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Abstract: The cloud native approach is getting more and more popular with the proposal of decomposing application
into small components called microservices, which are designed to minimize the costs with upgrades and
maintenance and increase the resources usage efficiency. However, microservices architecture brings some
challenges such as preserving the manageability of the platforms, since the greater the number of microservices
the applications have, the greater the complexity of ensuring that everything is working as expected. In this
context, one of the concerns is to evaluate the resilience of platforms. Current resilience benchmark tools are
designed for running in specific infrastructures. Thus, in this paper we present IAGREE, a benchmark tool
designed for measuring multiple resilience metrics in cloud native platforms based on Cloud Foundry and
running upon any infrastructure.

1 INTRODUCTION

Cloud computing is becoming more and more popu-
lar among multiple-sized organizations by providing
benefits such as commodity of running large-scale ap-
plications with no need to care about issues involving
local resources. Moreover, cloud also allows a better
resources utilization through the pay-per-use pricing
model, wherein cloud resources can be allocated and
deallocated on demand, so users only have to pay for
the resources they are actually being used (Nicoletti,
2016). By adopting such a strategy, customers avoid
issues related to underprovisioning, in cases when an
application gets more popular than expected result-
ing in revenue losses due to not having the computing
resources enough to meet the demand, or overprovi-
sioning, where applications do not meet the expec-
tations, and the reserved resources end to not being
used (Armbrust et al., 2010).

However, not every application architecture ex-
ploits the maximum potential of cloud environments.
For example, the monolithic architecture in which the
application logic is contained into a single deploy-
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able unit has shown to be a suitable solution for small
systems. However, as the size of the application in-
creases, tasks involving scaling or performing main-
tenance become more difficult due to challenges re-
lated to code readability and over-commitment to a
specific technology stack. In this context, the Cloud
Native approach arises with the proposal of taking
advantage of the microservices architecture to allow
on-premises applications to fully exploit the benefits
of cloud computing by decomposing applications into
microservices that could be deployed and scaled inde-
pendently and do not need to be built with the same
technology stack (Balalaie et al., 2015).

Cloud native platforms offers an additional ab-
straction layer over the infrastructure by the adoption
of PaaS model. These platforms aim to simplify the
build, deployment, and management of cloud native
applications. These kind of applications are designed
to exploits the advantages of the cloud computing de-
livery model.

Despite the benefits brought by cloud native, there
are still concerns regarding topics like resilience,
which is the ability to deliver and maintain a certain
level of service despite the failure of one or several
system components (Abbadi and Martin, 2011). Re-
silience issues in cloud services can lead to several
negative consequences, for example, system instabil-
ity, bottlenecks or downtime caused by unexpected
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workload can lead to business revenue losses (CA
Technologies, Inc, 2018). Moreover, applications
without proper resilience schemes can demand con-
siderable costs with repair and replacement of cloud
components or data loss (Vishwanath and Nagappan,
2010). In cases of applications that do not employ ef-
ficient resilience schemes, these kinds of failures can
cause SLAs violations, which can negatively affect all
the levels of cloud consumers: Final customers will
have problems with trying to access the cloud ser-
vices, Cloud service providers will suffer customer
attrition, and cloud platform and cloud infrastructure
providers will incur penalties for non-compliance of
the accorded SLAs.

One of the possible steps to improve aspects such
as resilience of a cloud native platform is monitor-
ing its behavior under different circumstances. In this
context, benchmarks play a significant role, since they
can be used to measure and to compare different soft-
ware or hardware configurations. Besides, these tools
can also be used to implement improvements at the
platform based on collected metrics. Several bench-
mark tools were proposed; however, there is a lack of
benchmark tools designed to measure the resilience
of cloud native platforms.

In this sense, this paper presents a bench-
mark tool designed for measuring the resilience of
cloud native platforms. Based on this purpose, we
present the following contributions:

• A review of the benefits and challenges brought
by the cloud native approach.

• A discussion around the relevance of measuring
resilience in cloud native platforms and metrics
that can be analyzed to achieve this purpose.

• An infrastructure-agnostic resilience benchmark
tool to measure the resilience of cloud native plat-
forms based on Cloud Foundry.

The remaining of this article is organized as fol-
lows: In Section 2 we present the theoretical back-
ground about some of the current topics on cloud
computing such as the need for strategies, which is
addressed by approaches such as cloud native, that
aims to improve the resources usage efficiency of ap-
plications running on the cloud. In Section 3 we
present the proposed benchmark tool, which is val-
idated in Section 4, where we present a Proof-of-
Concept that includes the use of our proposal to per-
form experiments in a real-world cloud native plat-
form. Then, in Section 5 we present other bench-
mark tools and compare them with our proposal, and
in Section 6 we present final considerations and re-
search topics to be addressed in future researches.

