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Abstract: The field of computational models of argument aims to provide support for automated reasoning through algo-
rithms that operate on arguments and attack relations between them. In this paper we present a new labelling
algorithm that lists all preferred extensions of an abstract argumentation framework. The new algorithm is
enhanced by a new pruning strategy. We verified our new labelling algorithm and showed that it enumerates
preferred extensions faster than the old labelling algorithm.

1 INTRODUCTION

The study of computational argumentation is a major
field of artificial intelligence, see for example (Atkin-
son et al., 2017; Modgil et al., 2013). Abstract ar-
gumentation frameworks of (Dung, 1995) (AFs for
short) are directed graphs with nodes representing ab-
stract arguments while directed edges denote attacks
between arguments. In spite of their simplicity, AFs
are an effective mechanism for decision making in
different domains, see for example (Longo and Don-
dio, 2014; Bench-Capon et al., 2015; Tamani et al.,
2015).

A fundamental issue arises in the context of AFs
concerning identifying which arguments are collec-
tively accepted in a given AF. To this end, an argu-
mentation semantics defines rules under which one
can compute sets of accepted arguments, what are so-
called extensions. In the literature we find several pro-
posals motivating different argumentation semantics.
These varied semantics give a wide range of selection
among which one can choose what best fit the needs
of the target application, see (Baroni et al., 2011) for
a comprehensive review of argumentation semantics.
In this paper we are concerned with the problem of
listing all extensions of a given AF under preferred
argumentation semantics, which is one of the most
studied semantics. We give a precise definition for
preferred semantics in section 2.

A labelling algorithm for listing preferred exten-
sions of a given AF is basically a search algorithm that
expands an abstract binary tree typically in a depth-
first manner. The nodes of the tree represent different

states of the input AF, what are so-called labellings.
Labellings of a given AF are defined by a total func-
tion that maps arguments from the AF to elements
from a predefined set of statuses, what are so-called
argument labels.

The objective of this paper is to present a new,
more efficient labelling algorithm that lists all pre-
ferred extensions of a given AF. The current state-
of-the-art labelling algorithm for preferred extension
enumeration is presented in (Nofal et al., 2016). How-
ever, in this paper we enhance the algorithm of (Nofal
et al., 2016) by a more efficient pruning strategy to
speed up preferred extension generation. We imple-
mented our new algorithm and verified that the new
pruning strategy resulted in a faster preferred exten-
sion enumeration. Although we focus on the prob-
lem of listing preferred extensions, we believe that
the notions of the new pruning strategy are transfer-
able (with appropriate adjustments) to other compu-
tational problems in the context of abstract argumen-
tation frameworks.

In section 2 we give a necessary background ma-
terial. In section 3 we recall the state-of-the-art la-
belling algorithm for generating all preferred exten-
sions. In section 4 we present our new labelling algo-
rithm for listing preferred extensions. We verify the
efficiency of the new algorithm in section 5. We con-
clude the paper in section 6.
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2 PRELIMINARIES

In the following definition we recall the notion of ab-
stract argumentation frameworks as introduced in the
seminal work of (Dung, 1995).

Definition 1 (Abstract Argumentation Frameworks).
An abstract argumentation framework AF is a pair
(A,R) where A is a set of abstract arguments and
R⊆ A×A is called the attack relation.

We refer to (x,y) ∈ R as x attacks y (or y is at-
tacked by x). We denote by {x}− respectively {x}+
the subset of A containing those arguments that attack
(respectively are attacked by) the argument x, and so
we use {x}± to represent the set {x}+ ∪{x}−. For a
set of arguments S⊆ A, we define

S− ≡ { y ∈ A | ∃ x ∈ S s.t. y ∈ {x}−}
S+ ≡ { y ∈ A | ∃ x ∈ S s.t. y ∈ {x}+}

We denote by S± the union S+∪S−. We say S⊆ A
attacks T ⊆ A (or T is attacked by S) if and only if
S+ ∩ T 6= /0. S⊆ A attacks x ∈ A (or x is attacked by
S) if and only if x ∈ S+. Given a subset S⊆ A, then

• x ∈ A is acceptable w.r.t. S if and only if for every
y ∈ {x}−, there is some z ∈ S for which y ∈ {z}+.

