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The goal of our research presented in this paper is to relate emotions to sensor data (heart rate and skin conduc-
tivity), to interpret them in a learning context (academic emotions) and finally derive learning indicators. For
this purpose, we collected sensor data from 27 participants during an emotional picture experiment provided
by IAPS (International Affective Picture System). The collected data included EDA signals (electrodermal
activity), heart rate and derived data such as skin conductance response, skin conductance level, heart rate
variability and instantaneous heart rate labeled by IAPS reference rating and participants’ self ratings. The
processed data were analyzed using qualitative and quantitative methods as well as machine learning. Further-
more, we applied a human-machine combined approach, namely fuzzy logic reasoning. Our results show that
the change of EDA when emotion is induced may serve as a feature to distinguish the intensity of emotion
(arousal). Also, classifying EDA signals using a random forest approach shows the best accuracy. In search of
learning indicators, we have attempted various tracks of analysis in this study which revealed novel findings,

limitations and future steps to consider.

1 INTRODUCTION

Learning involves (among others) mental and emo-
tional cycles. Learners need to memorize, understand,
evaluate and even create as part of their learning ac-
tivities, which involves mental planning, controlling
and reflection. In addition to mental work, learners
face emotional changes constantly, while facing vari-
ous situations in learning. Students may feel excited
at the beginning of the semester and they can also get
frustrated when being involved in some learning tasks
that they have trouble with. Learners with a good
emotional regulation can drive themselves back from
states of frustration to a more positive affective state
to overcome challenges. As such, effective learn-
ing involves not only domain specific knowledge and
strategies, but it also involves regulation of emotion.
In a traditional classroom face-to-face learning en-
vironment, the emotional state of a learner can be de-
tected by teachers, instructors and peers, and once it
is detected, appropriate feedback can be provided to
them (e.g., teachers change their instructional strat-
egy if they detect that most of the class is currently

is more difficult. Using modern educational technol-
ogy, learning can happen anywhere and anytime and
learners are more than ever free to roam around in
different knowledge domains. While most technol-
ogy enhanced learning environments are not deeply
involved in emotional support of learners, wearable
technology capable of collecting physiological data
of users gain in importance. With wearable sensors,
learners’ physiological data and surrounding data can
be collected and analyzed to provide learners with
a personalized environment through context aware
feedback and adaptation. As physiological data is re-
lated to emotion, it is plausible that student’s emo-
tional regulation can be supported by technology en-
hanced learning designs that make use of wearable
Sensors.

Motivation for the research presented in this paper
came from our research project LISA! - Learning An-
alytics for Sensor-based Adaptive Learning - funded
by the German government®>. In LISA, we devel-
oped a wearable sensor device (wrist band) which col-
lects physiological data (skin conductance, heart rate,

bored). In technology enhanced learning settings Thttp://tel.f4.htw-berlin.de/lisa
however, such a response to student’s emotional state 216SV7534K
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skin temperature) and environmental data (TVOC,
CO,). A LISA learning companion, implemented as
a tablet app, visualizes and analyzes sensor data re-
ceived from the wristband. Visualization of sensor
data provides awareness about a learner’s physiolog-
ical state and learning environment. Based on goals
set by the learner, and based on learning indicators
derived from sensor data, the learning companion can
give feedback and provide a learning history.

Mirroring back raw physiological signal values
such as skin conductance may not be too helpful. An
aggregation of this data — translating raw data into in-
formation about the learning environment (e.g. a high
CO, level) or to emotional states — is more appropri-
ate. Many studies on emotion recognition have been
conducted (for an overview, see section 2), with dif-
ferent settings, sensors, methodologies, but none of
them provides an easy-to-use “recipe” to recognize
emotions from EDA? and ECG* sensors. Yet, a re-
liable detection of emotions is a requirement for de-
signing guidance mechanisms for students based on
the detected emotional states. Therefore, we decided
to conduct a study where participants were exposed
to IAPS® emotional pictures (i.e., pictures that are
known to evoke typical emotions), while recording
EDA and ECG sensor data. First results from this
study will be shown in this paper, and will further be
used to calibrate the LISA learning companion.

Section 2 gives an overview on recognition of
(academic) emotions, focusing on electro-dermal ac-
tivity and heart rate. Then, our study design is pre-
sented, including the IAPS emotional picture experi-
ment, as well as recording, processing and annotating
sensor data during the experiment. Section 4 on data
analysis provides statistical features derived from sen-
sor data with respect to the stimuli induced by emo-
tional pictures, and methods like machine learning
and fuzzy logic reasoning to classify and predict emo-
tions.