2 BACKGROUND

Cloud computing consists of a model that provides
ubiquitous, configurable, on-demand access to com-
puting resources which include networks, servers,
storage, applications, and services through the Inter-
net (Mell et al., 2011). It also provides cost reduc-
tion, since customers pay just for the resources that
are consumed (Nicoletti, 2016). Due to these features,
many organizations employ cloud services to meet the
peak demand in their applications through services in
the cloud (Gajbhiye and Shrivastva, 2014).

By dealing with on-premises software, customers
must manage all levels of abstraction to make their
applications up and running, dealing with manners
of networking, storage, servers, runtimes, and so on.
On the other hand, cloud computing provides service
models that focus on delivering different levels of ab-
straction to meet the needs of customers more effi-
ciently.

There are still many challenges in Cloud Comput-
ing. For instance, the interoperability among differ-
ent cloud services is still a big challenge. Also, Cloud
Computing is powered by virtualization, which pro-
vides several independent instances of virtual execu-
tion platforms, often called virtual machines (VMs).
However, applications have lower performance on
VMs than on physical machines. The overhead gener-
ated by the virtualization layer (hypervisor) is one of
the leading concerns in the context of virtualized en-
vironments. Therefore, identifying and reducing such
overhead has been the subject of several investiga-
tions (Li et al., 2017; SanWariya et al., 2016; Chen
et al., 2015).

In this context, Cloud Native approach emerges
with the proposal of decomposing applications into
small components designed to operate independently
called microservices. Each microservice is executed
on a container, so its possible to upgrade or replace
a microservice without having to modify the entire
application. Such modularity allows minimizing the
costs with upgrades and maintenance and increase
the resources usage efficiency (Amogh et al., 2017).
On the other hand, running microservices in sepa-
rated containers brings some challenges such as pre-
serving the manageability of the platforms, since the
higher the number of containers an applications has,
the greater the complexity of ensuring everything is
working as expected. Due to these challenges, there
is a concern on increasing the customers’ trust in the
services provided.

Service Level Agreements (SLAs) (which are
contractual agreements between service providers and
its customers) play a significant role in this context,
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since they specify the quality of service (QoS) guar-
anteed by the providers so customers can verify if
the delivered QoS befits that one was accorded (Pa-
tel et al., 2009). One element which is considered
in SLAs is resilience, which is the ability to deliver
and maintain a certain level of service despite the fail-
ure of one or several system components (Abbadi and
Martin, 2011).

There are tons of elements that can affect the oper-
ation of cloud services and must be considered when
building resilience mechanisms. One of the current
leading causes of failures in cloud computing services
is human errors, which is characterized by failures
caused by human actions (e.g., a cloud operator acci-
dentally erases a database registry required by a sys-
tem vital component). Other causes of system fail-
ures are disasters (like earthquakes and tornadoes) or
software failures (bugs or errors caused by malicious
software) which can also lead to critical failure sce-
narios (Colman-Meixner et al., 2016).

Resilience issues in cloud services can lead to
several negative consequences, for example, sys-
tem instability, bottlenecks or downtime caused by
unexpected workload can lead to business revenue
losses. Moreover, applications without proper re-
silience schemes can demand considerable costs with
repair and replacement of cloud components or data
loss (Vishwanath and Nagappan, 2010). In cases of
applications that do not employ efficient resilience
schemes, these kinds of failures can cause SLAs vi-
olations, which can negatively affect all the levels of
cloud consumers: Final customers will have prob-
lems with trying to access the cloud services; Cloud
service providers will suffer customer attrition, and
cloud platform and cloud infrastructure providers will
incur penalties for non-compliance of the accorded
SLAs.

Cloud Computing takes advantage of the tradi-
tional IT model by providing dynamic resource provi-
sioning instead of delivering computational power ac-
cording to the peak demand (which leads to unneces-
sary costs with computing resources). However, fail-
ures are an undesired but inherent aspect when scaling
applications in the cloud (Zhang et al., 2010). More-
over, infrastructure manners such as the adopted vir-
tualization strategies can impact the resilience of ap-
plications.