• S is conflict free if and only if for each (x,y) ∈
S×S, (x,y) /∈ R.

• S is admissible if and only if it is conflict free and
every x ∈ S is acceptable w.r.t. S.

• S is a preferred extension if and only if it is a max-
imal (w.r.t. set inclusion) admissible set.

In this paper we are concerned with the follow-
ing problem: given an AF H = (A,R), enumerate the
preferred extensions of H.

We give now a general account of a labelling algo-
rithm that generates all preferred extensions. As said
earlier, a labelling algorithm expands a conceptual bi-
nary search tree in a depth-first way. The algorithm
forks to a left node if it decides to include an argu-
ment in a current under-construction extension. On
the other hand the algorithm forks to a right node if
it decides to exclude an argument from the current
under-construction extension. Once no argument is
left un-included or un-excluded, the algorithm back-
tracks if the current under-construction extension is
not admissible. Equally, the algorithm backtracks to
find another extension. Take the AF of figure 1, then
a labelling algorithm would generate the search tree
visualized in figure 2.

In the next section we recall a precise definition
of the state-of-the-art labelling algorithm for listing
preferred extensions.

Figure 1: Argumentation Framework 1 (AF1).

3 THE STATE-OF-THE-ART
LABELLING ALGORITHM
FOR PREFERRED
EXTENSIONS

We recall the state-of-the-art labellling algorithm,
presented in (Nofal et al., 2016), for listing all pre-
ferred extensions of a given AF. In section 2 we pre-
sented an extension-based definition for preferred ar-
gumentation semantics. Alternatively, preferred se-
mantics can be described in terms of labellings, which
are mappings that relate every argument in a given
AF to a label in {in,out,undec}. For example, let
(A,R) be an AF and S ⊆ A be an admissible set
then the equivalent labelling for S is described by
a total mapping Lab : A → {in,out,undec} where
S = {x | Lab(x) = in}, S± = {x | Lab(x) = out} and
A \ (S ∪ S±) = {x | Lab(x) = undec}. For a thor-
ough presentation on labelling semantics see (Cami-
nada and Gabbay, 2009). Although a 3-label mapping
is probably sufficient for characterizing extensions,
additional labels have been found useful for enhanc-
ing the efficiency of extension enumeration. Thereby
the labelling algorithms of (Nofal et al., 2016; No-
fal et al., 2014b; Nofal et al., 2014a) use instead a
5-label total function that maps arguments to labels
from {in,out,undec,blank,must out}.

As noted earlier, a labelling algorithm for pre-
ferred extension enumeration is basically a depth-first
search that explores a conceptual binary tree. At the
root node of the search tree, all arguments of the given
AF are initially labelled according to the following
specification.

Definition 2 (Initial Labelling). Let H = (A,R) be an
AF and S ⊆ A be the set of self-attacking arguments.
Then the initial labelling of H is defined by the union:
{(x,blank) | x ∈ A\S}∪{(y,undec) | y ∈ S}.

At any node of the search tree the algorithm tran-
sitions to a left node by selecting an argument x with
Lab(x) = blank and subsequently modify argument
labels as specified in the following definition.

Definition 3 (in transitions). Let H = (A,R) be an AF,
Lab : A→{in,out, undec,blank,must out} be a total
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Figure 2: A search tree that would be expanded by a basic labelling algorithm for listing the preferred extensions of AF1,
which is depicted in figure 1.

mapping, and x be an argument with Lab(x) = blank
then in trans(x,H,Lab) is defined by the following ac-
tions:

1. Lab′← Lab.
2. Lab′(x)← in.
3. for each y ∈ {x}+, Lab′(y)← out.
4. for each y ∈ {x}− with Lab′(y) 6= out, Lab′(y)←

must out.
5. return Lab′.

