Cloud.Jus: Architecture for Provisioning
Infrastructure as a Service in the Government Sector

Klayton Castro, Gabriel R. D. Macedo, Aleteia P. F. Araujo and Leonardo Reboucas de Carvalho

Keywords:

Abstract:

Department of Computer Science, University of Brasilia, Brasilia, DF, Brazil

Infrastructure as a Service, Interoperability, Community Cloud, Multi-cloud, Federation.

Building a community cloud by federating private clouds is one of the lower cost alternatives for hosting ap-
plications that require distributed deployment to meet scale-saving, high availability, reliability, and service
level compliance. Despite its potential benefits, there are many issues about lack of standardization, system
integration, interoperability and portability across multiple service providers, resulting in low adherence to the
model in organizations that are still struggling to adapt its legacy applications to a cloud architecture in com-
plex environments, such as some governmental sector scenarios. Currently, there is no seamless approach to
migrate from the traditional infrastructure model to a cloud computing model on these organizations. So, we
propose an architecture for building a community cloud even in scenarios with a strong presence of non-cloud
native applications by developing a low-coupled infrastructure middleware that supports different hypervisors,
a GUI and a CLI. To show the feasibility of our approach, we evaluate the architecture on a set of infrastruc-
tures at Superior Courts of Brazilian Judicial Branch, that may compose a cost-effective solution to start the

transition to the cloud model in other organizations also.

1 INTRODUCTION

Part of information technology (IT) areas in organiza-
tions focus its controls on their work processes, re-
sulting in a culture oriented to technological silos,
particularly in the infrastructure provisioning, becom-
ing its environments quite complex, which require
ever-increasing and specialized management teams
(Sosinsky, 2010). Besides, a not suitable infrastruc-
ture creates an uncomfortable situation for adminis-
trators, who need to support the growing demands
very quickly while maintaining the environment sta-
bility (Ahn et al., 2014). This way, to build integrated
IT solutions is a meaningful challenge, because it is
hard to create universal service platforms in environ-
ments that result from disaggregated business rules
for each system (Edwards, 2012).

Then, the cloud computing model stands out,
quickly demonstrating its ability to transform the path
of managing IT resources, making them more ag-
ile and efficient (Kim et al., 2016) by providing on-
demand access as a service to a shared set of config-
urable assets, such as network, servers, storage, and
applications, that may be dynamically provisioned
and instantiated with minimal effort (Buyya et al.,
2013). Although the cloud computing model has be-

412

Castro, K., Macedo, G., Araujo, A. and de Carvalho, L.

Cloud.Jus: Architecture for Provisioning Infrastructure as a Service in the Government Sector.

DOI: 10.5220/0007731804120421

come a favorite choice about a decade ago, establish-
ing itself as a reality for many organizations, there is
still a lack of standardization and uncertainties about
interoperability, integration, and portability over mul-
tiple infrastructures (Baur et al., 2015).

Also, the literature recommends to employ dif-
ferent infrastructures, both to ensure the IT services
availability and to avoid the vendor lock-in, that is the
blocking effect on a single provider, aiming to avoid
risks concerning reduced responsiveness, resilience,
and service continuity when relying on a single on-
premises datacenter (Petcu et al., 2013). To over-
come this high-coupling hurdle, virtualizing all ap-
plications and service dependencies, associating them
with cloud middleware and standardized interfaces is
an option (Brasileiro et al., 2016a).

However, each provider applies its standardization
patterns, and there is enough room to improve the
interoperability issues, such as storage access meth-
ods, virtual machine (VM) image formats, applica-
tion and services resources provisioning through Ap-
plication Programming Interfaces (API) (Bégin et al.,
2008). Besides, there are some open programming li-
braries able to deal with some virtualization vendors
and Cloud Service Providers (CSPs), such as libvirt,
jclouds, and libcloud (Wickboldt et al., 2014), that

In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 412-421

ISBN: 978-989-758-365-0

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Cloud.Jus: Architecture for Provisioning Infrastructure as a Service in the Government Sector

also requires integration into preexisting interfaces to
become productive. There are some initiatives aimed
at making general specifications useful for APIs, such
as the Open Cloud Computing Interface (OCCI) and
Cloud Infrastructure Management Interface (CIMI),
which are still not very mature and evolve in a rather
timid manner, whose CSPs demonstrate a low interest
to support them fully (Baur and Domaschka, 2016).
Other approaches accommodate similarities to CSP’s
industry, giving rise to open Cloud Management Plat-
forms (CMP), which propose resources orchestration
in a cloud manner (Baur et al., 2015). Nevertheless,
the most prominent CMPs promise very close features
and capabilities, making it difficult to select the most
appropriate tool for each organization. Also, such
tools carry a certain complexity of configuration and
do not instantly provide as many resources as desired
and necessary, not rarely leading to exhaustive efforts
to promote satisfying deployment (Wickboldt et al.,
2014).

This way, migrating an existing application or
building a new one using a cloud-native architecture
requires a lot of research and development efforts to
take advantage of available technologies and mitigate
the rework risks, that is not whenever possible. Thus,
our initial motivation is to reconcile the use of IT in-
frastructure assets in the Brazilian government sector,
especially at Superior Courts of Judicial Branch of the
Union (PJU), modernizing them to a cloud-based ar-
chitecture. Similarly, we believe another set of partner
institutions can collaboratively share their infrastruc-
ture in the same way, supporting the investments’ as-
sertiveness, and avoiding too many operational costs
when dealing with complex environments.