Given that, one of the key aspects on achieving re-
silience in cloud environments is building a resilient
infrastructure that implements failure prevention tech-
niques like the isolation of applications’ layers and
components so even if some components get compro-
mised the rest of the system will be able to operate
normally (Salapura et al., 2013). In this context, the

relevance of measuring resilience stood out since it is
important to verify the efficiency of the implemented
resilience strategies. Accordingly, as shown in Fig-
ure 1, some resilience metrics should be taken into
account to measure a system or a platform:

• Mean Time To Failure (MTTF): often known
as uptime, MTTF refers to the average amount of
time that a system is available. MTTF is widely
used in SLA contracts to indicate how reliable a
system or a platform is based on the amount of
time it has spent without failing.

• Mean Time To Detect (MTTD): refers to the av-
erage amount of time it takes to detect a failure.
This metric is useful to measure the efficiency of
monitoring and incident management tools.

• Mean Time To Repair (MTTR): this metrics de-
notes to the average time spent to repair a failed
system. MTTR is a valuable metric to find ways
to mitigate downtime.

• Mean Time To Between Failures (MTBF):
refers to the average time that elapses between
failures. It is a useful metric to predict the reli-
ability and availability of a platform accurately.

3 IAGREE ARCHTECTURE
DESIGN

IAGREE is an infrastructure-agnostic resilience
benchmark tool for cloud native platforms. It allows
the user to measure the resilience of Cloud-Foundry
based platforms by simulating failing scenarios of
a sample REST application while receiving user re-
quests (Figure 2). Our tool use commands provided
by the Cloud Foundry Command Line Interface (cf
CLI), which is used by Cloud Foundry and its based
platforms and allows the deployment, management,
and monitoring of applications. This makes IAGREE
compatible to any platform based on CF. Besides that,
this benchmark tool also enhances the agnostic to in-
frastructure characteristic from Cloud Foundry.

IAGREE uses features provided by a Cloud
Foundry component called Loggregator, which is re-
sponsible for collecting and streaming logs from the
applications and the platform itself.

Our proposal takes advantage of Loggregator’s ar-
chitecture to analyze the resilience provided by the
platform while applications are receiving requests
from multiple users and failing events occur. To sim-
ulate real user accesses, IAGREE generates multiple
concurrent requests using Siege, an open source tool
that allows simulating multiple user HTTP requests.
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Figure 1: Different measures covered by resilience metrics.
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Figure 2: IAGREE benchmark tool design.

As illustrated in Figure 3, upon running IAGREE,
the first step is to ask for API endpoint and creden-
tials (email and password) in order to establish a con-
nection to the platform. As soon as the benchmark
confirms that cf CLI was able to authenticate the user
into a Cloud Foundry environment, it deploys a sam-
ple application to receive the requests. Once the ap-
plication deployment is finished, the benchmark starts
a log stream from the Loggregator and asks the user to
define three parameters: i) the amount of time the ap-
plication will be tested; ii) how many simulated users
will try to access the application simultaneously; and
iii) how many fails per minute the application will ex-
perience. Once those parameters are informed, the
benchmark tells Siege the desired configuration and
the tests start. In the meantime, IAGREE may sends
requests to a route of the application which is config-
ured to crash the whole instance. since there is the
load balance component, any instance can stop. This
process is described in Algorithm 1.

As the benchmark finishes running the tests, it
parses the data from the log stream and presents
the results denoted by the following metrics: MTTF,
MTBF, MTTD, MTTR, mean response time per re-
quests, transactions per second, and throughput.

while timecurrent <= timetotal do
send N simultaneous requests
foreach failureInstant fi ∈ F do

send a request that will crash an app
instance

end
end

Algorithm 1: Strategy adopted by the proposed benchmark
to measure resilience of cloud native platforms.

4 PROOF-OF-CONCEPT
EXPERIMENTS

We conducted a proof-of-concept running our pro-
posal on Pivotal Web Services (Pivotal Web Services,
2018), which is a Cloud-Foundry based platform that
uses EC2 servers located in Northern Virginia (United
States). We did choose PWS since it automatically
handles distributing multiple instances applications
across multiple availability zones. We performed tests
in 8 different configurations gathering in each of them
MTTF, MTBF, MTTD, MTTR, mean response time
per requests (s), transactions per second, and through-
put (MB/s). Table 1 summarizes the set of configura-
tions explored by our experiments.

Table 1: Tested specification.
App Instances Total Time Failures per Minute Concurrent Users

2

10 minutes

2 50
100

4 50
100

4
2 50

100

4 50
100

4.1 Mean Time To Failure

The results presented in Figure 4 showed that the im-
pact on an application’s availability caused by the
number of failures per minute varies according to the
number of instances an application have, especially
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Figure 3: IAGREE process flow.

as the number of users accessing the application in-
creases. In other words, the higher the number of
users accessing the application, the higher is the rel-
evance of scaling mechanisms since if an application
crashes due to insufficient resources, its availability
could be severely impacted. Moreover, in the scenar-
ios with 2 failures per minute, the application with 2
instances suffered a 44% availability loss as the num-
ber of users accessing it increased from 50 to 100.
On the other hand, the application with 4 instances
only got an 8% availability loss. These results indi-
cate that the impact caused by a given number of fail-
ures could be significantly higher in applications with
few instances.

