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Abstract: In this project we constructed and evaluated research artifacts to support Search and Rescue (SAR) mission 

coordinators in planning searches for missing persons or objects at sea. An iterative heuristic based 

optimization model was formulated and implemented in a prototype that is integrated in a Decision Support 

System. Using representative examples, we show that the new planning method can help coordinators with 

the complex task of allocating search resources to search areas in a way that maximizes the chances of finding 

survivors quickly. Although developed for the Canadian Coast Guard, our method can be used in other 

countries. We followed Design Science Research guidelines and our design process was according to the 

Design Science Research Methodology. The research entry point was client and context initiated and beta 

testing with users is planned in the spring of 2019. It is expected that our innovative artifacts will contribute 

to improving the SAR system and saving more lives. 

1 INTRODUCTION 

Search and Rescue (SAR) comprises “the search for, 

and provision of aid to, persons who are, or who are 

feared to be, in distress” (Canadian Coast Guard, 

2014). The Canadian government is responsible for 

providing SAR in an area covering over 18 million 

square kilometers of land and water and the Canadian 

Coast Guard is involved in an average of 6000 

incidents per year (Quadrennial SAR review, 2013). 

Maritime SAR operations are under the control of 

three joint rescue coordination centres and two 

marine rescue sub-centres where SAR mission 

coordinators (SMC) are responsible for planning, 

coordinating, controlling and directing the response 

to incidents. They are decision-makers who must 

make timely decisions in situations where lives are at 

risk. Search planning is a complex task where time is 

a crucial factor for survivors who must be found 

quickly. SAR operations are among the most critical 

responsibilities of the Canadian Coast Guard and can 

be difficult to carry out. Each situation is unique: 

Particular constraints limit the choice of the search 

resources and their deployment, difficult climatic and 

weather conditions may be present and operations are 

often carried out in remote and unfamiliar areas. It is 

therefore of the utmost importance to plan searches 

that ensure the best use of available search resources 

in order to maximize the chances of finding survivors. 

The Canadian Coast Guard (CCG) is currently 

working on developing the Advanced Search 

Planning Tool (ASPT), the next generation decision 

support system (DSS) to replace CANSARP 

(Canadian Coast Guard, 1998), its current SAR 

planning system. During the requirements 

specification phase, the need for an intelligent search 

planning module, that can recommend search plans 

designed to ensure the optimal use of available search 

resources, was identified and confirmed. This led our 

research team to formulate the following research 

question:  

RQ: How can optimal or near-optimal search 

operations be planned in reasonable time and 

decision support provided to assist maritime search 

mission coordinators? 

The research presented in the paper was 

conducted within the Design Science Research (DSR) 

paradigm defined by Hevner and Chatterjee (2010), 

as“a research paradigm in which a designer answers 

questions relevant to human problems via the 

creation of innovative artifacts, thereby contributing 

new knowledge to the body of scientific evidence. The 

designed artifacts are both useful and fundamental in 

understanding that problem.” 
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In order to answer the research question relevant 

to the human problem of searching for and quickly 

finding missing persons or objects at sea, we created 

a method consisting of innovative artifacts as follows: 

we first formulated a search planning model 

involving simulation and optimization based on 

search theory (Stone, 2004). Search theory can be 

seen as the application of Bayesian statistics to the 

question of where to search for a missing object. We 

refer the reader interested in learning about search 

theory to the seminal work of L. D. Stone (Stone, 

2004). 

Our model was then translated into an algorithm 

and further implemented in Search Planner, a 

prototype that provides optimal or satisficing (Simon, 

1956) feasible search plans to the SMC. The figures 

of merit, probability of success, associated with the 

resulting search plans are obtained via simulation of 

moving search objects and available search and 

rescue units. Although a standalone application, 

Search Planner has been integrated within the ASPT 

DSS and beta testing with the users is planned in the 

spring of 2019. The work presented here was carried 

out over a span of three years, from 2016 to 2018. 

The rest of this paper is structured as follows: In 

Section 2, we address the research background along 

with related work and research design. In Section 3, 

we describe and explain our search planning model, 

algorithm and present the implemented prototype. 