2 STATE OF THE ART

2.1 Emotions in a Learning Context

According to Linnenbrink-Garcia and Pekrun (2014),
emotions in education can be defined as multifaceted
phenomena which involve affective, cognitive, phys-
iological, motivational and expressive components.
Learners’ uneasiness feeling before a test is an exam-

3Electro-dermal activity

“4Electro-cardiogram
SInternational Affective Picture System
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ple of an affective component, being worried is a cog-
nitive component and wanting to avoid the situation is
a motivational aspect. The unhappy facial expression
is an example of an expressive component, whereas
hand sweating or increasing heart rate are physio-
logical components of emotional phenomena. Terms
such as mood and affect are widely used in simi-
lar areas of research, with mood being emotion with
lower intensity and affect as a more comprehensive
construct which includes non-cognitive components
(Linnenbrink-Garcia and Pekrun, 2014). Emotions in
a learning context are also referred to as achievement
emotions that learners experience when they succeed
or fail on an academic task (Pekrun and Perry, 2014)
and as epistemic emotions that are process oriented
(Muis et al., 2018). More comprehensively, academic
emotions were also theoretically defined as emotions
in a learning context mapped onto the two dimen-
sional valence and arousal model in previous stud-
ies in autonomic response and emotions in a learning
context (Yun et al., 2017).

Regardless of the specific constructs and terms
used for emotion in a learning context, the effect of
emotions on learners is significant. For example, pos-
itive emotions that learners experienced during learn-
ing can boost learners to persist in learning and fur-
thermore help learners regulate their learning pro-
cesses by planning, monitoring, controlling and re-
flecting on their learning. On the other hand, learn-
ers who experience with frequent negative emotions
may give up when facing difficult tasks and even drop
out completely from the learning course or path. The
emotions in a learning context are not only important
for students but also for instructors as their roles are
not limited to knowledge transfer to students but to
encourage and motivate students. Teachers with posi-
tive emotion and passion in their roles can exude their
positivity to students which in turn can affect learners
to have a positive perspective of learning.

2.2 Emotion Detection in a Learning
Context

Emotions in a learning context, as stated, are posi-
tioned as one of the core components that affect learn-
ing progress and experience. Various research at-
tempts to delve into measuring emotions using self-
reports, observation and sensor instruments. For in-
stance, self-report instruments have been widely used
as they can measure a comprehensive range of emo-
tions with detailed descriptions to distinguish be-
tween different construct with economical benefits to
administer easily toward massive number of partic-
ipants (Pekrun and Biihner, 2014). However, these



In Search of Learning Indicators: A Study on Sensor Data and IAPS Emotional Pictures

instruments rely heavily on the honest response of
learners on their emotional state and limit the com-
plex nature of emotion into a few constructs. Another
emotional recognition method is through observation
which is mainly used to derive emotional states based
on facial expressions. Based on a certain nominal
scale, a few observers code the state of the partic-
ipants who are engaging in a learning task and the
coded results are cross-referenced for its reliability
(Reisenzein et al., 2014). This method provides rich
data with mostly high reliability and validity. How-
ever, the observational method takes an enormous
amount of time and costs. Furthermore, depending
on the cultural background of the observers, the ac-
curacy of classifying emotions changes and detecting
subtle emotional changes is difficult with this method
(Nelson and Russell, 2013). Another method adopted
for emotional recognition is to observe the physio-
logical changes in cardiovascular, electrodermal and
respiratory systems using sensors, while emotions are
induced. Image/picture, auditory or video stimulus
are used to induce specific emotion, in addition to in-
structing people to relieve the past experience.

2.3 Sensor Data for Emotion Detection

Physiological signals such as heart rate, blood pres-
sure, electrodermal reactions and respirations rate
show observable changes due to the effects of emo-
tional stimuli(Bradley and Lang, 2007b). Among var-
ious sensor data, electrodermal activity (EDA) and
cardiovascular activities derived from ECG were most
investigated in relation to emotions (Kreibig, 2010).
Various researchers associated skin conductance sig-
nals such as SCL ¢ and SCR 7 with positive or neg-
ative emotion (valence) (Levenson et al., 1990; Ca-
cioppo et al., 2000) and with respect to intensity of
emotion (arousal) (Chanel and Miihl, 2015; Lang,
1995). Cardiac signals such as heart rate, heart rate
acceleration and heart rate variability also change
with respect to the valence of emotion (Mandryk and
Atkins, 2007; Vrana et al., 1986; Libby Jr et al., 1973;
Ekman et al., 1983). Also combinations of EDA and
data derived from ECG signals are used to describe
the valence and arousal states of emotions (Winton
et al., 1984; Picard et al., 2001a; Gruber et al., 2015;
Malkawi and Murad, 2013). Feature extraction is a
more practical approach to select appropriate features
when using machine learning to classify emotions us-
ing heart rate, skin conductance and respiration rate.
Aggregated sensor values (e.g. mean absolute nor-
malized first difference of heart rate, first difference

6Skin Conductance Level
7Skin Conductance Response

of the smoothed skin conductance, three higher fre-
quency bands of the respiration signal) are related
to emotions that a person experiences (Picard et al.,
2001a).