In general, medium-sized organizations that al-
ready implemented on-premises data centers observe
low use of the investments made in counterpart to the
present potential. Besides, many institutions such as
Brazilian Superior Courts have available a lot of not
shared IT infrastructure resources: secure data cen-
ters, reliable communications networks, large stor-
age platforms, and modern server equipment, with
leading market virtualization systems, i.e., VMware
(VMware, 2018), Hyper-V (Microsoft, 2016) and Or-
acle VM (Oracle, 2018). Such IT professionals and
geographically distributed robust assets are available
but still isolated on each organization.

Then, it is natural that create a community cloud
by federating these resources offer advantages over
pure private clouds. Following this approach, if at
least a portion of the infrastructure present in each
organization, it is possible to develop a typical and
seamless architecture, regarding the particularities of
each environment. So, the question arises: is it pos-

sible to define an Infrastructure as a Service archi-
tecture to abstract the underlying complexity, based
on low-coupled design and non-intrusive standardiza-
tion patterns, able to enhance the benefits of the cloud
computing model at governmental organizations?

2 STANDARDIZATION AND
SERVICE ORIENTATION
CONCEPTS

Performing cloud computing consists in an infrastruc-
ture agnostic way for deploying multiple placement
independent resources, maintaining its transparency
(Vaquero et al., 2008). Thus, the distributed services
and the data exchange uniformity mechanisms con-
tributes significantly for developing efficient applica-
tions according to this paradigm. The improved vir-
tualization technologies associated with the applica-
tion of Service Oriented Architecture (SOA) become
widely useful (Buyya, 2009).

Concerning an abstraction of these services, there
is a cloud management layer, which consists in: (1)
API (Application Programming Interface), (2) CLI
(Command Line Interface), (3) GUI (Graphic Inter-
face User Interface), in general called Dashboard, and
(4) Orchestrator components, which are responsible
for performing essential functions such as instantiat-
ing, deleting and managing VMs, monitoring usage,
and power management (Dukari¢ and Juri¢, 2013). In
this way, APIs are sets of routines and protocols that
act to intermediate the connection between two sys-
tems (operating system, web site) or specific services
that talk to each other to perform tasks and process
requests from users, as well as other independent sys-
tems or services (Paul et al., 2014).

Due to the interoperability needs in a low-coupled
way, approaches based on the use of APIs are gaining
prominence, since they are more transparent for the
customers (Buyya et al., 2013). So, main cloud com-
ponents are controlled by SOA mechanisms, main-
tained by communicating APIs, that supports the in-
teraction with the underlying infrastructure, integrat-
ing completely different environments and compo-
nents. Then, SOA implementation make possible to
do fast interactions, focusing on orchestrator-based
approaches, that establish service interfaces to the re-
sources provisioning.

413

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

Table 1: Distinguishes among CMPs.

OpenStack | OpenNebula | CloudStack Eucalyptus
Supported APIs AWS/OCCI | AWS/OCCI AWS AWS
Supported Hybervi Xen, KVM, | Xen, KVM, ERI/IM Ken, Xen, KVM,
UPPOTteC BPEIVISOLS | v\ fware VMware ware, VMware
Oracle VM
Architecture ggggonent Low-Coupled | Strong-Coupled | Strong-Coupled
Hybrid Cloud No Yes Yes Yes

3 CLOUD MANAGEMENT
PLATFORMS

Cloud computing model requires supporting large-
scale elastic data centers, orchestrated according to an
agile infrastructure model (Edwards, 2014). By oper-
ating in this way, the resources association becomes
increasingly active, providing efficiency gains by as-
signing layers of abstraction that do not demand the
user to know about the placement and other configura-
tion details (Foster et al., 2008). In this scenario, free
software-based cloud management platforms (CMP)
are available, such as OpenNebula (Sotomayor et al.,
2009) and OpenStack (Sefraoui et al., 2012).

According to Roveda et al. (Roveda et al., 2016),
OpenStack stands out for corporate acceptance, al-
though it is more fragmented, complex and robust,
while OpenNebula offers simplicity and efficiency.
While OpenNebula aims to manage private, hybrid
or public clouds, according to the IaaS model, Open-
Stack fulfills covers all the infrastructure resource lay-
ers through a modular architecture, based on a series
of interoperable projects. However, many companies,
public organizations, and other institutions still do not
take full advantage of these solutions, partly because
of the uncertainties about using community-based
software without commercial support or even lack
of accurate information on such possibilities (Fiore
et al., 2015).

In addition to OpenStack and OpenNebula, there
are other useful CMPs, such as CloudStack and Eu-
calyptus, demonstrating that it is possible to structure
such solutions efficiently, making them viable alterna-
tives over commercial providers (Casaj et al., 2014).
Lynn et al. (Lynn et al., 2015) and Parmar and Cham-
paneria (Parmar and Champaneria, 2014) present a
qualitative review of the most prominent open source
CMPs in IaaS research field (OpenStack, OpenNeb-
ula, CloudStack, and Eucalyptus), whose main dis-
tinctions are in the Table 1.