Using representative application examples in Section 

4, we show some results. In Section 5 we provide a 

discussion as well as limitations. Finally, we conclude 

in Section 6. 

2 BACKGROUND 

Following the receipt of an alert pertaining to a 

maritime incident, SAR mission coordinator must 

gather information in order to establish whether a 

search is to be conducted, in which case he/she must 

begin the search planning process by verifying the 

search resources available, choosing the resources, 

determining the area to be searched and developing a 

search plan. A search plan is a distribution of the 

search resources over a search area, also called effort 

allocation. Optimal search planning may be defined 

as the allocation of the available search resources in 

such a way to maximize the chances of locating and 

rescuing survivors, subject to operational constraints.  

Over the years, manual methods and procedures 

have been devised to develop search plans. However, 

these methods do not in general take advantage of 

today’s computer power and advances in search 

theory and simulation, and may not be specifically 

tailored to the search equipment on hand, which may 

result in plans that do not have the highest success 

probabilities. 

Nonetheless, it has been known since the Second 

World War that search theory-based planning can 

result in significant gains in search effectiveness. It is 

now recognized that the use of search theory and 

organized planning results in higher success rates and 

a significant increase in the number of lives preserved 

(Frost and Stone, 2001; Abi-Zeid and Frost, 2005; 

Ferguson, 2008; Abi-Zeid et al., 2011). Furthermore, 

Stone et al. (2016) give examples of some high profile 

cases including the response to the submarine threat 

in the Atlantic, the search for a lost H-bomb in the 

Mediterranean, the search for the US nuclear 

submarine Scorpion, the clearing of unexploded 

ordnance in the Suez Canal, the search for the sunken 

treasure ship, the SS Central America, and more 

recently the locating of the wreckage of AF 447. The 

authors further identify two unsuccessful searches 

that might have benefited from better planning. In 

more recent years, search theory has also been applied 

in the area of autonomous searching by robots in 

structured environments, and by unmanned air 

vehicles for outdoor searching of large areas 

(Ablavsky and Snorrason, 2000; Lau et al., 2008; Sato 

and Royset, 2010; Kriheli et al., 2016; Venkatesan, 

2016; Bernardini et al., 2017).  

The need for specific decision support systems 

that can assist a SMC has long been identified in the 

scientific literature (Abi-Zeid and Frost 2005; Hillier, 

2008; Aronica et al., 2010; Kratzke et al., 2010; Stone 

et al., 2014; Małyszko and Wielgosz, 2016; 

Bellantuono et al., 2016). Various SAR information 

systems are currently available in various countries 

(Vidan et al., 2016), including the widely used SARIS 

(sold by BMT ships & Coastal Dynamics product), 

SARMAP (sold by RPS ASA), SAR (sold by 

TRANSAS), SARGIS (Guoxiang and Maofeng, 

2010), and CANSARP (Canadian Coast Guard, 

1998). However, at the present time, only SAROPS, 

a maritime SAR DSS developed for the US Coast 

Guard, provides capabilities for search theory-based 

search planning (Kratzke et al. 2010). Our research 

project was therefore created as an answer to an 

expressed requirement of the Canadian Coast Guard 

to fill an existing gap. Nonetheless, the knowledge 

created and our designed artifacts can benefit the 

whole international SAR community, since there is 

willingness on the part of the Canadian Coast Guard 

to share knowledge with other countries.  

In the next subsection, we describe our research 

design and provide methodological context.
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Figure 1: The three design research cycles (adapted from Hevner and Chatterjee, 2010, Fig. 2.2). 

2.1 Research Design 

Our project was conducted following 

recommendations from Hevner and Chatterjee (2010) 

who proposed three design research cycles, where the 

aim is to ensure that the research is both rigorous and 

relevant, and provided design science research 

guidelines. Figure 1 shows the three research cycle 

while providing additional context-specific 

information. Table 1 provides context-specific 

information to design science research guidelines. 