After the algorithm finished exploring the left sub-
tree, that is induced by an in transition, it expands a
right node by an undec transition as described in the
following definition.

Definition 4 (undec Transitions). Let H = (A,R) be
an AF, Lab : A→{in,out,undec,blank,must out} be
a total mapping and x be an argument with Lab(x) =
blank. Then und trans(x,H,Lab) is defined by the fol-
lowing actions:

1. Lab′← Lab.
2. Lab′(x)← undec.
3. return Lab′.

A labelling algorithm would reach a leaf node if
there are no blank arguments, we call such leaf nodes
terminal labellings.

Definition 5 (Terminal Labellings). Let H =(A,R) be
an AF and Lab : A→{in,out,undec,blank,must out}

be a total mapping. Then Lab is a terminal labelling
of H if and only if for each x ∈ A, Lab(x) 6= blank.

We call terminal labellings with {x | Lab(x) = in}
being admissible by admissible labellings. It follows
directly from the definition of admissible sets that if a
terminal labelling, for a given AF, does not map any
argument to must out then the set {x | Lab(x) = in} is
admissible.

Definition 6 (Admissible Labellings). Let
H = (A,R) be an AF and Lab : A →
{in,out,undec,blank,must out} be a total map-
ping. Then Lab is an admissible labelling of H if and
only if Lab is terminal and there is no x ∈ A with
Lab(x) = must out.

Conversely we denote by rejected labellings (or
occasionally dead-end labellings) the terminal la-
bellings with {x | Lab(x) = in} being not admissible.
It follows directly from the definition of admissible
sets that if a terminal labelling, for a given AF, maps
an argument to must out then the set {x | Lab(x) = in}
is not admissible.

Definition 7 (Rejected Labellings). Let H = (A,R) be
an AF and Lab : A→{in,out,undec,blank,must out}
be a total mapping. Then Lab is rejected if and only
if Lab is terminal and there is x ∈ A with Lab(x) =
must out.

We denote by preferred labellings the admissible
labellings with {x|Lab(x) = in} being inclusion-wise
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maximal among all admissible labellings.

Definition 8 (Preferred Labellings). Let
H = (A,R) be an AF and Lab : A →
{in,out,undec,must out,blank} be a total map-
ping. Then Lab is a preferred labelling of H if and
only if Lab is admissible and {x | Lab(x) = in} is
maximal (w.r.t. ⊆) among all admissible labellings.

Now we recall the pruning strategy used in the la-
belling algorithm of (Nofal et al., 2016). Note that
the pruning strategy of (Nofal et al., 2016) is centered
around two notions: labelling propagation and hope-
less labellings, which both improved preferred exten-
sion enumeration. Labelling propagation is about in-
ferring argument labels by analyzing the current la-
belling while hopeless labelling are those labellings
that never grow to a preferred labelling.

Definition 9 (Labelling Propagation). Let
H = (A,R) be an AF and Lab : A →
{in,out,undec,must out,blank} be a total map-
ping. Then propagate(H,Lab) is defined by the
following actions:

1. while ∃x Lab(x) = blank s.t. ∀y ∈ {x}− Lab(y) ∈
{out,must out} do

1.1. Lab(x)← in

1.2. for each y ∈ {x}+ do Lab(y)← out

Definition 10 (Hopeless Labellings). Let
H = (A,R) be an AF and Lab : A →
{in,out,undec,must out,blank} be a total map-
ping. Then Lab is a hopeless labelling of H if and
only if there is x ∈ A with Lab(x) = must out such
that for all y ∈ {x}− Lab(y) ∈ {out, must out,
undec}.