Llorente (Llorente, 2013) states that presented so-
lutions follow two philosophies of design, due to

414

functional closeness of commercial implementations
considered as state of the art: Datacenter Virtual-
ization (OpenNebula and CloudStack, conceptually
closer to the characteristics of VMware vCloud) and
Infrastructure Provisioning (OpenStack and Eucalyp-
tus, conceptually closer to the characteristics of Ama-
zon AWS) as described in the Table 2.

Table 2: Different philosophies for IaaS.

Datacenter Virtualiza- | Infrastructure Provi-
tion sioning
Application | Multilayer, conven- | cloud native
Type tional defined
Interfaces API and Admin Dash- | Simple API and self-
board feature-rich service portal
Management | Fulfit the life cycle of | Simple, with full ab-
resources straction of underlying
infraestructure
Deployment | Private, mostly Public, mostly
Model
Design Ap- | Bottom-up, defined by | Top-down, definided
proach data center complexity by efficient cloud
interfaces
Business High-Availability, Design depends on ap-
Require- Fault-Tolerance, Repli- | plication
ments cation and scheduling
cloud promoted
Data center | Ease to adapt and get | Built on homogeneus
Integration gain CapEx market infrastructure.

4 INTEROPERABILITY
APPROACHES

Cloud interoperability problems become more evi-
dent as CSPs deliver new products and features, while
more companies migrate their applications to these
environments (Ciuffoletti, 2014). It is necessary to
enable a broader cloud ecosystem to take advantage
of familiar to the market elasticity and service mea-
surement into three-dimensional aspects (Petcu et al.,
2013): (1) federation and communication policies be-
tween CSPs, (2) execution environment and migration
support, and (3) abstraction of programmatic differ-
ences between CSPs in the architecture design.
When provisioning on-demand resources through
cloud computing services, it requires appropriate

Cloud.Jus: Architecture for Provisioning Infrastructure as a Service in the Government Sector

communication interfaces between the existing ab-
straction layers to deal uniformly with each infras-
tructure segment (Demchenko et al., 2012). Aiming at
representing the CMP structures generically, Dukaric
and Juric proposed a taxonomy, that helps to create
a systematic approach about similarity of terms, no-
tions of semantics and relationships involved, con-
sidering most prominent CMPs features (Dukari¢ and
Juri¢, 2013), as described on following layers:

1. Resource abstraction: comprises the basic infras-
tructure (computing, storage, and network).

2. Main Services: Displays the highlighted compo-
nents to enable resource delivery (identity man-
agement, scheduling of tasks, a repository of VM
images, billing and event logging).

3. Support: it acts as middleware, providing com-
munication mechanisms for cooperation and in-
teraction with other components (message bus,
database, and file transfer).

4. Security: includes authentication, authorization,
and security groups).

5. Management: includes federation, elasticity, re-
sources, users and groups, service levels, report-
ing, monitoring, incidents, power management,
and resource allocation.

6. Control: Provides mechanisms for application
and monitoring of service levels, measurement
and policy definition, orchestration (automation
of tasks such as creating, monitoring, updating,
and deleting instances of virtual machines through
API or CLI) and notification of events.

7. Value-added services: It complements the core
services layer (establishment of availability zones,
support for high availability, hybrid cloud support,
live migration, among others).

S RELATED WORK

Minimal management tasks on individual compo-
nents can compromise applications for reasons that
are not obvious to non-specialists. So, search for uni-
form management standard assists in proposing com-
mon interoperability mechanisms, meeting the need
to combine resources and different suppliers, because
of its heterogeneity and unknown dependencies. Al-
though, universal processes are not entirely defined
yet for the automated provisioning of topologies in
complex sets of applications and their adaptation at
runtime. So, it is essential to follow in an open ap-
proach, designed to be extensible. The literature fo-
cuses its efforts to standardize interfaces, to develop

provisioning and cloud federation middlewares, and
some hybrid approaches.

One of the most prominent standards used in more
recent work is the OCCI (Open Cloud Computing In-
terface) (OCCI, 2018) that defines a REST API and
a metamodel for [aaS environments. The ability to
simplify the developer’s work with cloud systems in-
tegration is one of the critical benefits of OCCI, which
abstracts the differences between service implementa-
tions independently of the vendor (Korte et al., 2018).
The use of middlewares is particularly useful, both
to enable a resource-friendly transition of resources
between vendors, and to promote the required in-
tegrations for the legacy applications. The hybrid
approaches usually implement open source CMPs
on dedicated architectures, compatible with existing
standards (Toosi et al., 2014).

This way, compatibility with familiar CMPs is
particularly useful for infrastructure provisioning in
federated clouds composition, such as the Federated
Cloud Platform (FCP), developed by EGI (European
Grid Infrastructure), an association of academic insti-
tutions focused on high-performance computing. The
FCP groups 37 institutional-oriented scientific clouds
and gathers 21 providers running platforms such as
OpenStack, OpenNebula, and CloudStack, as demon-
strated in the works of Sustr et al. (Sustr et al., 2016)
and Casaj et al. (Casaj et al., 2014).

Aiming to support the OCCI standard, emerge
some extensions to the significant CMPs, presenting
integrations with specific architectures, that can ab-
stract the IaaS layer complexity following the OCCI
patterns (Parpaillon et al., 2015). Par (Par et al., 2016)
presents the rOCCI framework, a stack of components
for creating client/server applications conforming to
the OCCI standard. The rOCCI-core library imple-
ments the OCCI class structure, enabling it to be used
natively in programming, while rOCCI-API imple-
ment OCCI transport services through the HTTP pro-
tocol. ROCClI-server relies on specific backends to
communicate with various types of CMPs structures,
acting as a kind of stateless translator. ROCCI-CLI is
a command-line client for controlling IaaS compati-
ble clouds, i.e., the OpenNebula.