Based on our research question, our objective and 

design requirement was to develop and implement 

methods and algorithms for optimal search planning 

that would provide results in reasonable time. Our 

artifacts are therefore, the search planning method, 

the algorithms and the resulting prototype. These are 

viable since they are compatible with existing 

technical systems, were transferred to an operational 

system in the organizational environment, and will be 

supported by training and technical teams. 

The relevance of our research is established since 

the requirements were expressed by the organization 

responsible for search planning, namely the Canadian 

Coast Guard and by future users of our artifacts. 

Operations and management had identified problems 

with the current methods and foreseen opportunities 

to remedy this situation by taking advantage of 

advances in computing power and in simulation. As 

for rigor, our approach was based on search theory, a 

well-established theory for search and detection 

(Stone et al., 2016). We conducted a thorough 

literature review and had exchanges with other search 

theory experts. Furthermore, we have extensive 

experience with search theory for SAR, since two of 

the authors have been conducting research on this 

topic for over 20 years, and the third for over 10 years. 

In fact, we had previously developed SARPlan for 

overland search planning, a DSS that had won awards 

for innovative technology on the national level.  

Our design process was iterative, as we defined 

and refined our artifacts. All along the project, there 

were regular meetings and exchanges with 
practitioners, technical staff and intended users and 

their representatives, who provided input, criticism, 

requests for modifications, constraints, etc. Five 

versions of the model and optimization algorithms 

were developed, compared and tested before adopting 

the current version. The aim of these iterations was to 

increase the solution’s quality and reduce 

computation time. The acceptance of our artifacts was 

an ongoing process where we produced various 

documents, demonstrated the prototype, and had 

multiple meetings with the stakeholders. 

Furthermore, external scientific experts have been 

tasked to evaluate our methods and artifacts. 

During the design process, we followed the 

Design Science Research Methodology as shown in 

Figure 2 (Peffers et al., 2007). Our research entry 

point was client/context centered. The problem 

identified was how to plan search operations for 

moving objects simulated using Monte Carlo based 

drift models. Our objective was to demonstrate a 

search planning method, which led us to design and 

develop search theory based artifacts that were 

implemented and demonstrated in a prototype. The 

client integrated the artifacts in their operational 

system. Evaluation and communication are on-going.
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Table 1: Design research guidelines (adapted from Hevner and Chatterjee, 2010, Table 2.1). 

Guideline Description (Hevner and Chatterjee, 2010) Specific context 

1. Design as an 

Artifact 

Design science research must produce a viable 

artifact in the form of a construct, a model, a 

method, or an instantiation. 

Search planner prototype for ASPT 

2. Problem relevance The objective of design science research is to 

develop technology-based solutions to important 

and relevant business problems. 

Relevant problem: maritime search and 

rescue operations planning 

3. Design evaluation The utility, quality, and efficacy of a design artifact 

must be rigorously demonstrated via well-executed 

evaluation methods. 

Comparison with search mission 

coordinators manual planning 

(forthcoming) 

4. Research 

contributions 

Effective design science research must provide clear 

and verifiable contributions in the areas of the 

design artifact, design foundations, and/or design 

methodologies. 

Proof of concept and prototype in 

response to search mission 

coordinators needs 

5. Research rigor Design science research relies upon the application 

of rigorous methods in both the construction and 

evaluation of design the artifact. 

Agile development approach, 

implementation of search theory 

concepts, optimization approaches, 

search mission coordinators expertize 

6. Design as a search 

process 

The search for an effective artifact requires utilizing 

available means to reach desired ends while 

satisfying laws in the problem environment. 

Development of a prototype 

compatible with existing systems, 

algorithms and simulator short 

response time needed 

7. Communication of 

research 

Design science research must be presented 

effectively to both technology-oriented and 

management-oriented audiences. 

Open source, professional and 

scientific publications 

 

Figure 2: Our process iteration following the Design Science Research Methodology. 
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Figure 3: The SAR Planning process. 

