signa-

tures to be applied to the rest of the objects/ pixels 

with unknown labels;  

-Test set (or Reference dataset): such samples are 

not used for training and, being labelled, can be 

used to assess the accuracy of classification, in a 

statistically independent and rigorous way.  

Indeed, a supervised classification consists of 

three phases. The first (learning or calibration phase) 

and the second (prediction phase) employ training 

samples, instead the last one (validation phase) uses 

test sets. We used 50% of Ground Truth for training 

and 50% for validation. 

A number of algorithms for supervised classifica-

tion have been developed over time. We selected the 

multiclass Support Vector Machine (SVM) because it 

provides a powerful, robust and modern method. The 
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principal advantage of this machine-learning algo-

rithm is that it can successfully work with a small 

number of training samples (Taskin et al., 2011), as 

in our case. Developed by Vapnik and his collabora-

tors, instead of estimating the probability densities of 

the classes, it directly solves the problem of interest 

by determining the classification boundaries between 

the classes (Vapnik, 1979). Basically, the algorithm 

tries to find optimal hyperplanes to separate training 

samples into a predefined number of classes and by 

maximizing the margin between the classes, looking 

for hyperplanes as distant as possible from the train-

ing samples of classes (Kowalczyk, 2017). It is also 

able to separate non-linear problems through the so-

called SVM trick, based on the kernel method.  

3.3 Accuracy Assessment 

Without a validation phase, the final classified map 

cannot be reliably used and, therefore, its applicabil-

ity is limited. The accuracy of the classified image is 

assessed by comparing the classified map, obtained 

from the classification process, with the reference da-

taset. It should be noted that, usually, validation does 

not occur by verifying all the pixels contained in the 

test set, but only a limited number. We decided to ran-

domly generate 5000 points from the test set of poly-

gons and compare the prediction and ground truth 

with them. The validation phase provides information 

on the product quality and identifies probable sources 

of error by analyzing the confusion matrix, which 

summarizes the correct and incorrect predictions 

made. For pixel- and object-based classifications, the 

information contained in the confusion matrix is used 

to evaluate some common statistical measures, which 

express the quality of the classification. These in-

cluded the overall accuracy (OA), the producer’s ac-

curacy (PA), the user’s accuracy (UA), the omission 

and the commission errors, and the Kappa coefficient. 

4 RESULTS AND DISCUSSION 

In this section, classification results and accuracy as-

sessment are shown. As already introduced, we per-

formed both object- and pixel-based classification us-

ing the SVM algorithm. Three iterations were per-

formed: the first one with the 8 classes listed in Tab.1; 

the second iteration with 7 classes as Asphalt and Ur-

ban were merged; the third one with 6 classes as In-

dustrial was merged too. Tables 4 to 7 show the con-

fusion matrix for object- and pixel-based classifica-

tion, for iteration 1 and 2; the third iteration is not il-

lustrated since it gave limited improvements. 

Table 4: Confusion matrix for the first object-based classi-

fication.  

 

Table 5: Confusion matrix for the first pixel-based classifi-

cation. 

 

Table 6: Confusion matrix for the second object-based clas-

sification. 

 

Table 7: Confusion matrix for the second pixel-based clas-

sification. 

 

Concerning the first iteration, the two methods 

achieved a satisfactory overall accuracy and a very 

good Kappa coefficient, presenting minimal differ-

ences. However, by analyzing the confusion matrix in 

detail, we observed errors. 