However, Wickboldt et al. (Wickboldt et al.,
2014) point out that a common design aspect of cur-
rent CMPs concerns the black box-like control na-
ture in which cloud administrators have little opportu-
nity to influence the resources management, i.e., VM
host positioning and virtual link path selection. The
authors present the Aurora Cloud Manager (Aurora
CM), whose architecture makes possible to control
some aspects of infrastructure, such as the network
flow traffic in real time, through interaction with the

415

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

APIL. The Aurora CM establishes an object-oriented
API to make IaaS provisioning and resource man-
agement more flexible and, also, natively interacts
with user-friendly external systems for improving the
cloud monitoring (Cunha Rodrigues et al., 2016).

The deployment of applications that need to op-
erate in different environments with identity manage-
ment coming from multiple networks is addressed in
the CYCLONE (Slawik et al., 2017) project. It is a
middleware stack that allows you to deploy and man-
age multi-cloud applications and CMPs, including the
implementation of identity federation, and a network
manager that connects VMs regardless of the under-
lying infrastructure and use-case presentation in the
area of bioinformatics. CYCLONE enables the feder-
ation of heterogeneous environments but does not of-
fer a complete provisioning suite, involving features
desirable to customers, such as monitoring and cus-
tom usage reports.

Similarly, FogBow is the middleware used in EU-
Brazil’s Cloud Connect project to federate private
clouds hosted by Brazilian and European research
institutions, running on the IaaS CloudStack, Open-
Stack and OpenNebula platforms (Brasileiro et al.,
2016b). It bases on a higher architecture level on
top of the IaaS cloud orchestrators of each member of
the federation, and it presents excellent flexibility by
employing dedicated plugins, which allow the defini-
tion of precise points of interaction between the fed-
eration middleware and the underlying cloud orches-
trator. Like the previously described works, FogBow
provides a standard implementation of the OCCI in-
terface, enabling customers to interact with specific
managers.

6 Cloud.Jus ARCHITECTURE

Despite serving users over all the country, there is
an eager high-coupling effect in the Brazilian PJU,
whose applications operates exclusively on its Courts
at on-premises infrastructures. This scenario, similar
to the vendor lock-in ones, sometimes threat the IT
services availability due to maintenance on datacen-
ters among other needs. Considering organizations
must focus on speed, not completeness, and should
think of tools in a chain approach, as this is the only
design pattern that everyone can agree to standard-
ize in complex environments, it is essential to ensure
the low coupling sought as good architecture practice
(Edwards, 2012).

In general, having individually right tools is the
simplest and easiest way to accomplish something,
and the most critical concern is how to integrate a

416

needed toolset and how to manage logically and con-
sistently. Thus, it is not advisable to create universal
projects that wish to remedy all kinds of situations
immediately. On the contrary, interchangeable com-
ponents must be designed considering that partition-
ing reduces overall complexity and iteration increase
the likelihood of success, highlighting the importance
of low coupling systems (Sessions, 2006).

Large companies such Microsoft, Oracle, and
VMware invest in the development of new resources
and, as a result, these resources work best by using
a combination of products native to these companies,
called stacks (Llorente, 2013). So, it makes no sense
to develop new tools that are already very mature and
widely available in enterprise hypervisors. It thick-
ens the possibilities for organizations to move more
quickly to the cloud model since the legacy cannot
be easily incorporated and there are requirements for
adapting processes and applications, not suitable to
avoid the vendor lock-in effect. Thus, our approach
takes advantage of existing resources and native tools,
focusing on the integration services and interfaces
that make calls in a cloud way.

6.1 Design of Integration Standard

Categorization of services, interfaces, and roles in-
volved must be well defined to evolve the develop-
ment of the architecture. Any changes or exceptions
that may break the agreements should have a prede-
fined treatment, so a component, service, or process
should be as tolerant of vendor switching as possible
(Jamsa, 2012). A formal framework is not yet fully
implemented for the emerging OCCI standard. How-
ever, the associated resource-oriented meta-model de-
fines it as the best possible candidate to develop a set
of tools to manage all types of cloud infrastructure re-
sources as a service. The proposed architecture in-
teracts directly with each corporate hypervisor CLI
and API using native vendor tools in a comprehen-
sible way at a lower abstraction level. So, it does not
depend exclusively on third-parties libraries such as
libvirt, that becomes a single point of coupling, nor
the need to adapt local management in function of
tools such as OpenStack, which require administra-
tors to change how to deal with the legacy environ-
ment, making it a hard transition to the cloud model.
Neither does depend exclusively on OCCI integra-
tions, which still requires extensions. We employ the
OCCI standard to build the messages used by IaaS
platform services and developed a low-coupled mid-
dleware that translates these messages to each sup-
ported set of hypervisors.

For example, our low-coupled approach makes it

Cloud.Jus: Architecture for Provisioning Infrastructure as a Service in the Government Sector

7
N\

Figure 1: Interaction between middleware and orchestrator and resources.

