
A Mobility Restriction Authoring Tool Approach based on a Domain
Specific Modeling Language and Model Transformation

Adalberto T. Azevedo Jr.1, Fernando Benedito1, Luciano Reis Coutinho1,
Francisco José da Silva e Silva1, Marcos Paulino Roriz Junior2 and Markus Endler3

1Departament of Informatics, Federal University of Maranhao, Brazil
2Departament of Informatics, Federal University of Goias, Brazil

3Departament of Informatics, Pontifical Catholic University of Rio de Janeiro, Brazil

Keywords: Mobility Management, Mobility Restrictions Monitoring, Authoring Tool, Domain-Specific Modeling
Language, Model Transformation.

Abstract: There are many situations in which there is a need to monitor the location and behavior of people and/or vehi-
cles in order to detect possible irregularities and control where they are located and how they move, such as in
companies, public transportation and public security. In this paper, we present MobCons-AT (Mobility Con-
straints Authoring Tool), an authoring tool that allows the specification of mobility restrictions rules that must
be followed by mobile nodes. Rules are specified through a Domain-Specific Modeling Language (DSML)
called MobCons-SL (Mobility Constraints Specification Language). Once specified in MobCons-SL, these
rules are automatically transformed into software artifacts that performs the detection of the mobility restric-
tions violations performed by mobile nodes. This approach allows faster delivery time and lower the cost for
the development of software systems aiming the detection of mobility restrictions. This paper also describes
the use of MobCons-AT in two case studies, showing its applicability for diverse mobility scenarios.

1 INTRODUCTION

In many situations it is necessary to monitor the lo-
cation and behavior of people and/or objects in order
to detect possible irregularities and to control where
people, groups of people or vehicles are located and
how they move (Zheng et al., 2014). For example,
a mining company might be interested in restricting
employee access to certain areas, depending on the
mandatory use of safety equipment, prior training, or
even the employee’s function. Similarly, the company
could restrict a vehicle’s access and behavior in cer-
tain geographic area, limiting within the speed limits,
proximity between vehicles or monitoring if they are
staying on defined routes. In public transportation, it
can be desired to verify if a bus following its route and
a set of patterns, such as respecting a speed limit and
maintaining a minimum distance between buses of the
same line in order to maintain a regular frequency of
them at bus stops. In the area of public safety, police
vehicles could be monitored in order to control their
area of coverage and circulation, working hours and
location. Similarly, port companies may wish to re-
strict employee access to restricted areas for security
reasons, as well as monitor ships movement. Finally,
airports can control the movement of people and/or

vehicles in areas of aircraft circulation.
In the literature there are several proposed soft-

ware solutions related to the monitoring of mobile
nodes and the vast majority of them follows a tradi-
tional software engineering approach (Antoniou et al.,
2014; Al-Khedher, 2012; Behzad et al., 2014; Al-
Taee et al., 2007; Joy et al., 2016; Punetha and Mehta,
2014; Almomani et al., 2011; Oliveira et al., 2013).
Alternatively, the use of Authoring Tools is gaining
more space in the software market mainly because it
allows the reduction of software delivery time and its
associated costs. Authoring Tools are systems that
simplify the production of software content, that is,
the users become authors without the need of devel-
oping a large amount of code lines.

The aim of this paper is to present an Authoring
Tool called MobCons-AT that simplifies the complex-
ity of developing applications for monitoring the mo-
bility of nodes where mobility restrictions must be en-
forced. The proposed Authoring Tool is domain inde-
pendent and is based on a domain specific language
that allows end users to specify mobility restrictions
and the context where they must be applied and uses
model transformation techniques for the automatic
generation of code. The development of MobCons-
AT is part of the MobileAMP project.

Azevedo Jr., A., Benedito, F., Coutinho, L., Silva, F., Roriz Junior, M. and Endler, M.
A Mobility Restriction Authoring Tool Approach based on a Domain Specific Modeling Language and Model Transformation.
DOI: 10.5220/0007727905250534
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 525-534
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

525



The remainder of this paper is structured as fol-
lows: Section 2 discuss the fundamental concepts
used in this work. Section 3.1 provides an overview of
the MobileAMP project and its architecture. Section
3.2 presents the DSML created to specify mobility
constraints, as well as its abstract syntax (metamodel)
and its concrete syntax (a graphical notation). Section
3.3 describes the automatic generation of code, real-
ized through the use of M2T (Model to Text) trans-
formations1. Section 4 provides case studies aiming
to show the effectiveness of the tool and of the devel-
oped language. Section 5, presents the related works,
comparing them with the proposed approach. Finally,
Section 6 describes the conclusions of the developed
work an points for future efforts directions.