3 SEARCH PLANNER 

When a SMC begins the process of planning a 

maritime search mission, he/she starts by creating a 

SAR case containing all the available information 

concerning the emergency, the characteristics of the 

vessel, the number of persons involved, the last 

known point, possible sightings, relevant 

communications, etc. The next step is to run, in 

ASPT, a Monte Carlo (MC) based stochastic drift 

simulation (particle filter) for computing probability 

distributions of the search object location. The first 

step in the simulation is to seed, in space, a certain 

number of particles (typically 5000), equally likely to 

be the search object, using a 2D Gaussian distribution 

with a standard deviation specified by the user. The 

locations where the particles are seeded in the 

simulation represent plausible last known positions of 

the search object. The particles are then moved, by 

simulation, in time and space, according to a drift 

model, as a function of surface currents and winds. 

The drift model calculates, over a simulation horizon, 

the positions of the particles at each time step. Each 

set of particle’s positions in time represents a search 

object’s likely trajectory (Breivik and Allen, 2008). 

The simulation’s output, the MC drift file containing 

the particles’ positions at each time step, is an input 

to Search Planner. 

Subsequently, the SMC must identify available 

search resources that will be tasked to conduct the 

search operations. This is also an input to Search 

Planner. At this point, the SMC can either manually 

produce a search operation and send it to Search 

Planner for evaluation purposes, i.e. computing its 

probability of success, or request that Search Planner 

suggest a search operation in which case the 

Optimizer module is invoked. Planning a search 

operation (SO) consists of assigning search plans to 

the available search resources (SRU). A search plan 

(SP) is defined for a SRU by a search pattern over a 

search rectangle. A search area (SA) is a rectangular 

region where SRUs are tasked. It is defined over a 

drift simulation time horizon and is based on the 

simulated particles’ positions.  

Our prototype Search Planner contains three 

submodules, a Simulator (to simulate the positions of 

the SRU), an Evaluator, and an Optimizer. The 

Optimizer uses the Evaluator that in turns uses the 

SRU Simulator. The maritime SAR planning process 

using ASPT along with Search Planner is presented 

in Figure 3. 

Our objective in designing and implementing the 

Optimizer is to provide a tool that recommends 

feasible search operations with the highest probability 

of success (POS). A POS is a figure of merit, 

associated with a search operation, loosely defined as 

the probability of finding the search object.  

In order to illustrate the concepts used, Figure 4 

presents an example of a search area containing a 12-

hour simulated drift.  
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Figure 4: An example of a Search Operation. 

The points are positions of drifting particles in time. 

The green polygon is the possibility area, a convex 

hull containing all search particles positions over the 

12-hour period. The Search operation is composed of 

three SRUs each having their own search pattern over 

their search rectangle. A helicopter (SRU1) is present 

on-scene between hours 1 and 3 of the simulation. A 

fixed wing aircraft (SRU2) is present between hours 4 

and 8 and a vessel (SRU3) is present between hours 4 

and 10. The patterns shown are parallel search 

patterns. Our artifacts are designed to recommend the 

search plans of a search operation, namely identify 

the best combination of search rectangles (in red) and 

the enclosed patterns.  

We describe below the algorithm, based on search 

theory, implemented in the Optimizer module. 

3.1 The Optimizer 

We developed a heuristic based optimization 

algorithm that provides feasible optimal or near-

optimal search plans, given appropriate input 

parameters, operational constraints and data. It takes 

into account the various characteristics of the SRUs 

namely their endurance, speed, altitude, and detection 

capability as a function of the environment and of the 

search object type. The activity diagram depicting the 

Search Planner process for suggesting a search 

operation is presented in Figure 5. 

Given a SAR case, the optimal search planning 

problem or SRU allocation problem can be viewed in 

terms of the global problem of identifying a search 

area, and then locally defining a search plan for each 

SRU by assigning it to its optimal or satisfactory 

feasible search rectangle, yielding a feasible optimal 

or near-optimal search operation. This division of the 

optimization task is similar to the approach used by 

the SMCs. They tend to define the general SA first 

and then position the search patterns of various SRUs 

inside that large SA. The optimization procedure we 

propose uses a simulation-based evaluation of the 

POS of the candidate SO at each iteration.  
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3.1.1 Evaluating a Search Operation 

Optimizing search operations requires that we find 

the best combination of search plans for the available 

SRUs. The figure of merit used to compare candidate 

search operations is the probability of success 

associated with the SRUs and a search object 

(Kratzke et al., 2010). This is the probability of 

detecting the object It is obtained via the Simulator 

and the Evaluator.  