= =21 ° Klayten Castra~
L Ndmere de YMs #VMs Ligadas © UM Desligadas & Mimero de vOPUs | B Meméria fssosiada 2 Diseo Alocado
Limite: 524 (31, 35%) Limite: 2,16 T8 (35.96%) Disea Utilizade: 17,3878 (53.2...
WP Memdria Associada Disco Utilizado
uina Virual
» OK . . oK » oK
Bodes vCPU Meméria Associada Disco Utiizada
Man: 1.0
~ peming ~ peamia s pming
Estado das maguinas Sonar Whis par grupo

Desligatas —._

Hypervisors

P v N I

Figure 2: Dashboard of Platform Cloud.Jus.

possible to respond much more quickly to changes
than rely on libraries such as libvirt, libcloud, or
CMP extensions to integrate with OCCI. During the
Cloud.Jus platform deployment at STF, the local vir-
tualization team performed an upgrade on VMware
ESXi and vCenter environment, from version 5.5 to
6.5. In just a few minutes, the necessary change
for adequacy was implemented easily only in the mi-
croservice code associated with this set of hypervi-

sors, not affecting other operations or requiring addi-
tional intervention in main system modules. It does
not require any changes on middleware, GUI or in-
tegration services, that run entirely in a non-intrusive
mode, outside the hypervisors. Plugins or extensions
are not necessary because we make simple calls to
their native APIs. It means that our solution does
not require any infrastructure adaptation to support
a CMP like CloudStack, OpenNebula or OpenStack,

417

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

neither change in the local team management way,
but exposes a pool of resources of each virtualization
node for the community cloud instantly.

The Cloud.Jus architecture focuses on the cus-
tomer and cloud administrators, unlike other au-
thors who have proposed more provider-centric ap-
proaches. The architecture establishes a Management
Dashboard that demonstrates the resource utilization
and provides rapid interactions with cloud users and
cloud administrators, without compromising essential
virtualization features at management level, regarding
workload movement and allocation of underlying re-
sources, defines block storage among others. This ac-
tivities, well known by local administrators, does not
affect the cloud directly and can be made the same as
before. Cloud. Jus infrastructure as a service func-
tional prototype is already able to manage more than
36 virtualization nodes running VMware and Hyper-
V hypervisors and hosting more than 300 VMs at 03
geo-distributed datacenters, using OCCI standard and
microservices interfaces for the supported hypervi-
sors, VMware, Hyper-V, and OracleVM.

6.2 Control Panel

The Control Panel is a Dashboard that controls the
creation, modification, and deletion of VM in the IaaS
platform, managing the various components of the
architecture through menus and forms. Besides, it
presents some useful graphs in top-level monitoring
concerning the allocation and utilization of available
resources. The programming language chosen was
PHP for its simplicity and agility by including a ro-
bust set of standardized libraries that make seamless
the integration with the LDAP authentication and au-
thorization, as the use of frameworks such as Boot-
strap, which brings components visually rich in an im-
plementation based on Gentelella, according to Fig-
ure 2. The cloud administrator has maximum man-
agement privileges on the Dashboard. It controls the
resource quotas for each user groups over the cloud
assigned to each hypervisor cluster environment. On
the other hand, a cloud user has access limited to its
scope, having full control from resource allocation to
console execution, which uses the native VMware and
Hyper-V implementations. Until now, Cloud.Jus plat-
form does not support Oracle VM console. It is nec-
essary to use SSH protocol to get access to its VMs.

6.3 Orchestrator

The orchestrator came from the need for the IaaS
model cloud tools that manage public clouds to per-
form essential functions of a private cloud, but on a

418

large scale. It provides automated management of
the cloud environment control and usage tasks in the
VMs (creation, monitoring, updating, and deletion).
Depending on the architecture of the tool, it can be
seen as a service made available via API or CLIL
The orchestration layer automates tasks and proce-
dures in using the environment, coordinating the de-
mands passed through GUI, CLI and API. Back-end
modules have been developed to handle integration
services between these layers and triggered by the
GUI. The implementation was done using Powershell
scripts that forward requests to hypervisors through
the workers and communicate the actions to middle-
ware, which deals with the update of the metadata
repository according to figure 1, which demonstrates
the interaction between the components of the orches-
tration layer and the other infrastructure resources.

6.4 Resources Management

It maintains the operations of available infrastructure
resources. It is a responsibility of each member of
the community to act on the existing tools in each
virtualized solution employed, i.e., VMware vCen-
ter. Middleware keeps updated information about hy-
pervisors allocated resources into metadata NoSQL
based repository, which can be queried by other com-
ponents. For this, we chose Cassandra, because it
provides scalability, high performance, and broad ap-
plicability as a distributed storage system, supporting
dynamic control over data layout and format (Kon-
stantinou et al., 2011). Platform message tasks, asyn-
chronously received via the GUI, API, or CLI inter-
face using the OCCI standard, are necessary. So, that
process seamless on back-end nodes (workers), giv-
ing to the system a more fluid look. A queue mes-
saging is needed for parallelizing and, especially, to
order-dependent tasks, like a shutdown and an in-
creasing memory activity for the same VM. For this,
we utilize Kafka as a distributed messaging system
for collecting and delivering messages because its low
latency, that is suitable for offline and online message
consumption in an efficient and scalable way, provid-
ing distributed support and scale out design (Kreps
et al., 2011). Until now, covers these following laaS
common tasks, among others:

e Creating and Deleting VMs with CentOS 7.6,
Windows 2012R2, Oracle EL 7.3 and Ubuntu
16.04 images;

e Creating, Changing and Deleting Resources (per-
sistent disk, memory, CPU);

e VM State operations (initialization, shutdown,
and reboot);