2 FUNDAMENTAL CONCEPTS

Researchers have long been dedicated to developing
adaptive and intelligent authoring systems (Murray
et al., 2003). Murray (Murray, 1999) has classified
authoring tools into a number of categories, like Cur-
riculum Sequencing and Planning, Tutoring Strate-
gies, Domain Expert System, Multiple Knowledge
Types and Special Purpose. The Special Purpose cat-
egory is specialized in specific tasks or domains and
can best support the author’s needs for specific situa-
tions. In other words, this category of authoring tools
may be based on specific domains and modeled by
languages.

The problem of specifying mobility constraints
can be treated by authoring tools. To do so, these
problems domain are described by a model. A model
is an abstraction of a system often used to replace
the system under study (Ludewig, 2003). In the last
decades, many techniques and modeling languages
have been proposed to support the design and devel-
opment of complex software systems. More recently,
models have become more than documentation arti-
facts, assuming central roles in the software engineer-
ing process, in an approach known as Model-Driven
Engineering (MDE). In addition to the benefits men-
tioned above, models also allow - through complex
techniques such as metamodeling, model transforma-
tion, code generation or model interpretation - to cre-
ate or automatically run software systems based on
these models. For the Object Management Group
(OMG)2, ”metamodels are model models”. As for
(Favre and NGuyen, 2005), ”metamodels are model
language models”. Based on such concepts, we can

1M2T Transformation:
https://www.eclipse.org/modeling/m2t/

2OMG: http://www.omg.org/index.htm

define metamodel as a model that defines the struc-
ture of a Modeling Language (Da Silva, 2015).

The simplicity with which the user defines his
specifications is best obtained through a Modeling
Language, that is, a set of all possible models that
are in accordance with the abstract syntax of that lan-
guage, represented by one or more concrete syntax
and that satisfy a given semantics. The definition
of a modeling language usually begins by capturing
and identifying the application main domain. This
task represents the domain analysis phase to build the
modeling language (Mernik et al., 2005). The re-
sult of this activity produces the abstract syntax of
the modeling language, which corresponds to a meta-
model with all the concepts identified at the meta-
domain level. The concrete syntax of a modeling lan-
guage refers to its notation, that is, how users will
learn and use it, whether by reading or writing and de-
signing the models. Thus, the success of a modeling
language will depend on the right balance between
simplicity, expressiveness, ability to write, readabil-
ity, learning, and effectiveness. Finally, a modeling
language can be classified as a General-Purpose Mod-
eling Language (GPML) or Domain-Specific Model-
ing Language (DSML) (Mernik et al., 2005; Fowler,
2010). A GPML has broader and widespread use in
different fields of application. On the other hand,
DSMLs use some constructs or concepts closer to
their application domain, which is usually easier to
read, understand, validate and communicate.

Once the entire specification is modeled, it can be
transformed into artifacts through a standard Trans-
formation process. Models can be created manually
or generated automatically through a process of con-
verting a source model to a destination model called
Transformation between models. OMG’s Model to
Text (M2T) Transformation is one of the key trans-
formations that generate or produce software artifacts,
typically source code, XML (Extensible Markup Lan-
guage), and other text files, from models. The most
common technique for this class of transformations
is known as code generation, and there are several
solutions and techniques (Guinelli et al., 2014). It
can be specified through different languages, such as
conventional programming languages, as well as spe-
cialized model transformation languages, for different
purposes and with different modeling paradigms such
as Acceleo3 and ATL (Atlas Transformation Lan-
guage)4. Through transformation rules, concrete soft-
ware artifacts of the models produced by the domain
language can be generated.

3Acceleo: http://www.eclipse.org/acceleo/
4ATL: https://eclipse.org/atl/documentation/

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

526



3 THE MobCons-AT AUTHORING
TOOL

MobCons-AT is an authoring tool for end-user pro-
gramming that is part of the MobileAMP project and
allows the specification of rules that define mobility
restrictions that must be followed by mobile devices,
with automatic code generation and near real time de-
tection of the defined restrictions violations. Through
the implementation of a DSML called MobCons-SL,
a central part of the tool, MobCons-AT allows users
to graphically and textually model scenarios involv-
ing this domain.

The section begins by giving an overview of the
MobileAMP project followed by the description of
the developed DSML and the transformation process
for software artifact generation. Finally, an end-user
prototype is presented.