Now we give algorithm 1 that lists all preferred
extensions. If algorithm 1 is invoked on a given AF
H, the initial labelling of H and an empty set E, then
it will return E containing all preferred extensions.
Throughout the paper we assume that a call by ref-
erence has to be made to invoke an algorithm or a
procedure. Referring to line 4 one can check the max-
imality of a given labelling Lab by ensuring that for
each preferred extension S ∈ E generated so far it is
the case that {x|Lab(x)= in} 6⊆ S. This is true because
algorithm 1 builds admissible sets in a descending or-
der with respect to set inclusion, which means maxi-
mal sets are visited first.

In the following section we develop an improved
algorithm for listing preferred extensions.

Algorithm 1: Old list-preferred-extensions.
input : H = (A,R), E ⊆ 2A,

Lab : A→{in,out,undec,blank,must out}.
output: E ⊆ 2A.

1 propagate(H,Lab);
2 if Lab is hopeless then return;
3 if Lab is terminal then
4 if Lab is admissible and maximal then

E← E ∪{{x | Lab(x) = in}};
5 return;
6 select an argument x with Lab(x) = blank;
7 Lab′← in trans(x,H,Lab);
8 list-preferred-extensions(H, Lab′, E);
9 Lab′← und trans(x,H,Lab);

10 list-preferred-extensions(H, Lab′, E);

4 A NEW LABELLING
ALGORITHM FOR
PREFERRED EXTENSION
ENUMERATION

Our new labelling algorithm is enhanced by a new
pruning strategy that we present in section 4.2. In
section 4.3 we give a new strategy for selecting ar-
guments that induce in and undec transitions. We in-
troduce a new labelling scheme in section 4.1.

4.1 A New Labelling Scheme

In section 3 we employed a 5-label total function
that maps arguments from a given AF to labels from
{in,out,must out,undec,blank}. We add to this
scheme two more labels: must in and must undec.
Hence we use a 7-label total function that maps ar-
guments from a given AF to labels from {in, out,
must out, undec, blank, must in, must undec}. From
now on we refer to this 7-label set as L.

Before we give a precise description for those ar-
guments that are eligible to be labelled with must in
or must undec, we define first two helpful total map-
pings that both will streamline the computations
around deciding such eligibility. Our total functions
are called BLANK and UNDEC. BLANK maps an ar-
gument to the number of the attackers that are labeled
with either blank, must in, or must undec. UNDEC
maps an argument to the number of undec attack-
ers. A similar idea to the essence of BLANK and UN-
DEC has been used in (Modgil and Caminada, 2009)
for computing the grounded extension. We specify
BLANK and UNDEC precisely shortly. Observe that
we denote the set of nonnegative integers by N0.
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Definition 11 (BLANK and UNDEC). Let H = (A,R)
be an AF and Lab : A→ L be a total mapping, then
BLANK: A→ N0 and UNDEC: A→ N0 are total map-
pings such that for every x ∈ A

BLANK(x) = |{ y ∈ {x}− : Lab(y) ∈
{blank,must in,must undec}}|, and
UNDEC(x) = |{ y ∈ {x}− : Lab(y) = undec}|.

Now we are ready to define the conditions under
which an argument becomes eligible to be labelled
with must undec or must in.

A blank argument, say x, can be labelled with
must undec if x has to join (but not yet) the current
set of undec arguments because otherwise the under-
construction set of in arguments, say S, together with
x (i.e. {x}∪ S) will never grow to a preferred exten-
sion for one of two reasons as specified in the follow-
ing definition.

Definition 12 (must undec Arguments). Let H =
(A,R) be an AF and Lab : A→ L be a total mapping,
and x be an argument with Lab(x) = blank then x is
eligible to be labelled with must undec if it holds that

∃y∈ {x}− with Lab(y)∈ {blank,undec,must undec}
s.t. BLANK(y)=0,

or it holds that

∃y ∈ {x}+ with Lab(y) = undec s.t.
∃z ∈ {y}+ with Lab(z) ∈ {undec,must undec} and

BLANK(z)=0 and UNDEC(z)=1.

A blank argument, say x, can be labelled with
must in only if x must join (but not yet) the current
set of in arguments, say S, because otherwise S will
never grow to a preferred extension.