Despite various research efforts and theories be-
tween sensor data and emotion, the results are ob-
served to be context-dependent and ambiguous to ap-
ply as a ground-truth to recognize learner’s emotional
state in a context of learning. Therefore, our approach
began by focusing on general emotions which can be
mapped into an analyzable construct. To do this, we
have adapted the emotional picture experiment using
IAPS and SAM rating (Bradley and Lang, 2007b) to-
ward students in a higher education institute while
recording physiological sensor data (EDA and ECG).
The collected sensor data were used to apply qualita-
tive, quantitative and machine learning approaches to
find basic relationship between sensor data and emo-
tions, specifically EDA and ECG.

3 EMOTIONAL PICTURE
EXPERIMENT

3.1 TAPS Emotional Pictures

TAPS consists of images inducing emotions with nor-
mative ratings for valence and arousal levels of emo-
tion, rated by a wide range of people. By using the
circumplex model of affect (Russell, 1980), each pic-
ture can be mapped onto the grid as shown in Figure
1.

Pleasure

Arousal ———»

Figure 1: 2-dimensional affective space with IAPS picture
(Bradley and Lang, 2007a).

The valence indicates a range from positive to
negative and arousal indicates the intensity of the
emotion, for example calm/boring to stimulating/ex-
citing. Currently, IAPS includes more than 1000 pic-
tures and these images serve as good standards to
evoke specific emotion which is well evaluated by a
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large number of people from various cultural back-
grounds. Most importantly, the images can be plotted
on a two dimensional affective space based on its nor-
mative valence and arousal value (Lang and Bradley,
2007).

Furthermore, IAPS can be used with SAM rating,
a pictorial rating instrument which allows to record
viewers’ perception in addition to collecting physio-
logical data. Specifically, skin conductance is found
to covary with arousal value of both negative and pos-
itive valence image and heart rate reacts to positive
valence and deceleration is shown when unpleasant
images are presented. Comprehensive pictures are
found to be relative safe and also effective by pro-
viding targeted emotional stimuli yet not detrimental
to the viewers.

3.2 Study Design

1182 TAPS pictures labeled by mean and standard
deviation of valence, arousal and dominance ratings
were provided by the center for the study of emotion
and attention® . Based on Lang et al. (1997)’s previ-
ous results, three main criteria were applied to make a
45-minute experiment. First, to equally distribute the
number of pictures for each intended emotion, 24 pic-
tures for each category were selected. Second, to min-
imize the gender effect on the experiment, pictures
that have no significant statistical difference in ratings
(valence and arousal) between genders were selected
using independent t-tests. For these pictures, the dif-
ference in mean valence rating between female and
male participants was less than 1. The mean arousal
rating difference between female and male was less
than 0.8. This resulted in 735 pictures. Third, to se-
lect pictures that are targeted to the specific category,
pictures containing explicit violence and sexually ex-
plicit pictures were excluded and pictures with rating
value higher than 6 and rating value less than 4 were
used respectively and lastly standard deviation for the
respective category was maintained to be as low as
possible (less than 2.5).

For high valence and high arousal pictures
(HVHA), pictures with value greater 6 were filtered
for valence and arousal. 42 pictures of high valence
and high arousal pictures were yielded, out of 42
pictures, 7 sexually explicit pictures (IAPS numbers
4656, 4666, 4672, 4680, 4687, 4690, 4695) were ex-
cluded. Pictures with high standard deviation were
excluded to result in a set of pictures. In sum, pic-
tures selected in HVHA have a valence mean range
from 6.07 to 7.74 and the arousal mean range from

8https://csea.phhp.ufl.edu
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6.01 to 7.35. The range of standard deviation for va-
lence remained less than 2 and for arousal between
1.7 to 2.21.

For high valence and low arousal pictures
(HVLA), pictures with values greater then 6 were fil-
tered for valence and pictures with arousal value less
than and equal to 4 were filtered, which resulted in
42 pictures of high valence and low arousal. Also,
pictures with high standard deviation were excluded.
For the remaining 24 pictures, mean range of valence
is from 6.03 to 7.52 and of arousal is from 2.51 to
3.97. The range of standard deviation for HVLA stim-
uli pictures is less than 2 for valence and up to 2.2 for
arousal.

For low valence and low arousal pictures (LVLA),
selecting pictures with less than 4 for valence and
arousal resulted in 9 pictures. Therefore, valence and
arousal value less than 4.3 were applied which re-
sulted in 29 pictures. The values with highest stan-
dard deviation were excluded for both valence (less
than 2) and arousal (up to 2.23).