3.1 The MobileAMP Project

The MobileAMP project focuses on the develop-
ment of software that allows the real-time analysis of
activity-mobility patterns from the processing of con-
text data streams generated from people, vehicle and
other moving entities (also known as mobile nodes).
Unlike most previous work, which uses a statistical
approach to store data and process it off-line, Mo-
bileAMP stands out by discovering such patterns in
real time through the use of CEP (Complex Event
Processing) data-stream processing primitives. The
data-stream events in the current project stage provide
information of update locations, mobile node type and
timestamp. However, other context data such as speed
and acceleration should be exploited in the future.
The general system architecture proposed in the con-
text of this project is composed of four main compo-
nents, as shown in Figure 1.

• Authoring Tool: software module that imple-
ments a DSML, called MobCons-SL, that allows
the user to specify mobility restrictions at a high
level abstraction. These rules are transformed into
artifacts that access the MobCons library classes;

• Mobile Nodes: entities running a mobile applica-
tion that can acquire sensor data, such as location,
velocity, timestamp, and send them through data
stream for further analysis;

• Cloud: executes the CEP engine that receives the
real-time events from the mobile nodes, processes
the data stream and generates derived events
based on rules that identify the mobility constraint
violations;

• Monitoring: a visualization tool that provides a
user interface that is responsible for receiving and
displaying alerts of mobility restrictions viola-
tions performed by mobile nodes. Events describ-
ing mobility restrictions violations can be logged
in a database along with the mobile nodes location
updates for proving a play back feature allowing
the visualization of past actions.

Figure 1: MobileAMP project: General Architecture.

The project software system provides a library,
called MobCons, that provides an API for definition
of mobility restrictions and the context where they
must be applied and transform them into CEP rules
that can detect restrictions violations. The library
also dynamic instantiates the generated CEP rules in
a CEP engine that process the data stream generated
by mobile nodes and outputs derived events when-
ever mobility restrictions violations are detected. The
output is consumed by the Monitoring Model. The
MobCons-AT tool, main focus of this paper, provides
a high level DSML used by the end-user to easily
specify mobility restrictions and a set of transforma-
tion rules that transforms the DSML statements into
MobCons code.

3.2 The MobCons-SL Language

To abstract the complexity of specifying mobile nodes
mobility restrictions, MobCons-AT implements a
DSML called MobCons-SL, which allows users to
model the most diverse scenarios involving this sub-
ject. The DSML created is composed of an abstract
syntax, represented by a metamodel, and by a con-
crete syntax in accordance with this metamodel, rep-
resented by a graphical notation.

A Mobility Restriction Authoring Tool Approach based on a Domain Specific Modeling Language and Model Transformation

527



3.2.1 Abstract Syntax - Metamodel

The proposed metamodel was developed using the
EMF (Eclipse Modeling Framework)5 standard. EMF
is a common standard for data models that many tech-
nologies and frameworks are based on. It is able
to produce artifacts for various languages and has a
number of compatible tools. The developed meta-
model is presented in Figure 2.

The Specification class (painted yellow in
Figure 2) corresponds to the metamodel first level
and it is a starting point for the specification of
mobility restrictions. From the Specification class
it is possible to define Context, Restriction,
TemporalCondition and Rule.

Context (blue in Figure 2) define for which mo-
bile nodes a constraint must be applied and can be of
the following types, according to the metamodel:

• MU: Used to apply a restriction to a single mobile
node;

• Group: Used to group two or more mobile nodes
to which it can be assigned a given restriction;

• MUType: Defines a context for all mobile nodes
of a specific type (CAR, BUS, PERSON, etc);

• Area: Defines a geographical area, which can be
circular, a rectangle or a polygon. A mobility re-
striction can be applied to an area and should be
obeyed by all mobile nodes when moving within
its boundaries.

Restriction (red in Figure 2) represent limita-
tions imposed on the mobility of mobile nodes. The
proposed metamodel allows the specification of the
following restrictions types:

• Access: Restricts the mobility of mobile nodes by
detecting when they access a restricted area that
must be avoided;

• Permanence: Restricts the mobility of mobile
nodes by detecting when they leave the bound-
aries of a given area;

• Speed: Imposes a maximum and/or minimum
speed limit to mobile nodes;

• Path: Defines a path to be followed by mobile
nodes, detecting when they deviate from the pro-
vided path given a threshold;

• MaxDistance: Defines a maximum distance al-
lowed between two Contexts;

• MinDistance: Defines a minimum distance al-
lowed between two Contexts;

5EMF:http://projects.eclipse.org/projects/modeling.emf

• Punctuality: Defines the expected time in which
a mobile node must achieve a particular geograph-
ical area.

The metamodel also provides
TemporalCondition. These classes (in gray
color) are optional and allow to specify when a
mobility constraint must be applied. It allows specify
a date, days of the week, and/or time bands for a
given restriction. For example, it is possible to define
that a bus must travel at a maximum speed of 60
km/h from Monday to Friday (between 8 am and 6
pm) but on Saturdays and Sundays it can speed up to
80 km/h.