Cloud.Jus: Architecture for Provisioning Infrastructure as a Service in the Government Sector

e Snapshot Operations;

e Console Support: Provides to users a server ad-
ministration console to interact with VMware and
Hyper-V transparently.

e Integration and Automation: native support for
monitoring assets performance, availability and
service levels with Zabbix/Grafana built-in;

6.5 Monitoring

It allows the administrator and users to track in gen-
eral the use of the available and available comput-
ing resources. The integration between Cloud.jus and
the Zabbix and Grafana tools via APl was imple-
mented, which present real-time information about
metrics such as CPU usage and queue, memory us-
age, network traffic, disk consumption, among other
parameters.

7 DISCUSSION

One of the factors we want to eliminate with the im-
plementation of interoperability in the proposed com-
munity cloud is the vendor lock-in effect. Sometimes
open-source alternative could not fully meet the re-
quirements in the scenario presented in the Brazil-
ian Courts, that requires full compatibility with the
three main corporate hypervisors (VMware, Hyper-
V, and Oracle VM). OpenStack offers limited support
for VMware, leaving Oracle VM uncovered. Integra-
tion with Hyper-V depends on third-party plugins and
does not cover end-to-end management. The integra-
tion with VMware to run OpenStack in its latest re-
lease requires NSX, that is the manufacturer’s SDN
module, which is not yet so popular and is not avail-
able on most organs. The Horizon GUI interface is
visually poor, and it is not simple to implement sev-
eral modules and components of the solution, requir-
ing deep immersion of the administrators, something
that will not always be possible and ending up incur-
ring vendor lock-in, something that you want to avoid.

OpenNebula, while providing an advantageous
workflow for the release of features presented by the
visually appealing and functional SunStone interface,
which, despite its smooth implementation, still lacks
in integration. Limited support is offered to VMware,
requiring static sockets to establish the console open-
ing through VNC, where a token is the name of the
port and the machine. It represents a potential vulner-
ability when it comes to an environment that needs
extend to other bodies and communication via the in-
ternet. Hyper-V is not supported, nor is third-party
plugins used.

Despite supporting Oracle VM and VMware,
CloudStack does not support Hyper-V. Eucalyptus
has a different proposal, based on the possibility of
porting the environment through the compatibility of
its API with Amazon AWS. Neither tool offers inte-
gration with robust monitoring tools like Zabbix and
legacy support. We described the approaches con-
sidered by the main related works in the table 1.
There are distinctions about integration and monitor-
ing characteristics can also be observed in these ta-
bles, whose functionality can be more oriented to the
metrics of the solution itself or flexible metrics to
users, in addition to evaluating the coupling of these
solutions.

Search for compatibility with the Amazon APIs,
and OCCI extensibility is quite recurrent. Approaches
such as CYCLONE (Slawik et al., 2017) and FogBow
(Brasileiro et al., 2016b) middleware proposals are at-
tractive to enable integration operations, but require
the association of other tools to obtain a robust com-
munity cloud model. Other alternatives such as Au-
rora (Wickboldt et al., 2014) and DIRAC FCP (Casaj
et al., 2014) do not yet provide a sufficiently decou-
pled solution to serve more heterogeneous infrastruc-
tures, such as the Brazilian PJU.

Considering that an [aaS approach could maintain
transparency and compatibility with legacy applica-
tions by acting at a lower level, our choice in this
project employied an architecture to converge already
existing resources into a community cloud with low-
coupled design, that can deal with different infras-
tructure using multiple data centers, network devices,
storage systems, physical servers, and hypervisors. It
providing instances of VMs that abstract the complex-
ity of the underlying layers in an agile and not in-
trusive way. Now, it is easier to understand the use
of tools as interchangeable components and their role
in the process. We developed middleware to inter-
face with different hypervisors, a GUI (Dashboard), a
CLI and other integration services, that offers a uni-
fied resources view and monitoring automation for the
cloud.

8 CONCLUSION

The main contribution of this work is the seamless
provisioning and federation middleware, able to in-
tegrate components and infrastructure resources with
low coupling, keeping the focus on the needs of each
Court, besides a unique Dashboard, that centralizes
the cloud management and high-level capacity moni-
toring. So, while avoiding the vendor lock-in effect,
it is not required to get loss of features on migrat-

419

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

ing from traditional to cloud infrastructure. Its client-
centric integration and monitoring characteristics use
the APIs of each VMware, Hyper-V, and OracleVM
enterprise virtualization platform that become more
suitable. Unlike other solutions, that depend on evo-
lutions at library level or generic APIs, such as libvirt,
libcloud, and OCCI adaptations, making it unfeasi-
ble for system upgrades and version updates in large,
complex and legacy environments, sacrificing native
hypervisors features by making integration to the vir-
tualization layer something very rigid.