4.2 Mean Time To Detect

The results in Figure 5 regarding the average time
that the platform took to detect failures show that in
scenarios where applications are suffering from sev-
eral and constant crashes, the higher the number of
users accessing the application, the greater the time
the platform would take to detect the failures. Espe-
cially in scenarios where failures do not crash the en-
tire instance (e.g., the web server stops working, but
the container where it is running continues to work)
and therefore are undetectable for instance healing
tools, monitoring mechanisms must parse more mas-
sive amounts of application logs to detect failures as
the number of requests increases, which could lead to
delayed detection of application failures. Besides, de-
tecting the failures in the 4 instances application took
12% longer, since the higher the number of instances
the app has, the higher the complexity of ensuring that
everything is working as expected.

4.3 Mean Time Between Failures

The results presented in Figure 6 highlighted the cor-
relation between the number of application instances
and the frequency of failure occurrences. In general
terms, the mean time between failures is highly de-
pendent on the number of failures per minute speci-
fied to the benchmark. However, as we can see com-
paring the results of 2 and 4 instances, the bigger
the number of instances that an application have, the
smaller the interval between failures. This happens
because load balancers have a buffer that stores the
incoming requests to be distributed across the applica-
tion instances, then in scenarios with multiple simul-
taneous requests, increasing the number of applica-
tion instances reduces the delay to a request to be pro-
cessed. As the proposed benchmark simulates an ap-
plication failure by sending a request to a specific ap-
plication URL configured to crash the web server, in-
creasing the number of instances of the sample appli-
cation resulted in few waiting time to those requests
to be processed, which in its turn reduced the interval
between failures.

4.4 Mean Time To Repair

According to the results presented in Figure 7, in the
experiments with the 2 instances application, increas-
ing the number of failures from 2 to 4 caused a de-
lay to the platform to repair the application failures.
However, such a phenomenon does not appear in the
experiments with the 4 instances application. Besides,
considering that MTTR covers the time to detect fail-
ures (see Figure 1), the results also highlighted the
negative impact of having too frequent failures in ap-
plications with few instances, since the 2 instances ap-
plication took longer to be repaired despite demand-
ing less time to detect failures than the 4 instances
application.
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Figure 4: Mean Time To Failure.
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Figure 5: Mean Time To Detect.
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Figure 6: Mean Time Between Failures.

50 Concurrent Users 100 Concurrent Users

2 42 4 2 42 4

0

10

20

30

40

Failures Per Minute

M
ea

n 
T

im
e 

To
 R

ep
ai

r 
(s

)

2 Instances Application
Mean Time To Repair

50 Concurrent Users 100 Concurrent Users

2 42 4 2 42 4

0

5

10

15

20

Failures Per Minute

M
ea

n 
T

im
e 

To
 R

ep
ai

r 
(s

)

4 Instances Application
Mean Time To Repair

Figure 7: Mean Time To Repair.

5 RELATED WORK

Rally (Rally, 2018) provides a framework for eval-
uating the performance of OpenStack components
as well as full production OpenStack cloud deploy-
ments. Rally automates and unifies the deployment

of multiple OpenStack nodes, cloud verification, test-
ing, and profile creation. Rally generically does that,
making it possible to check whether OpenStack will
meet the business requirements.

Cloud CMP (Li et al., 2010) is a benchmark tool
developed to provide a systematic comparator of the
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performance and cost of cloud providers. CloudCMP
measures the elasticity, persistent storage and net-
working services offered by a cloud along with met-
rics that directly reflect on the performance of cus-
tomer applications. This tool was tested in various
cloud providers, including Amazon Web Services,
Microsoft Azure, Google AppEngine and Rackspace
CloudServers (LI et al., 2010).