For low valence and high arousal pictures
(LVHA), pictures with valence less than 4 and arousal
greater than 6 were filtered and resulted in 53 pic-
tures. Out of 53 pictures, 12 pictures with explicit
violence (IAPS numbers 2352.2, 3010, 3030, 3059,
3060, 3069, 3071, 3080, 3131, 6021, 6022, and 9252)
and 2 redundant pictures (3010, 6570.1) were ex-
cluded. Pictures with highest standard deviation for
valence (greater than and equal to 2) and arousal
(greater than 2.23) were excluded.

To administer the experiment, once the partici-
pant arrived at the experiment setting, the subject was
guided to sit in front of the computer screen. The gen-
eral aim and procedure of the experiment were ex-
plained and verbal consent was received. The written
consent was provided and signed by the subject. Af-
terwards, the electrodes to measure EDA and heart
rate were attached. While EDA and heart rate signals
were verified for accurate recording, baseline task
and the emotional picture rating task were explained
with examples. When the participant had questions,
they were answered. Once the participant was ready,
a baseline task which involves heartbeat perception
tasks was administered for about 5 minutes. Heart-
beat perception tasks were performed 3 times with
a 25, 35 and 45 second interval respectively. When
instructed, the subject was asked to count his or her
heart beats just by concentrating on his or taking his
or her own pulse or trying any other physical manip-
ulation which might facilitate the detection of heart
beats. After the termination of each interval, the sub-
ject was requested to report the counted or estimated
number of heart beats. After the baseline task, the
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34 minute emotional picture experiment began with
the screen message “Get ready to rate the next slide”
shown for 5 seconds to initiate the emotional picture
rating task. A total of 96 pictures were shown ran-
domly. Each picture was shown for 6 seconds, then
a SAM” rating, shown in Figure 2, appeared and the
subject had 10 seconds to rate valence and arousal.
After 10 seconds, an empty screen with a + sign in
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Scoring: 9 8 7 6 5 4 3 2 1

Figure 2: 9-point scale SAM Rating for valence and arousal
(Bradley and Lang, 2007a).

the center was presented for 5 seconds followed by
the next IAPS picture. After the experiment, partic-
ipants were directed to a short relaxing video clip to
avoid any negative effects of emotional pictures on
participants.

4 DATA COLLECTION AND
PROCESSING

The data collected through the emotional picture ex-
periment were EDA, ECG, participant’s self-rating of
IAPS pictures (valence and arousal), IAPS picture ID
and UNIX timestamps. The IAPS reference values
for arousal and valence ratings along with standard
deviations of each IAPS picture were provided by the
center for the study of emotion and attention and re-
lated to sensor data using UNIX timestamps.

The EDA and ECG sensor data were collected us-
ing a wearable sensors (BITalino (r)evolution Plugged
Kit BT !9). The device was suitable for explorative
research with low cost and raw data acquisition func-
tionality. Both EDA and ECG raw sensor data were
sampled and stored with 10bit resolution and con-
verted to uSiemens for EDA and mV for ECG us-
ing the transfer function stated in the BITalino’s data
sheets. Based on the EDA signal in uS, the standard-
ized EDA values were calculated using z-score for-

mula )%f, where X is the mean value, s stands for

standard deviation. In addition, as EDA signals can be
split into a tonic component (SCL, skin conductance

9Self-Assessment Manikin
10https://bitalino.com

level) and a phasic component (SCR, skin conduc-
tance response) (Boucsein, 2012), SCR pulses which
are peaks within the SCR signal with a rise time that
varies from 0.5 to several seconds and non-specific
SCR (NSSCR) which are the pulses in the absence
of a stimulus were derived. Heart beats were derived
from the ECG signal (mV) along with the time inter-
val between consecutive peaks (RR interval) and its
reciprocal value THR '!.

The next step was to aggregate sensor data and
derived data to obtain features which could be at-
tributed to emotional states induced by exposing a
participant to a picture. These features were then an-
notated by IAPS picture ID, IAPS rating of valence
and arousal and a participant’s self rating. Data were
aggregated during a time window immediately fol-
lowing the stimulus, which is the start of the viewing
window. Time windows for viewing, rating and re-
laxing were 6 seconds, 10 seconds and 5 seconds, re-
spectively, so the maximum interval for aggregation
was 21 seconds, which is the time between 2 stimuli.
For EDA signals, we chose an interval of 6 seconds
(viewing window), which complies with findings in
literature (Boucsein, 2012). For heart rates, the in-
terval was 21 seconds, to get statistically meaningful
values. For all data intervals, a set of values were
computed, from mean, minimum, maximum, gradi-
ent to statistical values like standard deviation, kurto-
sis, moments and skewness.