Initially, the platform was implemented to inte-
grate the available resources in the two leading in-
stitutions of the Brazilian PJU, the Federal Supreme
Court (STF) and the National Council of Justice
(CNJ). Cloud.Jus also enables a very flexible native
event monitoring approach, supporting the common
associated systems APIs: Zabbix and Grafana in, al-
lowing both monitoring and proactive and reactive ac-
tions. It may facilitate the transition to a cloud com-
puting model in other organizations also, to promote
common interests, such as maintenance of security in
the geographic distribution of their data, greater re-
dundancy, and tolerance to failures and catastrophes,
implementation of mechanisms to guarantee the strat-
egy of continuity of services. We believe Cloud.Jus
concepts present a feasible architecture contribution
by offering a secure and weakly coupled cloud man-
agement solution at the resources provider level. For
future work, we intend to implement the console call-
ing feature for Oracle-VM and consider mechanisms
to provide billing and resource savings reports.

ACKNOWLEDGEMENT

Klayton Castro thanks the Institutional Security Of-
fice of the Presidency of the Republic of Brazil (Grant
002/2017).

REFERENCES

Ahn, J., Park, C., Huh, J., Lewis, J., and Fowler, M. (2014).
Microservices. In Proceedings of the 47th Interna-
tional Symposium on Microarchitecture.

Baur, D. and Domaschka, J. (2016). Experiences from
building a cross-cloud orchestration tool. In Proceed-
ings of the 3rd Workshop on CrossCloud Infrastruc-
tures Platforms. ACM Press.

Baur, D., Seybold, D., Griesinger, F., Tsitsipas, A., Hauser,
C. B., and Domaschka, J. (2015). Cloud orchestra-
tion features: Are tools fit for purpose? In 2015
IEEE/ACM 8th International Conference on Utility
and Cloud Computing (UCC), pages 95-101.

420

Bégin, M.-E., Jones, B., Casey, J., Laure, E., Grey, F,
Loomis, C., and Kubli, R. (2008). An EGEE Com-
parative Study: Grids and Clouds evolution or revolu-
tion?

Brasileiro, F., Silva, G., Aragjo, F., Nébrega, M., Silva, L.,
and Rocha, G. (2016a). Fogbow: A middleware for
the federation of iaas clouds. In 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 531-534.

Brasileiro, F., Vivas, J. L., Silva, G. F. D., Lezzi, D.,
Diaz, C., Badia, R. M., Caballer, M., and Blanquer, 1.
(2016b). Flexible federation of cloud providers: The
EUBrazil cloud connect approach. In Proceedings -
IEEE 30th International Conference on Advanced In-
formation Networking and Applications Workshops,
WAINA 2016.

Buyya, R. (2009). Market-oriented cloud computing: Vi-
sion, hype, and reality of delivering computing as the
Sthutility. Proceedings: 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CC-
GRID 2009, page 1.

Buyya, R., Vecchiola, C., and Selvi, S. T. (2013). Mas-
tering Cloud Computing: Foundations and Appli-
cations Programming. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, Ist edition.
9780124095397, 9780124114548.

Casaj, A., Diaz, R. G., Tsaregorodtsev, A., Méndez Muiioz,
V., Casajus Ramo, A., Diaz, R. G., and Tsaregorodt-
sev, A. (2014). Cloud governance by a credit model
with DIRAC. In Proceedings of the 4th International
Conference on Cloud Computing and Services Sci-
ence, pages 679-686. SciTePress - Science and and
Technology Publications.

Ciuffoletti, A. (2014). A simple and generic interface for a
cloud monitoring service. In Proceedings of the 4th
International Conference on Cloud Computing and
Services Science. SciTePress - Science and and Tech-
nology Publications.

Cunha Rodrigues, G., Calheiros, R. N., Guimaries, V. T,
Santos, G. L., Carvalho, M. B., Granville, L. Z.,
Tarouco, L. M. R., and Buyya, R. (2016). Monitor-
ing of cloud computing environments. In Proceedings
of the 31st Annual ACM Symposium on Applied Com-
puting - SAC ’16.

Demchenko, Y., Makkes, M. X., Strijkers, R., and De Laat,
C. (2012). Intercloud Architecture for interoperability
and integration. In CloudCom 2012 - Proceedings:
2012 4th IEEE International Conference on Cloud
Computing Technology and Science.

Dukarié, R. and Juri¢, M. B. (2013). A Taxonomy and Sur-
vey of Infrastructure-as-a-Service Systems. Lecture
Notes on Information Theory.

Edwards, D. (2012). The History Of DevOps.
http://itrevolution.com/the-history-of-devops.

Edwards, D. (2014). Introducing DevOps to the Traditional
Enterprise. InfoQueue / eMag Issue, 14.

Fiore, S., Mancini, M., Elia, D., Nassisi, P., Brasileiro, F. V.,
and Blanquer, 1. (2015). Big data analytics for cli-
mate change and biodiversity in the EUBrazilCC fed-
erated cloud infrastructure. In Proceedings of the 12th

Cloud.Jus: Architecture for Provisioning Infrastructure as a Service in the Government Sector

ACM International Conference on Computing Fron-
tiers - CF 5.

Foster, 1., Zhao, Y., Raicu, 1., and Lu, S. (2008). Cloud com-
puting and grid computing 360-degree compared. In
2008 Grid Computing Environments Workshop, pages
1-10.

Jamsa, D. K. (2012). Cloud Computing: SaaS, Paas,
laaS, Virtualization, Business Models, Mobile, Se-
curity and More. Jones & Bartlett Learning.
Http://web.mit.edu/smadnick/www/wp/2013-01.pdf —

Kim, G., Willis, J., Humble, J., and Debois, P. (2016).
The DevOps Handbook: How to Create World-Class
Agility, Reliability and Security in Technology Organi-
zations, volume 2. T Revolution, 2nd edition edition.