In relation to the object-based classification (Ta-

ble 4), the lower PA is that of Asphalt with a value of 

26%. The Asphalt class was often confused with that 

of the Urban. We did not observe the opposite error, 

Bare soil Urban Industrial Asphalt Water Grassland Wood Barley

Bare soil 2552 33 10 13 16 34 2 8 2668 0.957

Urban 250 366 13 20 0 2 0 0 651 0.562

Industrial 1 0 46 0 0 0 0 0 47 0.979

Asphalt 0 0 0 12 0 0 1 0 13 0.923

Water 0 0 0 0 68 0 0 0 68 1.000

Grassland 2 0 0 0 0 430 16 21 469 0.917

Wood 73 0 1 1 0 25 633 36 769 0.823

Barley 21 0 0 0 5 57 64 170 317 0.536

2899 399 70 46 89 548 716 235 5002

0.880 0.917 0.657 0.261 0.764 0.785 0.884 0.723 OA 0.855

Kappa 0.775

UA

PA

Classified 
Totals

Reference Totals

C
la

ss
if

ie
d

 D
a

ta

Reference DatasetObject-based

Bare soil Urban Industrial Asphalt Water Grassland Wood Barley

Bare soil 2514 72 26 13 4 29 23 30 2711 0.927

Urban 276 312 6 14 0 4 0 0 612 0.510

Industrial 2 9 38 3 0 0 0 0 52 0.731

Asphalt 4 4 0 15 0 0 1 1 25 0.600

Water 0 0 0 0 85 0 0 0 85 1.000

Grassland 40 1 0 0 0 452 7 38 538 0.840

Wood 25 1 0 0 0 22 640 19 707 0.905

Barley 38 0 0 1 0 41 45 147 272 0.540

2899 399 70 46 89 548 716 235 5002

0.867 0.782 0.543 0.326 0.955 0.825 0.894 0.626 OA 0.840

Kappa 0.751

Classified 
Totals

UA

Reference Totals

PA

Reference Dataset

C
la

ss
if

ie
d

 D
a

ta

Pixel-based

Bare soil Industrial Water Grassland Wood Barley
Asphalt+   

Urban

Bare soil 2538 24 7 27 20 36 97 2749 0.923

Industrial 9 39 0 0 0 0 19 67 0.582

Water 2 0 82 0 0 1 0 85 0.965

Grassland 51 0 0 453 2 28 0 534 0.848

Wood 23 0 0 15 648 22 2 710 0.913

Barley 19 0 0 50 45 148 0 262 0.565

Asphalt+Urban 257 7 0 3 1 0 326 594 0.549

2899 70 89 548 716 235 444 5001

0.875 0.557 0.921 0.827 0.905 0.630 0.734 OA 0.847

Kappa 0.759

Reference Totals

PA

Classified 
Totals

UA

C
la

ss
if

ie
d

 D
a

ta

Reference DatasetPixel-based

Bare soil Industrial Water Grassland Wood Barley
Asphalt+   

Urban

Bare soil 2380 2 39 42 21 3 151 2638 0.902

Industrial 8 117 0 0 0 0 19 144 0.813

Water 0 0 70 0 0 0 0 70 1.000

Grassland 5 0 0 462 9 3 0 479 0.965

Wood 43 0 16 35 620 10 3 727 0.853

Barley 40 0 0 16 36 255 1 348 0.733

Asphalt+Urban 151 17 0 1 42 0 383 594 0.645

2627 136 125 556 728 271 557 5000

0.906 0.860 0.560 0.831 0.852 0.941 0.688 OA 0.857

Kappa 0.788

UA

Reference Totals

PA

C
la

ss
if

ie
d

 D
a

ta

Reference Dataset
Classified 

Totals

Object-based
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i.e. Urban was never classified as Asphalt. In addi-

tion, the Industrial class was classified as Urban in 13 

cases out of 70, resulting in a PA of 66%. Also, in this 

case, the opposite error was never observed, i.e. Ur-

ban was never classified as Industrial. As concerning 

the UA, we have low values for the Urban, which was 

classified as Bare Soil (250 out of 651), as we can see 

in Table 4. Similarly, in the pixel-based confusion 

matrix (Table 5), it was possible to observe confusion 

between Urban and Asphalt categories (although 

slightly less frequent) and classification errors be-

tween Bare soil and Urban classes (a little more fre-

quent). The distinction between Urban, Industrial and 

Asphalt classes is not a major requirement in view of 

our future project of crop detection. As already men-

tioned, given the described classification errors, it 

was decided to perform a second iteration after merg-

ing the Urban and Asphalt classes and a third one by 

aggregating Industrial too. Such strategy aimed at im-

proving accuracy without losing discrimination 

power between agricultural crops. 