Rule (green in Figure 2) are associations between
Context, Restriction and TemporalCondition,
allowing, for example, to define a scenario such as:

All vehicles and motorcycles (MUType
Context) can only transit within the Federal
University (Area Context) at a maximum speed
of 30 km/h (Speed Restriction), on Mondays,
Wednesdays and Fridays, from 6 am to 11 am
(TemporalCondition).

3.2.2 Concrete Syntax - Graphical Notation

Based on the described metamodel we developed a
graphical representation used by the Authoring Tool
user to specify the mobility restrictions in a easy way.
In order to derive a concrete model representation
based on the abstract metamodel syntax it is neces-
sary to map the elements of the abstract metamodel to
concrete graphical elements that represent them. Ta-
ble 1 shows the graphical notation of the MobCons-
SL language, where it can be observed that all ob-
jects presented in the metamodel (abstract syntax) are
represented by a different icon. It is up to users to
design the model using the graphical notation based
on their knowledge of the application domain. When
designing the graphical notation, our objective was
to achieve a balance between simplicity, expressive-
ness, ability to write, readability, learning and effec-
tiveness.

3.3 Transformation

A fundamental aspect defined by MobCons-AT is the
possibility of generating code automatically through
the use of M2T (Model to Text) transformations us-
ing as input the user provided model developed us-
ing the graphical notation. The transformation rules
defined in MobCons-AT receive as input the con-
crete model (generated according to the metamodel
and composed of all specifications made by the user
through the MobCons-SL language) and generate as

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

528



Figure 2: The MobCons-SL Metamodel.

Table 1: Graphical Notation.

Object Icon

Contexts

MU

Group

MUType

CircularArea

RectangularArea

PolygonalArea

Restrictions

Speed

Path

Access

Permanence

MaxDistance

MinDistance

Punctuality

Temporal Condition
WeekTimeCondition

DateCondition

Rules Rule

output artifacts code in Java6 that instantiates classes
of the MobCons library responsible for the generation
of CEP queries that are instantiated in the CEP engine
running in the cloud.

The automated process of model transforming oc-
curs through a set of defined rules. These rules are
structured in the form of templates and queries, each
template being responsible for a transformation stage
and each query used to query values or collections
of values defined in the template. The transforma-
tions used in MobCons-AT were implemented using
the Acceleo tool, chosen for its easy use and its inte-
gration with the Eclipse IDE through a plug-in.

The transformation is started by the instantiating
of the class Specification. From this class, all
specified Rule classes are searched, and for each the
transformation process looks for the Restriction
classes, Context and possible TemporalCondition
classes. In other words, the developed routine
searches for all the specified rules, obtaining from
each one, the constraint, contexts and temporal con-
ditions (if they exist) associated.

To demonstrate the transformation process de-
veloped, consider the scenario showed in Section

6Java: https://www.oracle.com/java/index.html

A Mobility Restriction Authoring Tool Approach based on a Domain Specific Modeling Language and Model Transformation

529



3.2.1. To model this example, the MobCons-
SL language generates the following objects:
a RestrictionDefinition class and a Speed
constraint, a ContextDefinition class, and a
PolygonalArea context of at least three Coordinate
objects. The association between the context and the
constraint is done by creating a Rule class consisting
of a WeekTimeCondition. The graphic notation that
represents the concrete input model generated can be
seen in Figure 3.

Figure 3: Concrete input model, based on the example of
Section 3.2.1.

From this point, the objects defined in the concrete
input model are transformed into the objects imple-
mented in MobCons. The code of Listing 1 shows the
artifact generated after the transformation of the con-
crete model, where it is possible to observe the map-
ping between the classes of the metamodel and the
classes of the MobCons library. Lines 3 and 4 are re-
sponsible for the instantiation of the library main con-
structor followed by the calls to the constructors of the
SpeedRestriction (line 6), AreaContext (line 7),
and ConstraintTimeClause (line 9) classes. Line2
12 to 15 are responsible for binding the mobility re-
striction to the contexts and temporal conditions and
generating the correspondent CEP rules by calling the
newMC() method. This method is also responsible
for dynamically instantiating the CEP rules into the
CEP engine. Some simple mobility restrictions (such
as speed limit) generate a single CEP rule, while more
complex ones (such as route and punctuality) require
several CEP rules for proper monitoring of mobile
nodes.

3.4 The MobCons-AT Prototype

The MobCons-AT tool graphical interface was devel-
oped using the Sirius7 tool, chosen for its easy use and
its integration with Eclipse IDE through a plug-in.