Konstantinou, 1., Angelou, E., Boumpouka, C., Tsoumakos,
D., and Koziris, N. (2011). On the elasticity of nosql
databases over cloud management platforms. In Pro-
ceedings of the 20perscriptth ACM International Con-
ference on Information and Knowledge Management,
CIKM 11, pages 2385-2388, New York, NY, USA.
ACM.

Korte, E., Challita, S., Zalila, F., Merle, P., and Grabowski,
J. (2018). Model-driven configuration management
of cloud applications with OCCI. In Proceedings of
the 8th International Conference on Cloud Comput-
ing and Services Science. SCITEPRESS - Science and
Technology Publications.

Kreps, J., Narkhede, N., and Rao, J. (2011). Kafka: A dis-
tributed messaging system for log processing. In Pro-
ceedings of 6th International Workshop on Network-
ing Meets Databases (NetDB). IEEE.

Llorente, I. M. (2013). Eucalyptus, CloudStack, OpenStack
and OpenNebula: A Tale of Two Cloud Models.

Lynn, T., Hunt, G., Corcoran, D., Morrison, J., and Healy,
P. (2015). A comparative study of current open-source
infrastructure as a service frameworks. In Proceedings
of the 5th International Conference on Cloud Com-
puting and Services Science. SciTePress - Science and
and Technology Publications.

Microsoft (2016). Hyper-V Technology Overview.
https://docs.microsoft.com/en-us/windows-
server/virtualization/hyper-v/hyper-v-technology-
overview.

OCCI (2018). Open Cloud Computing Interface.
http://occi-wg.org/.

Oracle (2018). Oracle VM Overview.
https://www.oracle.com/technetwork/server-
storage/vm/overview/index.html.

Par, B., Kimle, M., Fern, P. O., Pardk, B., Sustr, Z., Kimle,
M., Fernandez, P. O., Garcia, A. L., Sachtouris, S., and
Muiioz, V. M. (2016). Evolution of the Open Cloud
Computing Interface. In Proceedings of the 6th In-
ternational Conference on Cloud Computing and Ser-
vices Science, volume 2, pages 339-346.

Parmar, H. and Champaneria, T. (2014). Comparative
Study of Open Nebula, Eucalyptus, Open Stack and
Cloud Stack. International Journal of Advanced Re-
search in Computer Science and Software Engineer-
ing, 4(2):991-996.

Parpaillon, J., Merle, P., Barais, O., Dutoo, M., and Paraiso,
E. (2015). OCClware - A formal and tooled frame-
work for managing everything as a service. In CEUR
Workshop Proceedings.

Paul, S., Jain, R., Samaka, M., and Pan, J. (2014). Ap-
plication delivery in multi-cloud environments using
software defined networking. Computer Networks,
68:166-186.

Petcu, D., Cr, C., and Rak, M. (2013). On the Interoperabil-
ity in Multiple Clouds. In Proceedings of the 3rd In-
ternational Conference on Cloud Computing and Ser-
vices Science. SciTePress - Science and and Technol-
ogy Publications.

Roveda, D., Vogel, A., and Griebler, D. (2016). Under-
standing, Discussing and Analyzing the OpenNebula
and the OpenStack laaS Management Layers.

Sefraoui, O., Aissaoui, M., and Eleuldj, M. (2012). Open-
stack: Toward an open-source solution for cloud com-
puting. International Journal of Computer Applica-
tions, 55(3):38—-42. Full text available.

Sessions, R. (2006). Um melhor caminho para arquiteturas
empresariais.

Slawik, M., Blanchet, C., Demchenko, Y., Turkmen, F.,
Ilyushkin, A., Laat, C. D., and Loomis, C. (2017). CY-
CLONE: The multi-cloud middleware stack for appli-
cation deployment and management. In Proceedings
of the International Conference on Cloud Computing
Technology and Science, CloudCom, pages 347-352.

Sosinsky, B. (2010). Cloud Computing Bible, volume 762.
John Wiley & Sons.

Sotomayor, B., Montero, R. S., Llorente, I. M., and Foster,
I. (2009). Virtual Infrastructure Management in Pri-
vate and Hybrid Clouds. [EEE Internet Computing,
13:5.

§ustr, Z., Scardaci, D., Sitera, J., Pardk, B., and Méndez
Muiloz, V. (2016). Easing Scientific Computing and
Federated Management in the Cloud with OCCI. In
Proceedings of the 6th International Conference on
Cloud Computing and Services Science, volume 2,
pages 347-354. SciTePress.

Toosi, A. N., Calheiros, R. N., and Buyya, R. (2014). In-
terconnected cloud computing environments: Chal-
lenges, taxonomy, and survey. ACM Computing Sur-
veys (CSUR), 47(1):1-47.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lind-
ner, M. (2008). A Break in the Clouds: Towards a
Cloud Definition. Computer Communication Review,
39(1):50-55.

VMware (2018). vSphere ESXi Hypervisor.
https://www.vmware.com/br/products/esxi-and-
esx.html.

Wickboldt, J. A., Esteves, R. P, de Carvalho, M. B., and
Granville, L. Z. (2014). Resource management in iaas
cloud platforms made flexible through programmabil-
ity. Computer Networks, 68:54—70. Communications
and Networking in the Cloud.

421