A third iteration did not achieve a substantial im-

provement, and therefore results from the second one 

(characterized by the merge of Asphalt and Urban 

into a unique category) are briefly discussed. 

By observing the confusion matrix derived from the 

second iteration of the object-based classification 

(Table 6), and comparing it with that corresponding 

to the first iteration, it was immediately observed that 

all the PA values were greater than 0.5 and those of 

the UA were greater than 0.6. In particular, for the 

 Asphalt class the low PA of 0.26 did not appear. The 

same observation can be applied to the second itera-

tion of pixel-based classification matrix (Table 7), 

compared with the corresponding matrix of the first 

iteration. The PA values were always higher than 

0.55, whereas the UA was always higher than 0.54. In 

particular, for the Asphalt class the low PA of 0.33 

did not appear. On the other hand, a reduction of the 

PA and UA accuracy of some classes, for example the 

PA of Water in the object-based matrix, was found. 

Essentially, there were fewer accuracy problems with 

the pixel-based classification. 

 

Figure 5: Land cover maps resulting from the first iteration. On the left: Object-based classification. On the right: Pixel-based 

classification. 

 

Figure 6: Land cover maps resulting from the second iteration, after merging Asphalt and Urban (seven land cover types). On 

the left: Object-based classification. On the right. Pixel-based classification. 
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The direct comparison between the two matrices 

of the second iteration shows that the object-based 

classification is more suitable for the Industrial class 

and for the Barley class, while the pixel-based classi-

fication better predicts Water. Naturally, the improve-

ment of both compared to the first level is due pre-

cisely to the incorporation of classes Asphalt and Ur-

ban. It can be said that, in general, the pixel-based 

method offers a higher average performance than the 

object-based, unless a specific class is only focused. 

Table 8: Overall Accuracy Summary of the first and second 

iteration. 

 I object-

based 

I pixel-

based 

II object-

based 

II pixel-

based 

OA 0.855 0.840 0.857 0.846 

Land cover maps for both methodologies and iter-

ations 1 and 2 are shown in Figures 5, 6. 

A final remark concerns processing time. Object-

based classification takes a few minutes for segmen-

tation on a quad-code personal computer and another 

few minutes for training and classification. Pixel-

based needs several hours. 

5 CONCLUSIONS 

The workflow presented in this study was developed 

with the aim of evaluating the potentials obtainable 

from the classification of remote sensing images pro-

vided by the Sentinel-2 satellites, in particular that of 

creating land covers and use maps. The study area 

concerned a neighboring area to the town of Pavia, 

Italy. Data for training and accuracy assessment was 

personally collected by interviewing farm owners, 

observing a very high-resolution satellite image and 

with inspection of the areas pertained to as well. The 

date May 17th 2017 was chosen for the study.  

As inputs, 10 spectral bands resampled to 10 m 

were used. Through ArcGIS Pro (Esri), the pixel-

based and object-based supervised classifications 

were applied, using the multiclass SVM algorithm. 

The procedures were iterative, to best satisfy the lev-

els of accuracy desired. Thanks to the different bands 

available that allow recognizing specific spectral sig-

natures for the objects observed, the multispectral im-

age used has been well suited to the identification of 

the different types of coverage present in the area of 

interest. It can be said that in general the pixel-based 

method offers a better average performance than the 

object-based one, unless interested in specific classes. 

However, the two methods offer a comparable overall 

accuracy. On the other hand, it is also necessary to 

take into account the processing time: a few minutes 

in the case of object-based classification, several 

hours for the pixel-based method. Considering the 

overall accuracy results obtained in this study (Table 

8), we can conclude that the supervised method is 

quite effective for land cover detection. 
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