Definition 13 (must in Arguments). Let H = (A,R)
be an AF and Lab : A→ L be a total mapping, and x
be an argument with Lab(x) = blank then x is eligible
to be labelled with must in if it holds that

BLANK(x)=0 and UNDEC(x)
∈ {0, |{y : Lab(y) = undec and y ∈ {x}±}|},

or it holds that

∃y ∈ {x}+ with Lab(y) = must out such that
BLANK(y)=1.

By using the new labels (i.e. must in and
must undec) we identify four cases by which an ar-
gument’s label can be deduced from the current la-
belling: in two cases an argument must be eventually
labelled with undec while in the other two cases an
argument must end with the in label. The essence of
these four cases are similar to the ones introduced in
(Doutre and Mengin, 2001), but the implementation
is totally new as we show throughout the paper.

The question now is why we do not label an ar-
gument with in and undec immediately instead of

must in and must undec. Note that labelling an ar-
gument with in or undec may trigger new changes in
the current labelling (e.g. labelling propagation) and
in turn these changes may produce further ones and so
on. Thus, to process these cascading changes more ef-
ficiently we use must in and must undec. We explain
more precisely the computational benefit of must in
and must undec next.

4.2 A New Pruning Strategy

We develop a precise description for our new prun-
ing strategy by defining a number of constructs in this
section. We start with two important sets MUST IN
and MUST UNDEC that respectively hold must in
and must undec arguments temporarily until they are
eventually labeled with in and undec. The advantage
of using these sets is that we confine computations
to those arguments that truly need further processing,
and in consequence we avoid scanning all arguments
unnecessarily. One might wonder why we utilize two
related notions for apparently the same purpose, for
example the set MUST IN and the label must in seem
to denote the same arguments. We note that although
the two notions refer to the same set of arguments
but they allow for different levels of access: by using
must in it is computationally easy to check the status
of a specific argument at any point of the extension
enumeration while the set of MUST IN enables an ef-
ficient access to the collection of those arguments that
need to be finalized with in. Throughout this section
we show exactly the usage of MUST IN and must in as
well as the two related structures MUST UNDEC nad
must undec. We refine now the initial labelling and
hopeless labellings, taking into account the new la-
bels must in and must undec.

Definition 14 (New Initial Labelling). Let H = (A,R)
be an AF, S be the set of self attacking arguments and
T be the set of {x : |{x}−| = 0}. Then the initial la-
belling of H is defined by the union of the following
sets:

{(x,blank) | x ∈ A\ (S∪T )} ∪
{(x,must undec) | x ∈ S} ∪
{(x,must in) | x ∈ T}.

Definition 15 (New Hopeless Labellings). Let H =
(A,R) be an AF and Lab : A → L be a total map-
ping. Then Lab is a hopeless labelling of H if and
only if there is x with Lab(x) = must out such that
BLANK(x)=0.

We introduce the notion of non-maximal la-
bellings to describe those labellings with an undec (or
must undec) argument being attacked by only out (or
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must out) arguments. This is because by labelling an
argument, say x, with undec we mean to find a pre-
ferred extension excluding x. But if at some point x
becomes acceptable to the current set of in arguments,
then we better backtrack because the current labelling
will never be maximal. Such labellings are hope-
less in the sense that they will never grow to a pre-
ferred extension although they might be admissible.
Nonetheless, we call such labellings non-maximal to
distinguish them from the hopeless labellings that are
inevitably not admissible.

Definition 16 (Non-maximal Labellings). Let H =
(A,R) be an AF and Lab : A→ L be a total mapping.
Then Lab is a non-maximal labelling of H if and only
if there exists x with Lab(x) ∈ {undec,must undec}
such that BLANK(x)=0 and UNDEC(x)=0.

Now we describe our new labelling propagation.
Basically, labelling propagation might be invoked at
any point of the search to identify those arguments
that are eligible for must in and must undec labels.