Further features, which may be closely related
to mental processes, can be derived from our sensor
data. For instance, in case of EDA, the latency of an
SCR pulse (if there is a pulse within 6 seconds af-
ter stimulus) together with its gradient could be de-
rived. From ECG signals, the most interesting feature,
HRV!2, can be derived. HRV has been used as an in-
dicator for the state of a person’s autonomic nervous
system (Camm et al., 1996) and it has been identi-
fied as a possible indicator for emotions(Gruber et al.,
2015). To analyze HRY, either time or frequency do-
main can be used. With longer data sets, frequency
domain analysis can regard the balance between sym-
pathetic and vagal activity (Heathers and Goodwin,
2017). In our data set, due to the relatively short data
intervals, we have decided to just include the time-
domain values such as RMSSD!3 in our feature set.

nstantaneous Heart Rate.
12Heart Rate Variability.
13Root Mean Square of the Successive Differences.

115



CSEDU 2019 - 11th International Conference on Computer Supported Education

S METHODOLOGY AND
RESULTS

Recording sensor data at 1000 Hz during approxi-
mately 45 minutes yields a vast amount of data anno-
tated by stimuli induced by showing a picture. As we
have IAPS reference ratings along with self-ratings
of each picture from each participant, we have inves-
tigated the collected sensor data based on previous
research relating emotions and sensor data. In our
first explorative approach, statistical methods were
applied onto all collected data. By using the statis-
tical approach, we have aimed at finding correlations
between features derived from sensor data and emo-
tional states, indicated by both IAPS ratings and self-
rating of a participant. Subsequently, we have ap-
plied machine learning to our data sets. Specifically,
through supervised classification, we aimed at find-
ing classifiers for sensor data with respect to valence
and arousal. Finally, we adapted our previous fuzzy
logic reasoning approach (Moukayed et al., 2018).
The common goal of all methodologies is to find a
model which predicts emotional states based on EDA
and ECG sensor data.

5.1 Qualitative Analysis

In a first step, we used literature findings on emo-
tion and sensor data and attempted to visually vali-
date the three hypotheses: 1) Skin conductance is re-
lated to arousal (Ekman et al., 1983; Lanzetta et al.,
1976; Levenson et al., 1990; Cacioppo et al., 2000;
Picard et al., 2001b). 2) Heart Rate (magnitude and
acceleration) is related to valence (Libby Jr et al.,
1973; Lang and Bradley, 2007) and 3) Positive emo-
tion has high EDA and high heart rate whereas neg-
ative emotion shows high EDA with depressed heart
rate (Winton et al., 1984). To validate the hypothesis
qualitatively, four representative pictures were cho-
sen. Picture 5621 was chosen for high valence and
low arousal and picture 2035 for positive and pas-
sive emotion. For low valence, picture 3170 was se-
lected to represent high arousal and low valence fur-
thermore, picture 2039 was selected for low valence
passive emotion.

The positive relation between skin conductance
and arousal was set as the first hypothesis. Lanzetta
et al. (1976) recounted the linkage between SCR and
the intensity of emotion and Ekman et al. (1983) re-
counted that passive emotion depicts a larger change
in EDA (in their case, EDA was measured as skin re-
sistance in kQ). In addition, Picard et al. (2001b) also
verified the peak level of skin conductance when a
participant’s perception of the stimulus is also in the
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high arousal state.

The second hypothesis is the positive relation be-
tween heart rate (magnitude and acceleration) and va-
lence. In general, Libby Jr et al. (1973) reported the
association between the change of heart rate and va-
lence of emotion and Ekman et al. (1983) specifically
reported that negative emotion resulted in a faster
heart rate acceleration compared to the acceleration
during happiness. Levenson et al. (1990) extended
this logic by indicating that the heart rate shows an
accelerative state during negative emotional states.
Lang (1995) also recounted that the heart rate shows
a modest relationship with the valence self-rating.

The third hypothesis is the relation of positive
emotion with high EDA and high heart rate whereas
negative emotion with high EDA and depressed heart
rate. Winton et al. (1984) reported that the extreme
pleasantness is characterized by high value of SCR
and high heart rate whereas extreme unpleasantness is
characterized by high SCR with depressed heart rate.
The results of our qualitative investigation supported
the relationship between EDA and arousal (hypothe-
sis 1). Specifically, the accelerated EDA is associated
with high intensity and decelerated EDA with low in-
tensity of emotion.

EDA KILOOHM OF P24 FOR PICTURE 2035

EDA KILO OHM OF P24 FOR PICTURE 5621

Figure 3: Gradient of EDA (k) of participant 24 for high
valence low arousal picture (top), for high valence high
arousal picture (bottom).

As shown in Figure 3, the decelerated EDA was ob-
served while the low arousal image was shown and
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the accelerated EDA was observed when the high
arousal image was presented to the participants.