7Sirius: https://www.eclipse.org/sirius/

1 public class MobCons {
2 public static void main(String[] args) {
3 MampCoreMobconsCore mobconsCore = new MobconsCore();
4 mobconsCore.init(true);
5
6 SpeedRestriction restriction11 = new SpeedRestriction(30.0);
7 AreaContext contextArea11 = new AreaContext(
8 new Point2D.Double(10.0, 30.0), 10.0);
9 ConstraintTimeClause weekTimeCondition11 =

10 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
11 "06:00", "11:00",2,4,6);
12 mobconsCore.newMC(restriction11,
13 contextArea11,
14 weekTimeCondition11);
15 }
16 }

Listing 1: Artifact generated after transformation, based on
the example of Section 3.2.1.

The simple to use graphical interface allow users to
focus in the business domain and the provided trans-
formation model avoids the necessity of writing code
lines.

The proposed graphical interface allows to visu-
ally represent the concepts defined in the MobCons-
SL language. Figure 4 shows the modeling of a mo-
bility restriction scenario using the prototype.

Figure 4: MobCobs-AT Prototype.

The tool window is divided basically into four
parts:

1. An area for creating the models;

2. A palette of modeling elements, divided into

• Contexts: elements that represent the con-
texts, that is, ContextDefinition, MU, Group,
MUType, CircularArea, RectangularArea
and PolygonalArea;

• Restrictions: elements that represent the con-
straints, that is, RestrictionDefinition,
Speed, Path, MaxDistance, MinDistance,
Access, Permanence and Punctuality;

• Coordinates: elements that represent the
coordinates, that is, Coordinate and
CoordinateInTime;

• Rules: elements that represent the rules, their
relationships with contexts and constraints, and

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

530



the types of temporal constraints, that is, Rule,
Set Restriction, Set Context, WeekTime
Condition and Date Condition.

3. Fields for textual edition of values to complement
the graphical notation;

4. A rules visualization table, which shows in tabular
format all contexts, constraints and temporal con-
ditions that comprise the model being developed.

4 CASE STUDIES

This Section aims to demonstrate the expressiveness
of the MobCons-SL language to describe mobility re-
strictions in diverse scenarios. It also demonstrate the
functionality of MobCons-AT transformation rules to
generate software artifacts that allows near real time
monitoring of the defined mobility restrictions. We
want to verify, therefore, that using the provided
DMSL the user will be able to correctly model the
scenarios and that the tool will correctly produce arti-
facts according to the model specified for each sce-
nario. For this, two case studies were developed.
The chosen case studies encompass Rule with a large
number of Context and Restriction, as well as
TemporalCondition.

4.1 Mining Company Scenario

A mining company wants to limit the maximum speed
of vehicles within its iron ore yard to 40 km/h. Such
speed restriction must be carried out between 07 am
and 12 am, from Monday to Friday. The vehicles of
the outsourced company Formula 1 should not exceed
60 km/h in all dependencies of the company. All ve-
hicles must maintain a minimum distance of 60 me-
ters from each other, for safety purposes. In addi-
tion, excavator-type vehicles should remain restricted
to the iron ore yard and their displacement should fol-
low a predefined route.

The Figure 5 shows a possible modeling to spec-
ify the mobility restrictions of the proposed scenario.
In the Appendix Section, it is shown the artifact gen-
erated after the transformation process.

4.2 Public Safety Scenario

The Department of Public Security wants to control
the use of its police vehicles. Following the rules of
the Secretariat, each car must cover a predetermined
area within a specific time period, which must be from
06 am to 18 pm, Monday to Friday, and from 10 am

Figure 5: Mining Company Scenario.

to 22 pm on Saturdays and Sundays. The areas of
operation of the vehicles should be: Itaqui-Bacanga
neighbourhood, Downtown and Beaches. Except for
times when they are called for emergencies or flagrant
offenses, vehicles should only make rounds in their
area of operation, at a maximum speed of 40 km/h.

The Figure 6 shows a possible modeling to spec-
ify the mobility restrictions of the proposed scenario.
In the Appendix Section, it is shown the artifact gen-
erated after the transformation process.

Figure 6: Public Safety Scenario.

4.3 Discussion

This Section illustrates the expressiveness of the
Mobcons-SL language to describe mobility restric-
tions of mobile nodes in two case studies: a mining
company and public safety. The use of the Mobcons-
AT allowed the user to model the required mobility
restrictions using a high level language based on a
graphical notation. It has been shown the language
flexibility for expressing diverse mobility restrictions
and conditions, including temporal ones, that can be
easily combined with a flexible set of contexts, rang-
ing from individual mobile nodes, groups of mobile
nodes, mobile nodes types and geographical areas.