Definition 17 (New Labelling Propagation). Let H =
(A,R) be an AF, Lab : A → L be a total map-
ping, x ∈ A be an argument, BLANK: A → N0 and
UNDEC: A → N0 be total mappings, MUST IN ⊆ A
and MUST UNDEC ⊆ A be sets of arguments then
propagate(x, H, Lab, BLANK, UNDEC, MUST IN,
MUST UNDEC) is defined by:

1. for each y ∈ {x}± do
1.1. if y is eligible for must undec then

1.1.1. Lab(y)← must undec.
1.1.2. MUST UNDEC← MUST UNDEC ∪ {y}.
1.2. if y is eligible for must in then

1.2.1. Lab(y)← must in.
1.2.2. MUST IN← MUST IN ∪ {y}.
1.3. for each z ∈ {y}± do

1.3.1. if z is eligible for must undec then
1.3.1.1. Lab(z)← must undec.
1.3.1.2. MUST UNDEC← MUST UNDEC ∪ {z}.
1.3.2. if z is eligible for must in then
1.3.2.1. Lab(z)← must in.
1.3.2.2. MUST IN← MUST IN ∪ {z}.
1.4. if Lab is hopeless or non-maximal then return

false.
2. return true.

Now we expand in transitions to include labelling
propagation.

Definition 18 (new in Transitions). Let H = (A,R)
be an AF and Lab : A → L be a total mapping, s
be an argument with Lab(s) ∈ {blank,must in},
BLANK: A → N0 and UNDEC: A → N0 be to-
tal mappings, MUST IN ⊆ A and MUST UNDEC

⊆ A be sets of arguments then in-trans
(s,H,Lab,BLANK,UNDEC,MUST UNDEC,MUST IN)
is defined by:

1. Lab(s)← in.
2. for each x ∈ {s}+ with Lab(x) 6= out do
2.1. for each y ∈ {x}+ do
2.1.1. if Lab(x) = undec then UNDEC(y) ←

UNDEC(y)-1.
2.1.2. if Lab(x) ∈ {blank,must undec} then

BLANK(y)← BLANK(y)-1.
2.2. BLANK(x)← BLANK(x) - 1.
2.3. Lab(x)← out.
2.4. if propagate(x,H,Lab, BLANK, UNDEC,

MUST IN, MUST UNDEC)=false then return
false.

3. for each x ∈ {s}− with Lab(x) 6∈ {out,must out}
do

3.1. Lab(x)← must out.
3.2. if propagate(x, H, Lab, BLANK, UNDEC,

MUST IN, MUST UNDEC) = false then return
false.

4. return true.

Similarly, we expand undec transitions to include
labelling propagation.

Definition 19 (New undec Transitions). Let
H = (A,R) be an AF and Lab : A → L be
a total mapping, x be an argument with
Lab(x) ∈ {blank,must undec}, BLANK: A → N0
and UNDEC: A → N0 be total mappings, MUST IN
⊆ A and MUST UNDEC ⊆ A be sets of arguments then
und-trans(x,H,Lab,BLANK,UNDEC,MUST UNDEC,
MUST IN) is defined by:

1. Lab(x)← undec.
2. for each y ∈ {x}+ do
2.1. UNDEC(y)← UNDEC(y)+1.
2.2. BLANK(y)← BLANK(y)-1.
3. return propagate(x, H, Lab, BLANK, UNDEC,

MUST IN, MUST UNDEC).

Before we make a new branch (by in and un-
dec transitions) we finalize the label of must in and
must undec arguments with in and undec respec-
tively. Every time we relabel a must in (respectively
must undec) argument with in (respectively undec)
we may find that some blank arguments have be-
come eligible for either must in or must undec. Thus,
a change in some argument’s label may cause other
changes in the current labeling and so forth. We de-
fine this recurrent process by labelling broadcasting.