As for the relationship between valence and heart
rate (hypothesis 2), our findings showed the opposite
results from the previous findings. Levenson et al.
(1990) observed the association of accelerated heart
rate due to negative emotion, however in our inves-
tigation, the heart rate accelerates with positive emo-
tion and decelerates with negative emotion. In addi-
tion, the decelerative heart rate for low arousal picture
and accelerative trend for high arousal picture were
also observed for negative valence, which leads us to
further investigate the trend with larger datasets using
a statistical method. For the hypothesis 3 indicating
the relation of positive emotion with high EDA and
high heart rate and the negative emotion with high
EDA and depressed heart rate, our visual inspection
was not able to find the prominent trend.

5.2 Quantitative Analysis

Based on the qualitative study results, we have further
investigated the statistical significance of the findings
by applying a quantitative approach on our data set.
As we have verified the relation between EDA and
arousal (hypothesis 1), in addition to observing the
opposite trend in case of the relation between the heart
rate and valence (hypothesis 2), we have first taken a
step to see the relationship between heart rate accel-
eration and valence. To do this, we applied F-test and
t-test between heart rate acceleration and valence. Af-
terwards, we have analyzed the association between
the accelerative trend of EDA and arousal.

The hypothesis of non-difference of variance and
identical averages between high valence and low va-
lence stimulus on heart rate change was set. To con-
firm the difference in variance, F-test was conducted
and the results show that the difference of the vari-
ances in heart rate acceleration between high valence
situation and low valence situation was not signifi-
cant. Moving on to find the effect of EDA gradient
and arousal level, the hypothesis of non-difference of
variance and identical averages between high arousal
and low arousal stimulus on EDA change was set. To
confirm the difference in variance, F-test was con-
ducted as shown in Table 4.

The difference of the variances in EDA gradient
between high arousal situation and low arousal situ-
ation is significant with P <0.05, F(2.0629) >Fcrit
(1.1334). Furthermore, there was a significant differ-
ence in the EDA gradient interval for high arousal
stimulus (M=—2.1533 x 107°, Std: 5.3111 x 107?)
and for low arousal stimulus (M=—7.6525 x 1079,
Std: 3.6978 x 107>) conditions with t(1009)=2.89, p

F-Test Two-Sample for Variances
HA eda6_gradient_interval LA eda6_gradient_interval

Mean -2.15334E-06 -7.65257E-06
Variance 2.82084E-09 1.3674E-09
Observations 598 799
df 597 798
F 2.062922451
P(F<=f) one-tail 8.25096E-22

F Critical one-tail 1.133490608

Figure 4: F-test results between high arousal EDA gradient
and low arousal EDA gradient.

t-Test: Two-Sample Assuming Unequal Variances
HA eda6_gradient_interval LA eda6_gradient_interval

Mean -2.15334E-06 -7.65257E-06
Variance 2.82084E-09 1.3674E-09
Observations 598 799
Hypothesized Mean Difference 0
df 1009
tStat 2.168932719

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

0.015160388

1.6463652
0.030320776
1.962317871

Figure 5: T-test results between high arousal EDA gradient
and low arousal EDA gradient.

=0.0.0303 (a0 <0.05) as shown in Table 5.

Even though the association of the heart rate
change with valence was not conclusive, our quanti-
tative approach confirmed that the EDA gradient may
serve as an indicator to distinguish the arousal level of
emotions. As a next step to find more possible indica-
tors for academic emotions based on sensor data, we
applied a machine learning approach for classification
of sensor data.

5.3 Machine Learning

Some promising approaches to detect emotions from
biometric signals using machine learning can be
found in literature. For instance, Conati et al. (2018)
applied a machine learning approach using EDA and
EMG. Ayata et al. (2017) focused on EDA data and
made some deeper research on the feature extraction
and selection on specific EDA signals and Ferdinando
et al. (2018) used ECG based features such as HRV.
Specifically, Ayata et al. (2017) used the circumplex
model of affect and the valence/arousal classification
(low/high arousal, low/high valence) similar to our
emotional picture experiment and achieved an accu-
racy rate of 81.81% and 89.29% for arousal and va-
lence respectively by using only EDA sensor data.

In our search of learning indicators, we used Weka
(Witten et al. (2016)) as machine learning environ-
ment for the algorithms proposed by Ayata et al.
(2017) and Weka’s automatic mode Auto-Weka to
check other algorithms for their performance on our
dataset. As the very first step, we extracted the EDA
features suggested by Ayata et al. (2017) from our
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dataset and evaluated them with several algorithms
such as SVM, J48 and random forest. To check other
algorithms, we used Auto-Weka, which also attempts
to find good fitting hyper-parameters for the algo-
rithms. The result shows that random forest is the
algorithm that provides the best accuracy.