A Mobility Restriction Authoring Tool Approach based on a Domain Specific Modeling Language and Model Transformation

531



The use of transformation rules allowed the auto-
matic generation of non trivial software artifacts that
use Complex Event Processing rules for near real time
detection of the defined mobility restrictions viola-
tions, avoiding the time and effort necessary for writ-
ing that code.

As showed in this two case studies, the use of an
Authoring Tool, such as Mobcons-AT, allows the user
to focus in the domain expertise instead of program-
ming software skills and contributes to the reduction
of software delivery time and its associated costs.

5 RELATED WORK

To the best of our knowledge, there is no report in
the literature of an authoring tool that implement a
Domain-Specific Modeling Language to specify mo-
bility restrictions to be applied to mobile nodes. In
this section, we present related works that allow mon-
itoring of mobile nodes, but are not based in the de-
velopment of a DSML and the exploitation of model
transformations.

There are some papers that investigate how to ac-
quire the geographic position of a vehicle and send
it to a central node that displays their location (An-
toniou et al., 2014; Al-Khedher, 2012; Behzad et al.,
2014). Others can also detect and alert when a mon-
itored mobile node exceeds a certain speed limit (Al-
Taee et al., 2007; Joy et al., 2016), when they leave a
certain area (Punetha and Mehta, 2014), or can com-
bine this two types of mobility restrictions (Almo-
mani et al., 2011). The work described in (Oliveira
et al., 2013) emits alerts when a defined route devia-
tion occurs.

Most of the works are focused on vehicle track-
ing with the exception of (Punetha and Mehta, 2014),
that was developed for tracking people, and (Oliveira
et al., 2013), that was developed for tracking cargo.
We should also note that most of the work associate
mobility restrictions (speed limits, bounded area or
route) to the monitored mobile nodes. (Joy et al.,
2016), in the other hand, associates a speed limit to
a specific area (or road).

As can be seen, previous works adopt a strategy
based on traditional software development and pro-
pose a specific software already deployed that, of
course, could be extended with a specialized team of
programmers. The proposed approach described in
this paper, on the other hand, provides an Authoring
Tool that implements a DSML which allows the spec-
ification of a flexible set of mobility restrictions, tem-
poral conditions and the context where they must be
applied. Through the use of model transformation,

software artifacts are automatic generated allowing
near real time detection of mobility restrictions vi-
olations. Beyond that novel approach, the provided
DSML allows the specification of a set of mobility re-
strictions richer than previous works that can be flex-
ibly combined in different contexts.

6 CONCLUSION AND FUTURE
WORK

The technological advances in the area of mobile and
ubiquitous computing opens up opportunities for the
gathering, distribution, and analysis of diverse sensor
data such as location, speed, acceleration, tempera-
ture, and so on. This data is crucial for the under-
standing of the dynamics of individuals, enterprises,
and even whole cities. In this paper we focused in
mobility management and, more specifically, in the
definition and monitoring of mobility restrictions that
must be followed in given contexts. There are many
applications in both public and private sectors that re-
quire such monitoring capabilities.

Although there are several work developed in this
area, they follow the traditional approach of software
engineering, deriving a specific software system that,
to be altered or extended, requires a specialized team
of software developers.

In this paper we propose a novel approach for
developing such systems by providing an Authoring
Tool, called Mobcons-AT, that implements a DSML
(Mobcons-SL) which allows the specification of a
flexible set of mobility restrictions, temporal condi-
tions and the context where they must be applied.
Through the use of model transformation, software
artifacts are generated automatically, allowing near
real-time detection of mobility constraint violations.
The automatic software generation reduce the cost,
time and human resources (software developers) re-
quired for building systems focusing the online mon-
itoring of mobility restrictions.

The use of Mobcons-AT was validated through
case studies based in two real-world scenarios. The
scenarios demonstrate the language flexibility for ex-
pressing diverse mobility restrictions and conditions,
including temporal ones, that can be easily combined
with a flexible set of contexts, ranging from individual
mobile nodes, groups of mobile nodes, mobile nodes
types and geographical areas. In addition, a graphical
notation allows users to easily describe the mobility
restrictions without requiring much technical skills.
The use of Mobcons-AT transformation rules allows
the automatic generation of non trivial software ar-
tifacts that use Complex Event Processing rules for

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

532



near real time detection of the defined mobility re-
strictions violations, avoiding the time and effort nec-
essary for writing that code. In this way, the proposed
solution, contributes to the reduction of cost and time
required for the development of mobility restriction
management systems.

Despite the various objectives achieved during the
development of this work, there are some possibili-
ties for improvements that have been observed. Fu-
ture works include the development of experimental
evaluation for analyzing the automatic generated sys-
tem scalability in respect to the number of monitored
mobile nodes and the modeling of complex mobility
patterns, such as concentration, dispersion, conges-
tion, leadership, and meeting.