HiBench (HiBench, 2018) is an open source
benchmark suite for Hadoop. This tool consists of
synthetic micro-benchmarks and real-world applica-
tions. The application currently has several work-
loads classified into four categories: Microbench-
marks, Web Search, Machine Learning, and Data
Compression. The microbenchmarks provide several
algorithms such as Sort, WordCount, Sleep, enhanced
DFSIO and TeraSort provided by Hadoop. These
benchmarks are used to represent a subset of real-
world MapReduce jobs. Web Search uses PageRank
and Nutch indexing benchmark tools. These bench-
mark tools are used since large-scale search indexing
is one of the most significant uses of MapReduce. The
machine learning workloads provide Bayesian Classi-
fication and K-means Clustering implementations. It
worth noting that HiBench also provides several other
machine learning benchmark alternatives such as Lin-
ear Regression and Gradient Boosting Trees.

Cloud Suite (CloudSuite, 2018) is an open source
benchmark tool for cloud computing focused on pro-
viding scalability and performance evaluation on real-
world setups. Cloud Suite has a suite of benchmarks
that represent massive data manipulation with tight la-
tency constraints such as in-memory data analytics.
Among the tasks included in this set of benchmarks,
there are MapReduce, media streaming, SAT solving,
web hosting, and web search tasks. Cloud Suite is
compatible with private and public cloud platforms,
and the authors emphasize that it is integrated into
Google’s PerfKit Benchmarker1 that helps to auto-
mate the benchmarking process.

Yahoo! Cloud Serving Benchmark (Cooper et al.,
2010) can be used to perform elasticity and scalability
evaluation in different cloud platforms such as Ama-
zon AWS, Microsoft Azure, and Google App Engine.
The authors defined two benchmark tiers for evalu-
ating cloud serving systems: The first tier focuses
on the latency of requests when the database is un-
der load. It aims to characterize this trade-off for
each database system by measuring performance as
the user requests increase. The second tier focuses on
examining the impact on performance as more ma-
chines are added to the system. In this tier, there are

1PerfKit Benchmarker. Available at:
<github.com/GoogleCloudPlatform/PerfKitBenchmarker>.

two metrics: Scaleup and Elastic Speedup.
Chaos Monkey (Chaos Monkey, 2018) is a bench-

mark tool created by Netflix that randomly terminates
instances of virtual machines and containers inside
the production environment to simulate unexpected
failure events. Chaos Monkey follows the principles
of chaos engineering. Chaos Monkey was designed
to work with any backend that provides support for
Spinnaker, which is an open source, and a multi-cloud
continuous delivery platform for releasing software
changes with the intention to give velocity and con-
fidence.

To the best of our knowledge, our proposal (IA-
GREE) is the only infrastructure-agnostic benchmark
tool that allows measuring the resilience of any cloud
native platform based on Cloud Foundry. Table 2
summarizes the differences between IAGREE and the
previous work.

6 CONCLUSIONS

Companies have adopted cloud computing because of
the functionalities it provides in a simple way and also
for the value that is lower than having an on-premise
solution. The cloud native approach was driven by
cloud computing and container technology, though
there is still resistance to migrating to cloud native
platform solutions. One of the reasons for this resis-
tance is the lack of how to reliably evaluate which
platform provides the resilience requirements for the
applications.

Thus, in this paper, a benchmark tool for resilience
for cloud native platforms called IAGREE was pro-
posed. This tool supports platforms based on Cloud
Foundry like the Pivotal Application Service. Be-
sides, it inherits the ability of the CF to be agnostic
to the infrastructure provider, running on both the in-
dustry’s top cloud service providers (AWS, GCP, Mi-
crosoft Azure) and on-premise.

A set of experiments was also performed to vali-
date the proposed tool, using Pivotal Web Services as
a platform provider. The results obtained by IAGREE
were analyzed based on the following resilience met-
rics: Mean Time To Repair, Mean Time Between Fail-
ures, Mean Time To Detect, Mean Time To Failure.
As future work, we intend to perform experiments on
a larger scale and with different configurations. We
also intend to execute them using different infrastruc-
ture providers in order to compare their performance.
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Table 2: Comparison between IAGREE and other cloud benchmark tools.
Benchmark Evaluated Metrics Output Supported Infrastructures

Rally Elasticity CLI and HTML Infrastructure Agnostic

Cloud CMP Elasticity JSON Amazon Web Services, Microsoft Azure,
Google Cloud Platform

HiBench Scalability and Performance CLI Amazon Elastic Compute Cloud,
Microsoft Azure

Cloud Suite Scalability and Performance CLI Infrastructure Agnostic

Yahoo! Cloud Serving Benchmark Elasticity and Scalability CLI and HTML Amazon Web Services, Microsoft Azure,
Google Cloud Platform

Chaos Monkey Resilience HTML
Amazon Web Services, Microsoft Azure,

Google Cloud Platform, Kubernetes-based
Platforms

IAGREE Resilience CLI and JSON Infrastructure Agnostic
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