On our EDA data, we were able to achieve results

with an accuracy of 90% and above with random for-
est as machine learning algorithm depending on the
hyper-parameters. We were able to achieve this al-
though we did not use the features from the Empiri-
cal Mode Decomposition as suggested by Ayata et al.
(2017). The accuracy values for J48 (decision tree)
and SVM were comparable.
As our aim is to construct a general model which is
independent of participants (individual differences),
we evaluated the models with 10-fold cross validation
and k-1 validation (k : number of participants). As
soon as the training data did not include the data of
one participant and the test data included the missing
participant, the accuracy diminished to around 50%
for valence and arousal respectively. This could be
caused by the size of our dataset being too small,
which might have led to a overfitting model. To ver-
ify the findings, we have analyzed our feature files
(described in Section 4) and the results were similar.
To attain a more generally usable model, we reduced
the feature selection to the z-score, normalized fea-
tures, the features calculated from the z-scored data
and more baseline independent features, yet no sig-
nificantly different results were found. Further re-
search is needed on a generally usable model, which
does not depend on previous training for each per-
son. Nevertheless, it appears to be possible to imple-
ment emotion detection in a learning environment, if
a participant-dependent training of the machine learn-
ing model is completed prior to the start of learning.
In this case, we suggest a random forest algorithm
and a training time of approximately 90 percent of the
time of our emotional picture experiment, as this fits
to our outcome with 10-fold cross validation.

Based on our qualitative approach, we have no-
ticed interesting trends and associations of physiolog-
ical data and the dimension of emotion. However, the
quantitative and the machine learning approach pro-
vided less convincing results. As both research meth-
ods did not lead to a general model, we analyzed our
data using a mixed-method which is fuzzy logic rea-
soning.

5.4 Fuzzy Logic

In a human-like manner, a fuzzy logic model uses ex-
pert knowledge as sets of simple rules to associate
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sensor values with the dimension of emotion. In many
cases, these rules are insufficient to apply a quantita-
tive approach as they are stated as a relational state-
ment without numerical value. For example, the as-
sociation between stress and the combination of EDA
peak height and the instantaneous heart rate (Setz
et al., 2010) can not be directly applied in a quanti-
tative analysis. However, as fuzzy logic allows am-
biguity, the association without concrete values can
be analyzed. As we have investigated emotion using
IAPS pictures, various literature findings could have
served as experts’ rules. For instance, as emotional
valence of 6 or above can be described as happiness
or contentment (Lang, 1995), it can be transferred into
a simple rule in a fuzzy logic.

To apply these rules in fuzzy logic, the fuzzy
membership function was defined based on the scat-
terplot or histogram of the collected data. The bound-
aries of each range (e.g. low, mid, high) were set by
using the mean and standard deviations of the sam-
ple. Then the membership functions transformed the
membership of a specific element into a percentage
membership in the set of values. The fuzzy logic sys-
tem weighs each input signal, defines the overlap be-
tween the levels of input, and determines an output
response. Domain knowledge is modelled as a set of
IF/THEN rules which use the input membership val-
ues as weighting factors to determine their influence
on the fuzzy solution sets. Once the functions are in-
ferred, scaled, and combined, they are de-fuzzified or
translated into a solution variable, which is a scalar
output (Cox, 1992).

Based on the fuzzy logic approach presented in
Mandryk and Atkins (2007), we have started out with
a fuzzy logic model for assessing arousal with EDA
gradient. We have first customized the membership
function according to our data set. The mean of the
EDA gradient was 0.004925482 Q with standard de-
viation 0.030947348, therefore three boundaries were
set based on the shape of our data set as follows:

TERM low := (—0.29527918, 1)
(0.004925482, 0):

TERM mid := trian 0.004925482
0.026021866 0.03587283;
TERM high := (0.004925482, 0)

(0.03587283, 1);

As our qualitative and quantitative approaches
confirmed the relation between EDA changes (gradi-
ent) with the arousal level, the following three rule
sets were used to de-fuzzify/ translate the level of
EDA gradient to the arousal level.
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RULE 1 : IF
eda6_gradient_interval_ohm IS
low THEN arousal IS low ;

RULE 2 : IF
eda6_gradient_interval_ohm IS
high THEN arousal IS high ;

RULE 3 : IF
eda6_gradient_interval_ohm IS
mid THEN arousal IS mid ;

As we did not have a specific boundaries to spec-
ify each level of arousal, as the general rule, 0.50 was
used as the mid-point for de-fuzzification.