ACKNOWLEDGEMENTS

This research is part of the INCT of the Future In-
ternet for Smart Cities and was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brazil (CAPES) - Finance Code 001,
Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico - Brazil (CNPq) proc. 465446/2014-0,
Fundação de Amparo à Pesquisa do Estado de São
Paulo - Brazil (FAPESP) proc. 14/50937-1 and proc.
15/24485-9, Fundação de Amparo à Pesquisa e ao De-
senvolvimento Cientı́fico e Tecnológico do Maranhão
- Brazil (FAPEMA) proc. UNIVERSAL-00987/17.

REFERENCES

Al-Khedher, M. A. (2012). Hybrid gps-gsm localiza-
tion of automobile tracking system. arXiv preprint
arXiv:1201.2630.

Al-Taee, M. A., Khader, O. B., and Al-Saber, N. A. (2007).
Remote monitoring of vehicle diagnostics and loca-
tion using a smart box with global positioning system
and general packet radio service. In 2007 IEEE/ACS
International Conference on Computer Systems and
Applications, pages 385–388.

Almomani, I. M., Alkhalil, N. Y., Ahmad, E. M., and Jodeh,
R. M. (2011). Ubiquitous gps vehicle tracking and
management system. In 2011 IEEE Jordan Confer-
ence on Applied Electrical Engineering and Comput-
ing Technologies (AEECT), pages 1–6.

Antoniou, A., Georgiou, A., Kolios, P., Panayiotou, C., and
Ellinas, G. (2014). An event-based bus monitoring
system. In 17th International IEEE Conference on In-
telligent Transportation Systems (ITSC), pages 2882–
2887.

Behzad, M., Sana, A., Khan, M., Walayat, Z., Qasim, U.,
Khan, Z., and Javaid, N. (2014). Design and develop-

ment of a low cost ubiquitous tracking system. Proce-
dia Computer Science, 34(Supplement C):220 – 227.

Da Silva, A. R. (2015). Model-driven engineering: A sur-
vey supported by the unified conceptual model. Com-
puter Languages, Systems & Structures, 43:139–155.

Favre, J.-M. and NGuyen, T. (2005). Towards a meg-
amodel to model software evolution through transfor-
mations. Electronic Notes in Theoretical Computer
Science, 127(3):59–74.

Fowler, M. (2010). Domain-specific languages. Pearson
Education.

Guinelli, J. V., de Souza Rosa, A., Pantoja, C. E., Choren,
R., Friburgo-RJ-Brasil, N., and de Janeiro-RJ-Brasil,
R. (2014). Uma metodologia para apoio ao projeto
de banco de dados geográficos utilizando a mda. X
Simpósio Brasileiro de Sistemas de Informação.

Joy, S. P., Sunitha, V. S., Devi, V. R. S., Sneha, A., Deepak,
S., and Raju, A. J. (2016). A novel security enabled
speed monitoring system for two wheelers using wire-
less technology. In 2016 International Conference
on Circuit, Power and Computing Technologies (IC-
CPCT), pages 1–7.

Ludewig, J. (2003). Models in software engineering–an in-
troduction. Software and Systems Modeling, 2(1):5–
14.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
computing surveys (CSUR), 37(4):316–344.

Murray, T. (1999). Authoring intelligent tutoring systems:
An analysis of the state of the art. International Jour-
nal of Artificial Intelligence in Education (IJAIED),
10:98–129.

Murray, T., Blessing, S., and Ainsworth, S. (2003). Author-
ing tools for advanced technology learning environ-
ments: Toward cost-effective adaptive, interactive and
intelligent educational software. Springer Science &
Business Media.

Oliveira, R. R., Noguez, F. C., Costa, C. A., Barbosa,
J. L., and Prado, M. P. (2013). Swtrack: An intelli-
gent model for cargo tracking based on off-the-shelf
mobile devices. Expert Systems with Applications,
40(6):2023 – 2031.

Punetha, D. and Mehta, V. (2014). Protection of the child/
elderly/ disabled/ pet by smart and intelligent gsm and
gps based automatic tracking and alert system. In
2014 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI),
pages 2349–2354.

Zheng, Y., Capra, L., Wolfson, O., and Yang, H. (2014). Ur-
ban Computing: Concepts, Methodologies, and Ap-
plications. ACM Transactions on Intelligent Systems
and Technology, 5(3):38:1—-38:55.