Definition 20 (Labelling Broadcasting). Let H =
(A,R) be an AF and Lab : A→ L be a total mapping,
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BLANK: A→ N0 and UNDEC: A→ N0 be total map-
pings, MUST IN ⊆ A and MUST UNDEC ⊆ A be sets
of arguments then broadcast(Lab,H, BLANK, UNDEC,
MUST IN, MUST UNDEC) is defined by:

1. while MUST IN 6= /0 or MUST UNDEC 6= /0 do
1.1. while MUST IN 6= /0 do

1.1.1. remove an argument x from MUST IN.
1.1.2. if in-trans(x, H, Lab, BLANK, UNDEC,

MUST IN, MUST UNDEC)=false then return
false.

1.2. while MUST UNDEC 6= /0 do
1.2.1. remove an argument x from MUST UNDEC.
1.2.2. if und-trans(x, H, Lab, BLANK, UNDEC,

MUST IN, MUST UNDEC)=false then return
false.

2. return true.

Using the new in transition, undec transition, and
labelling broadcasting, we present algorithm 2. Let
H = (A,R) be an AF, Lab be the initial labelling of H,
and for each x ∈ A let BLANK(x) be equal to |{x}−|
while UNDEC(x) be equal to 0, and let MUST IN be
the set {x : |{x}−| = 0}, MUST UNDEC be the set
{x | (x,x) ∈ R}, and E be an empty set then if we call
algorithm 2 on H, Lab, BLANK, UNDEC, MUST IN,
MUST UNDEC, and E, then the algorithm returns E
containing all preferred extensions of H. Figure 3
shows a running of algorithm 2. In the next section
we add a further enhancement, which is a new argu-
ment selection strategy.

4.3 A New Argument Selection Strategy

Referring to line 6 of algorithm 2, there are many pos-
sible selection strategies. One possibility is to pick ar-
guments randomly. Another strategy may depend on
some heuristic measures, such as the number of ad-
jacent arguments, which is the strategy used in (No-
fal et al., 2016). See (Geilen and Thimm, 2017) for
more discussions on heuristic-based selection strate-
gies that depend on the current AF labelling and/or its
underlying graph structure properties. Here we intro-
duce a different selection strategy that relies on argu-
ment history profile as we explain next.

Our selection strategy is simple. Every time we
reach a hopeless labelling because of a must out ar-
gument, say x, we mark such x as a failure point and
later we give priority to the blank attackers of x to
be selected for inducing a transition. In other words,
our selection strategy prioritizes those arguments that
might soon produce a hopeless labelling, instead of
delaying the awareness of hopeless labelling possibly
until a very late point of the search.

Now we come to the specifications of our selec-
tion strategy. We note that a minor modification has
to be introduced to algorithm 2 such that every time
we detect a hopeless labelling because of a must out
argument, say x, the algorithm has to push x on top
of a stack structure denoted by S. Algorithm 3 imple-
ments our selection strategy. Note that the algorithm
either returns a selected argument or it returns -1 to
indicate that the current labelling is either hopeless or
terminal.

5 VERIFYING THE EFFICIENCY
OF THE NEW ALGORITHM

We implemented our new algorithm using
the C++ programming language. The source
code of the implementation can be found at
https://sourceforge.net/projects/argtools. We evalu-
ated the new algorithm using benchmark A of the
second international competition of computational
models of argumentation 2017 (ICCMA17) (ICC,
). Benchmark A includes 350 AFs, for more details
see (ICC, ). We carried out the evaluation on a system
with an intel-core-i7 processor and four gigabytes
of system memory. For each problem instance we
limit the memory space to one gigabyte. In contrast,
ICCMA17 uses a more powerful environment with
an intel-xeon processor and with four gigabytes of
memory being allocated for each problem instance.
However, with respect to the running time we follow
ICCMA17, and hence, set a timeout of 10 minutes
for each problem instance.