Suppose that we have P particles. Let O(p) be the 

probability that particle p is the search object (prior to 

searching) and let pfail(p) be the probability that 

particle p has not been detected. Before any search is 

conducted, this probability is 1. Consider a SRU u 

searching along K straight-line legs where dk is the 

distance at the closest point of approach between the 

SRU u on leg k and the particle p. Let fu(dk) be the 

probability that SRU u detects particle p when the 

distance, at the closest point of approach, between the 

particle and the SRU is dk. This is computed from 

lateral range curves developed following extensive 

experiments under various weather and search 

conditions (Frost, 2002). It is a function of the search 

object and of the SRU. The probability the SRU u 

fails to detect the particle on the kth leg is: 1−fu(dk). 

Detections are assumed to be independent along 

different search legs. The probability of SRU u not 

detecting particle p is therefore: 

 

  𝑝𝑓𝑎𝑖𝑙(𝑝, 𝑆𝑅𝑈𝑢) =  ∏ (1 − 𝑓𝑢(𝑑𝑘))𝐾
𝑘=1    (1) 

 

Suppose now that U SRUs are searching, then the 

probability of particle p not being detected is: 

 

 𝑝𝑓𝑎𝑖𝑙(𝑝) =  ∏ (1 − 𝑝𝑓𝑎𝑖𝑙(𝑝, 𝑆𝑅𝑈𝑢))𝑈
𝑢=1   (2) 

and the probability of a particle being detected is  

 

 𝑃𝑂𝐷(𝑝) =  (1 − 𝑝𝑓𝑎𝑖𝑙(𝑝))   (3) 

 

Figure 5: The Activity Diagram for optimization in Search Planner.
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The probability of success of a search operation S is 

then defined as:  

 

 𝑃𝑂𝑆(𝑆) =  ∑ 𝑂(𝑝)𝑃
𝑝=1 𝑃𝑂𝐷(𝑝)  (4) 

After an unsuccessful search, the prior probability 

O(p) is updated in a Bayesian fashion and the 

posterior probability (after the search) Oa(p), used as 

an a priori probability for the subsequent search, is 

computed as follows: 

 𝑂𝑎(𝑝) =  𝑂(𝑝)𝑝𝑓𝑎𝑖𝑙(𝑝)   (5) 

3.1.2  The Optimization Algorithm 

We begin by receiving, from ASPT, drift data 

containing the particle’s position in space and time. 

Next, we create a convex hull (called a possibility 

area or PA) containing all the particles during the 

whole MC simulation. There are many algorithms to 

generate convex hulls from a set of 2D points. We use 

Andrew's monotone chain algorithm (Andrew, 1979) 

that has a O(n log n) complexity. We then compute a 

search area, a minimum spanning rectangle around 

the convex hull. The SA can be oriented according to 

the mean drift vector, or following the convex hull’s 

longest side. Using the information about the 

available resources such as time on-scene, duration 

on-scene, detection capability as a function of the 

search object, operational constraints on track spacing 

in search patterns, etc., the next step is to generate, for 

each SRU, a region of interest (ROI), a rectangle 

enclosing the convex hull of particles present during 

a given time period, normally its on-scene duration. 

This uses the same procedure as computing a SA but 

with a subset of the particles. We then apply a sub-

optimization filtering procedure: For each SRU, we 

modify its ROI by shrinking it or enlarging it and by 

moving its centre, within the operational constraints 

related to the SRU’s capabilities. Each modified 

version of the ROI is a possible search plan (rectangle 

and search pattern). We only retain feasible search 

plans. We then evaluate all combinations of feasible 

search plans for all SRUs and we obtain a POS 

evaluation of the SO (Equation 4). The algorithm is 

iterative, we continue until we have evaluated all the 

combinations or until we reach a given stopping 

criterion such as a time limit or minimum global POS 

improvement. The pseudo-algorithm is summarized 

in Algorithm 1. 