A Mobility Restriction Authoring Tool Approach based on a Domain Specific Modeling Language and Model Transformation

533



APPENDIX

1 public class Mobcons {
2 public static void main(String[] args) {
3 MobconsCore mobconsCore = new MobconsCore();
4 mobconsCore.init(true);
5 SpeedRestriction restriction11 = new SpeedRestriction(40.0);
6 AreaContext contextPolygonalArea11 = new AreaContext(
7 new Point2D.Double(10.0,10.0),
8 new Point2D.Double(20.0,20.0),
9 new Point2D.Double(30.0,30.0),

10 new Point2D.Double(40.0,40.0));
11 ConstraintTimeClause weekTimeCondition11 =
12 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
13 "07:00:00", "12:00:00",2,3,4,5,6);
14 mobconsCore.newMC(restriction11,
15 contextPolygonalArea11,
16 weekTimeCondition11);
17 SpeedRestriction restriction22 = new SpeedRestriction(60.0);
18 GroupUMContext contextGroup12 = new GroupUMContext(1,2,3,4,5);
19 mobconsCore.newMC(restriction22,contextGroup12);
20 AreaRestriction restriction13 = new AreaRestriction(true,
21 new Point2D.Double(10.0,10.0),
22 new Point2D.Double(20.0,20.0),
23 new Point2D.Double(30.0,30.0),
24 new Point2D.Double(40.0,40.0));
25 KindOfMUContext contextKindOfMU13 =
26 new KindOfMUContext("Escavadeiras");
27 mobconsCore.newMC(restriction13,contextKindOfMU13);
28 } //end of the method main
29 } //end of the class

Listing 2: Artifact generated by the scenario 4.1.

1 public class Mobcons {
2 public static void main(String[] args) {
3 MobconsCore mobconsCore = new MobconsCore();
4 mobconsCore.init(true);
5 SpeedRestriction restriction11 = new SpeedRestriction(40.0);
6 SingleUMContext contextMU11 = new SingleUMContext(1);
7 mobconsCore.newMC(restriction11,contextMU11);
8 SingleUMContext contextMU21 = new SingleUMContext(2);
9 mobconsCore.newMC(restriction11,contextMU21);

10 SingleUMContext contextMU31 = new SingleUMContext(3);
11 mobconsCore.newMC(restriction11,contextMU31);
12 SingleUMContext contextMU41 = new SingleUMContext(4);
13 mobconsCore.newMC(restriction11,contextMU41);
14 SingleUMContext contextMU51 = new SingleUMContext(5);
15 mobconsCore.newMC(restriction11,contextMU51);
16 SingleUMContext contextMU61 = new SingleUMContext(6);
17 mobconsCore.newMC(restriction11,contextMU61);
18 AreaRestriction restriction12 = new AreaRestriction(true,new
19 Point2D.Double(400.0,400.0),10.0);
20 GroupUMContext contextGroup12 = new GroupUMContext(1,2);
21 ConstraintTimeClause weekTimeCondition12 =
22 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
23 "06:00:00","18:00:00",2,3,4,5,6);
24 mobconsCore.newMC(restriction12,contextGroup12,weekTimeCondition12);
25 ConstraintTimeClause weekTimeCondition22 =
26 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
27 "10:00:00","22:00:00",1,7);
28 mobconsCore.newMC(restriction12,contextGroup12,weekTimeCondition22);
29 AreaRestriction restriction23 = new AreaRestriction(true,new
30 Point2D.Double(10.0,10.0),5.0);
31 GroupUMContext contextGroup23 = new GroupUMContext(3,4);
32 ConstraintTimeClause weekTimeCondition33 =
33 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
34 "06:00:00","18:00:00",2,3,4,5,6);
35 mobconsCore.newMC(restriction13,contextGroup23,weekTimeCondition33);
36 ConstraintTimeClause weekTimeCondition43 =
37 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
38 "10:00:00","22:00:00",1,7);
39 mobconsCore.newMC(restriction13,contextGroup23,weekTimeCondition43);
40 AreaRestriction restriction34 = new AreaRestriction(true,new
41 Point2D.Double(1000.0,1000.0),20.0);
42 GroupUMContext contextGroup34 = new GroupUMContext(6,5);
43 ConstraintTimeClause weekTimeCondition64 =
44 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
45 "06:00:00","18:00:00",2,3,4,5,6);
46 mobconsCore.newMC(restriction14,contextGroup34,weekTimeCondition64);
47 ConstraintTimeClause weekTimeCondition74 =
48 ConstraintTimeClause.timeIntervalAndDaysOfWeekInArray(
49 "10:00:00","22:00:00",1,7);
50 mobconsCore.newMC(restriction14,contextGroup34,weekTimeCondition74);
51 } //end of the method main
52 } //end of the class

Listing 3: Artifact generated by the scenario 4.2.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

534