TERM low := (0, 1) (50, 0);
TERM mid := (25, 0) (50, 1) (75, 0)

TERM high := (50, 0) (100, 1);

Our experiment was designed to distinguish two
levels of valence and arousal (high or low) whereas
the outputs from the fuzzy logic produced three
arousal levels (low, mid and high). Upon the results
from the fuzzy logic, we have omitted any values
with mid arousal classification and compared against
IAPS reference classification and also with partici-
pants’ self-rating classification. As the SAM scale
that the participants used to indicate their perception
of the image has a range from low, mid and high,
more neutral responses (value 4, 5 and 6) were fil-
tered out and the values above 6 were chosen as high
and ones with less than 4 were classified as low. Out
of 2016 data, classification with mid was filtered out
and only 1465 data were available for low and high
arousal results. Comparing against the TAPS refer-
ence classification, 953 values were in match with de-
fuzzified classification, which indicates that the stim-
ulis that are normally classified by a large number of
people either as high or low can also be classified
accordingly by fuzzy logic approach. Specifically,
when using a simple rule set relating EDA gradient
and arousal level, the output shows that 65 % of data
are in sync with IAPS reference classification. Com-
paring against the participant’s self-rating, 708 values
were in match with de-fuzzified classification. This
indicates that 48 % stimuli that were perceived high or
low by the participants can also be classified accord-
ingly using a fuzzy logic approach. Without changing
the de-fuzzification rule, for the analysis purpose, we
have applied the stricter boundary by setting values
higher than 65 as high and lower than 40 or 35 as low
on de-fuzzified results to compare with the IAPS ref-
erence value and the participant’s self-rating value.

The percentage of matching between IAPS ref-
erence and de-fuzzified results remained as 65 %
whereas it has increased to 81 % between the par-

ticipant’s self-rating value and de-fuzzified classifica-
tion. Our current fuzzy logic approach used the gen-
eral rule (0.50 as the mide-point) for de-fuzzification.
However, using a specific rule for the de-fuzzification
may result in a better match among all three measures.
Our next step will involve applying the resulted fuzzy
logic in a new data set, in addition to conducting an
optimization similar to our previous study (Moukayed
et al., 2018) in search of finding novel learning indi-
cators using sensor data.

6 CONCLUSION

The overall goal in our research project LISA is to in-
vestigate learning environments that are able to adapt
to the emotional state of a learner as detected by phys-
iological data. To design the system components that
derive emotional states based on the sensor data, the
goal of the study presented in this paper was to gener-
ate sensor data which can be related to well-known
stimuli generated by exposing participants to IAPS
pictures. After an extensive literature research, we
attempted to verify findings from literature using our
data qualitatively. Before doing data analysis to un-
derstand the autonomic nervous system, more data
processing is required (including filtering and derived
values). Relevant related research exists, but is very
heterogeneous and done differently (both hardware
and software) and thus difficult to apply straightfor-
wardly for our purposes. In addition, post data pro-
cessing is also an important aspect to delve into, as
downsampling and averaging over a longer time in-
terval bears the risk of losing information about subtle
changes in emotional processes.

Based on intuitive features found in our previous
work, we have applied a quantitative approach to look
deeper inside our data. Through an exploratory ap-
proach, we gained deeper insights into the correla-
tions between stimuli induced by high or low arousal
pictures and increase or decrease of EDA values. Our
investigation of our data is limited and explorative as
various assumptions should be verified and more ad-
vanced statistical methods such as MANOVA should
be considered for the forthcoming steps. Regard-
ing the machine learning approach, using a random
forest classifier, we were able to find an acceptable
(good) classification of EDA values with respect to
two arousal classes. The findings support the feasibil-
ity of using machine learning approaches for emotion
detection — yet, we are unable to tell whether the train-
ing time of the machine learning model can be short-
ened to a timespan that is realistic for typical learning
situations. Lastly, human and machine combined ap-
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proaches (fuzzy logic reasoning) are a very promising
tool for emotion prediction. However as this approach
depends on rather vague “domain knowledge” with
relationships between physiological data and emo-
tional state (e.g IF eda IS high THEN arousal IS high),
it may not be sufficient to obtain precise arousal or
valence values. Better rules which include features
like skewness of EDA values, SCR latency or HRV,
might be derived from insights obtained by quantita-
tive analysis and/or machine learning — however, for
some learning setting it may be perfectly fine to only
identify rough tendencies in emotional states instead
of fine-grained insights. The required granularity of
the detection certainly depends on the intended use
within the educational software.

The results of the work presented in this paper
directly feed into several industrial learning applica-
tions of LISA project partners that design learning
analytics dashboards incorporating emotional infor-
mation'* or make use of the emotional state in or-
der to adapt difficulty levels of educational games'?.
Our next steps include the use of data collected in a
similar study conducted by one of our LISA project
partners'®, who combined an emotional picture ex-
periment with a cognitive task, using the identical de-
vice to record physiological data (EDA, Heart Rate
and Skin temperature). In parallel to getting more
insight into emotion detection, we will also try to
analyze cognitive states using features from sensor
data. Combining indicators for emotional and cog-
nitive states could be a big step towards our goal of
finding learning indicators.
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