 

 

 

 

Algorithm 1: The optimization pseudo-algorithm. 

 
Search operations are successive in time (Alpha, 

Bravo, Charlie, etc.) and are planned as a function of 

the previous search operations. Consider for example 

an Alpha search that was conducted over N hours 

starting at time T. If it is unsuccessful, a subsequent 

search operation Bravo, must be planned over M 

hours, starting at time T+N. This is done by redrifting 

Input:  

U SRUs, search object, the 

drifted particles positions in 

time 

Output: 

A best POS Search Operation 

containing a search rectangle 

and pattern for each of the U 

SRUs  

Steps: 

1 - Let z(u) be the total amount of 

available search effort for SRU 

u (hours) 

2 - For each SRU u = 1 to U: 

i. Construct the convex hull 

containing the particles 

during the on-scene 

period of the SRU u 

ii. Construct its ROI: A(u)  
iii. Run the sub-optimization 

procedure to generate 

SR(u), a set of feasible 

search rectangles. This 

set is constructed by 

varying the location, the 

size and the orientation 

of A(u). 

3 - Add the sets SR(u) to a 

candidate SO 

4 - Simulate (Simulator) and 

evaluate (Evaluator) to obtain 

the SO’s POS 

5 - Let S be the POS value of the 

current candidate SO. Let S* be 

the POS value of the best so 

far incumbent SO. If S is 

strictly better than S* then 

the candidate SO becomes the 

best so far incumbent SO and S* 

is updated 

6 - If the stopping criteria are 

not met, return to step 4. 

Otherwise recommend the best so 

far incumbent SO. 
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the particles starting at simulation time T for a 

duration of M+N hours and by re-evaluating the 

Alpha search as a function of the real environmental 

conditions observed between T and T+N. Re-

evaluating the Alpha search produces more realistic 

figures of merit to update the probability that a given 

search particle is the actual search object, depending 

on whether it came within detection range of a SRU 

during the Alpha search. The optimized Bravo search 

is then obtained by maximizing Equation 4, between 

T+N and T+N+M, where O (p) are replaced by the 

updated particles probabilities, Oa(p). Particles with 

lower Oa(p), ones that came within detection range, 

are less likely to be the search object and their 

importance in planning subsequent searches are 

thereby reduced. Furthermore, the cumulative 

probability of success is computed for successive 

search operations. This information is very useful for 

the search reduction process. At some point, the 

commander will have to decide to reduce and stop the 

search. This happens when he/she is reasonably 

convinced that the chances of finding survivors are 

practically nil, reflected by many hours of 

unsuccessful search operations that had a very high 

theoretical cumulative POS. The rationale is, if 

survivors were to be found, they would have been 

found by the end of these well-planned searches. 

Other factors to take into account in the reduction 

decision include the average survival times of persons 

in water under the given environmental conditions.  

4 APPLICATION EXAMPLES 

In order to illustrate the applicability of our method, 

we present two representative examples of realistic 

maritime SAR cases. The first incident, described in 

Section 4.1, pertains to a person in water (PIW) and 

the second one, in Section 4.2, to a fishing vessel 

(FV). The drift model in ASPT is used to estimate the 

particles positions at time steps of 15 minutes. 

Currents and winds and last known points are entered 

in the MC module of ASPT. A total of 5000 particles 

are seeded. The corresponding lateral range curves 

for computing detection probabilities are used. The 

results are presented using the geographic 

information system QGIS (QGIS development team, 

2019). It is important to note that both the search 

object and the SRUs are moving. Detection 

opportunities depend on both positions being 

synchronized. The heat maps presented correspond to 

the position of all particles during the whole search. 

They do not necessarily convey a good idea of the 

movement of the particles. The ability of our search 

planning method to take into account the particles’ 

movements is one of its main advantages over the 

current manual planning method using deterministic 

drift. In fact, a person manually developing a plan will 

be tempted to position the search pattern over the heat 

map. Although a good starting heuristic, it does not 

automatically produce the best probabilities of 

success since it is not possible to synchronize in one’s 

head the positions of the particles and of the SRU. 