The objective of this evaluation is
to verify that the new algorithm enu-
merates preferred extensions faster than the old
algorithm. We found that the new algorithm is able
to solve successfully 233 AFs out of benchmark A.
Note that the implementation of the old algorithm
is included in ArgTools (first version), which is a
labelling-based solver that was submitted to the first
version of the competition ICCMA15 (Thimm and
Villata, 2017). In fact, the old algorithm did not
solve any AF of benchmark A. In its second version,
submitted to ICCMA17, ArgTools includes some (not
all) aspects of the new algorithm. ArgTools (version
2) enumerated all preferred extensions successfully
for 157 AFs (ICC, ). Another labelling-based solver
is Heureka (Geilen and Thimm, 2017), which also
participated in ICCMA17. Heureka implements the
old algorithm but with a profound heuristic-based
argument selection strategy. Heureka enumerated all
preferred extensions for 178 AFs of benchmark A.
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Algorithm 2: New list-preferred-extensions.
input : H = (A,R), Lab : A→ L, BLANK : A→ N0, UNDEC : A→ N0, MUST IN ⊆ A, MUST UNDEC ⊆ A, E ⊆ 2A.
output : E ⊆ 2A.

1 if broadcast(Lab,H,BLANK,UNDEC,MUST IN,MUST UNDEC)=false then return;
2 if Lab is terminal then
3 if Lab is admissible and maximal then
4 E← E ∪{{x | Lab(x) = in}} ;
5 return;
6 select an argument x with Lab(x) = blank;
7 Lab′← Lab, BLANK′← BLANK, UNDEC′←UNDEC;
8 MUST IN′← MUST IN, MUST UNDEC′← MUST UNDEC;
9 if in trans(x,H,Lab′,BLANK′,UNDEC′,MUST IN′,MUST UNDEC′) = true then

10 list-preferred-extensions(H, Lab′,BLANK′,UNDEC′,MUST IN′,MUST UNDEC′, E);
11 if und trans(x,H,Lab,BLANK,UNDEC,MUST IN,MUST UNDEC) = true then
12 list-preferred-extensions(H,Lab,BLANK,UNDEC,MUST IN,MUST UNDEC, E);

Figure 3: The search tree that is expanded by algorithm 2 in listing the preferred extensions of AF1 depicted in figure 1.

6 CONCLUSION

We presented a new labelling algorithm that lists all
preferred extensions of a given AF. We evaluated
the new algorithm and our findings verified that the
new algorithm enumerates preferred extensions sig-
nificantly faster than the old algorithm. The obtained
speedup is due to the new pruning strategy of the new
algorithm. We plan to study the impact of our new
pruning strategy in the context of other computational
problems in the field of abstract argumentation.

Lastly we note that the labelling algorithm of
(Nofal et al., 2014b) for preferred extension enu-

meration enhanced the previous algorithm of (Doutre
and Mengin, 2001; Caminada, 2007). Nevertheless,
the algorithm of (Nofal et al., 2014b) has been im-
proved further in (Nofal et al., 2016) by a look-ahead
strategy. In this work we build on the algorithm
of (Nofal et al., 2016) as we explained throughout
the paper. Another mainstream research concerns
building reduction-based solvers, see some examples
in (Thimm and Villata, 2017). For computational
complexity of abstract argumentation see for exam-
ple (Dunne and Wooldridge, 2009). For a survey on
methods for solving different computational problems
of AFs see the article of (Charwat et al., 2015).
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Algorithm 3: New selecting an argument for tran-
sitions.

input : H = (A,R), Lab : A→ L, S is a stack of
arguments.

output: x ∈ A, S.
1 while S 6= /0 do
2 y← pop an argument from top of S;
3 if Lab(y) = must out then
4 if BLANK(y)> 0 then return x ∈ {y}− with

Lab(x) = blank else return -1;
5 foreach y ∈ A with Lab(y) = must out do
6 if BLANK(y)> 0 then return some x ∈ {y}−

with Lab(x) = blank else return -1;
7 if ∃x with Lab(x) = blank such that UNDEC(x)> 0

then return x;
8 if ∃x with Lab(x) = blank then return x else return

-1;
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Dvořák, W., Falappa, M., Fan, X., Gaggl, S., Garcı́a,
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