This can only be done by simulation, as in our 

Simulator component. The white triangle shows the 

direction of the drift. The solution for both examples 

was obtained in under one minute. The area searched 

is much larger for the FV because its search duration 

is longer. 

4.1 Case 1: Person in Water 

A person has gone overboard in water and is assumed 

to have a survival suit. Two SRUs are available: One 

helicopter with endurance (time on-scene) of 2 hours 

and one fixed wing with endurance of 4 hours. The 

visibility is of 10 nautical miles (NM). The waves are 

5 m high. The Search Planner results are presented in 

Figure 6 where we see the search rectangles and 

corresponding search patterns (expanding square in 

blue and parallel in purple) assigned to the two SRUs. 

The helicopter, flying at 50 knots at an altitude of 750 

ft, has a recommended search rectangle of 6 by 9 

(NM) (smaller rectangle). The fixed wing has a 

recommended search rectangle of 11 by 14 (NM) 

(larger rectangle). Its search speed is 100 knots and 

altitude is 1000 feet. The combined probability of 

success is 31%. This may seem not very high but the 

probability of detecting a person in water is very 

small because of the size of the person. The total area 

searched is 154 NM2 and represents a 4 hour drift. 

Deconfliction between SRUs is based on altitudes. 

 
Figure 6: The proposed search operation for the PIW. 
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4.2 Case 2: Fishing Vessel 

A fishing vessel is missing. Two SRUs are available: 

One helicopter with endurance (time on-scene) of 2 

hours and one fixed wing with endurance (time on-

scene) of 6 hours. The visibility is of 10 nautical miles 

(NM). The results are presented in Figure 7 where we 

see both search rectangles (in red) and corresponding 

search patterns (parallel patterns, dotted blue and 

purple lines). The helicopter, flying at 50 knots at an 

altitude of 100 ft, has a recommended search 

rectangle of 17 by 20 (NM). The fixed wing, flying at 

120 knots and an altitude of 1500 feet, has a search 

rectangle of 38 by 45 (NM). All particles were 

covered (came within detection range). Under these 

conditions, the probability of success is very high: 

99%. This can be explained by the fact that the object 

has high detectability. The total search area is 1710 

NM2 and represents a 6 hour drift. Deconfliction 

between SRUs is based on altitudes. 

 

Figure 7: The proposed search operation for the FV. 

5 DISCUSSION 

The two examples presented above illustrate how, by 

designing Search Planner, we were able to answer our 

research question. Our new method, implemented in 

a prototype and integrated in a DSS, can assist search 

mission coordinators in planning optimal or near-

optimal search operations in reasonable time. As 

required, Search Planner produces search plans for 

each available SRU that have the best combined POS 

within a limited computation time defined by the user.  

The software has been verified in the sense that it 

meets the specifications of the designed method. Its 

validation, i.e. ensuring that the software meets the 

requirements of the users is planned in the spring of 

2019. However, the evaluation of the results produced 

(search plans quality) is an ongoing process that 

requires some months, and is planned as follows: 

First, “beat the DSS” sessions where experienced 

SMCs are asked to provide manual plans will be 

conducted. The POS of the manually produced plans 

will be compared with the automatically produced 

plans. It is expected that the DSS will compete 

advantageously with the human operator. In all cases, 

this experiment will contribute to improving the 

algorithm’s heuristics based on practical human 

experience and knowledge. Second, past solved SAR 

incidents will be used to validate the artifacts. They 

will be defined as new cases, and the search plans 

produced by the DSS will be evaluated as a function 

of the locations where the search objects were 

actually found in the past incidents. DSS-produced 

search plans will be considered valid if they contain 

the locations of the found search objects. Third, to 

help validate their drift simulation module, 

experiments are planned by the Canadian Coast 

Guard where buoys will be released in water and 

tracked. Their actual physical trajectories will be 

compared to the simulated particles positions. 

Comparing the output of our DSS with existing 

similar systems could further validate our artifacts. 

However, at the current time, we do not have access 

to the only other DSS, developed in the US, that has 

similar optimal search planning functionalities 

(Kratzke et al., 2010). 

Our search planning method has limitations. The 

main one is related to the model itself. Any model is 

a simplified assumption of reality based on 

underlying hypotheses. In our case, in order to use 

theoretical search theory and lateral range curves to 

compute probabilities of detection and of success, we 

make the assumption of independent detections along 

infinitely long parallel search tracks. This a 

reasonable assumption when the tracks are longer 

than the detection range. Furthermore, the lateral 

range curves, constructed and validated in 

experiments (US unpublished reports, 1998; 2005), 

are simplified detection models. However, both the 

underlying hypotheses and the lateral range curves 

are behind a DSS that has been operational and is 

successfully used for over 10 years in the US (Stone 

et al., 2016).  

Another limitation is related to scaling up. Drift 

simulation may imply the use of thousands of 

particles that drift for many hours. Their positions can 

be computed at various time steps ranging from 1 

minute to 30 minutes. This has great implications on 

the size of the problem. Computing, using step by step 

search pattern simulation, probabilities of detections 
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of millions of particles, in order to evaluate a possible 

search operation, can be very time consuming. 

Alternatives including particle random sampling and 

evaluating a subset of particles can reduce 

computation time. Working with larger simulation 

time steps is another option. Intensive sensitivity 

analyses are necessary to arrive to a compromise in 

terms of solution quality and computation time. 

One of the challenges we face is the acceptance of 

the DSS by the users as this implies a new way of 

working and a new way of thinking. Furthermore, this 

will imply extensive training (already planned) before 

we can be confident that the tool is used to its full 

capability. Moreover, the real ability of the proposed 

method to increase the number of lives saved can be 

assessed only after it has been in operation for a few 

years when it is established that the average number 

of lives saved has actually increased. Finally, search 

operations with very high success probabilities do not 

guarantee that the search objects will be found. There 

have been many examples of SRUs flying over a 

missing object and not seeing it. Although the POS is 

accepted as a figure of merit for a search plan, it 

remains only a probability. 

6 CONCLUSION 

We have designed research artifacts to support SAR 

mission coordinators in planning searches for missing 

persons or objects at sea. An iterative heuristic based 

optimization model was formulated and implemented 

in a prototype that is integrated in a DSS. Following 

the identified limitations in the discussion section, 

further research is needed to improve the quality and 

performance of the heuristic optimization algorithm, 

and to measure the real gains obtained in an 

operational setting. For example, in order to try to 

reduce computation time related to evaluating the 

POS of each candidate search rectangle by 

simulation, we are currently exploring machine-

learning techniques from Artificial Intelligence to 

automatically “learn” then estimate, without having 

to simulate the whole search pattern, the POS of a 

search rectangle from a set of previously evaluated 

similar rectangles in a similar area. This could result 

in a significant decrease in computation time.  

Future planned research includes the development 

and evaluation of clustering algorithms that divide the 

drifted particles set in clusters, which kernels can be 

used as a starting centre points for the candidate 

search rectangles. Another possible avenue is to 

explore the influence of the search pattern type and its 

starting point as a function of the drift’s direction. 

Further algorithm enhancements could also be 

achieved by adding some degrees of freedom in 

designing the search plans: the initial convex hull 

defining the possibility area could be constructed 

using the rotating callipers algorithm to obtain the 

most promising orientation of the search area 

(Toussaint, 1983). In addition, the candidate search 

rectangles could be rotated within the search area in 

an attempt to improve the POS. Most importantly, 

data on the DSS use in an operational context must be 

gathered to continuously improve its acceptability 

and performance over the next years.  

In the future, as the users become more 

comfortable with the new DSS, it is expected that 

they will require additional functionalities, such as for 

example, simultaneous planning for multiple search 

objects, or planning with concurrent unequally likely 

scenarios related to what might have happened in the 

SAR incident and where. 
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