
A Practical Guide to Support Change-proneness Prediction

Cristiano Sousa Melo, Matheus Mayron Lima da Cruz, Antônio Diogo Forte Martins, Tales Matos,
José Maria da Silva Monteiro Filho and Javam de Castro Machado
Department of Computing, Federal University of Ceará, Fortaleza-Ceará, Brazil

Keywords: Practical Guide, Change-proneness Prediction, Software Metrics.

Abstract: During the development and maintenance of a system of software, changes can occur due to new features,
bug fix, code refactoring or technological advancements. In this context, software change prediction can be
very useful in guiding the maintenance team to identify change-prone classes in early phases of software
development to improve their quality and make them more flexible for future changes. A myriad of related
works use machine learning techniques to lead with this problem based on different kinds of metrics. However,
inadequate description of data source or modeling process makes research results reported in many works hard
to interpret or reproduce. In this paper, we firstly propose a practical guideline to support change-proneness
prediction for optimal use of predictive models. Then, we apply the proposed guideline over a case study using
a large imbalanced data set extracted from a wide commercial software. Moreover, we analyze some papers
which deal with change-proneness prediction and discuss them about missing points.

1 INTRODUCTION

Software maintenance has been regarded as one of the
most expensive and arduous tasks in the software life-
cycle (Koru and Liu, 2007). Software systems evolve
in response to the worlds changing needs and require-
ments. So, a change could occur due to the existence
of bugs, new features, code refactoring or technologi-
cal advancements. As the systems evolve over time
from a release to the next, they become larger and
more complex (Koru and Liu, 2007). Thus, manag-
ing and controlling change in software maintenance
is one of the most important concerns of the software
industry. As software systems evolve, focusing on all
of their parts equally is hard and a waste of resources
(Elish and Al-Rahman Al-Khiaty, 2013).

In this context, a change-prone class means that
the class is likely to change with a high probability af-
ter a new software release. Then, it can represent the
weak part of a system. Therefore, change-prone class
prediction can be very useful and helpful in guiding
the maintenance team, distributing resources more ef-
ficiently, and thus, enabling project managers to focus
their effort and attention on these classes during the
software evolution process (Elish et al., 2015).

In order to predict change-prone classes, some
works which use machine learning techniques have
been proposed such as Bayesian networks (van Koten

and Gray, 2006), neural networks (Amoui et al.,
2009), and ensemble methods (Elish et al., 2015).

However, despite the flexibility of emerging ma-
chine learning techniques, owing to its intrinsic math-
ematical and algorithmic complexity, they are of-
ten considered a “black magic” that requires a deli-
cate balance of a large number of conflicting factors.
This fact, together with inadequate description of data
sources and modeling process, makes research results
reported in many works hard to interpret. It is not
rare to see potentially mistaken conclusions drawn
from methodologically unsuitable studies. Most pit-
falls of applying machine learning techniques to pre-
dict change-prone classes originate from a small num-
ber of common issues. Nevertheless, these traps can
be avoided by adopting a suitable set of guidelines.
Despite the several works that use machine learning
techniques to predict change-prone classes, no signif-
icant work was done so far to assist a software engi-
neer in selecting a suitable process for this particular
problem.

In this paper, we provide a comprehensive prac-
tical guideline to support change-proneness predic-
tion. We created a minimum list of activities and a
set of guidelines for optimal use of predictive models
in software change-proneness. Besides, for evaluat-
ing the proposed guide, we performed an exploratory
case study using a large data set, extracted from a

Melo, C., Lima da Cruz, M., Martins, A., Matos, T., Filho, J. and Machado, J.
A Practical Guide to Support Change-proneness Prediction.
DOI: 10.5220/0007727702690276
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 269-276
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

269



wide commercial software, containing the values of 8
static OO metrics. This case study was influenced by
(Runeson and Höst, 2009). It’s important to empha-
size that, using the proposed data set, data analysis
techniques were applied in order to predict change-
prone classes and to get insights about this process.

2 RELATED WORKS

In (Malhotra and Khanna, 2014) they examine the ef-
fectiveness of ten machine learning algorithms using
C&K metrics in order to predict change-proneness
classes. The authors work in three data sets and dur-
ing the statistical analysis for each one of them shows
that there is one imbalanced data set (26% changed
classes), however, there was not any treatment as re-
sample technique. Studies involving data normaliza-
tion, outlier detection and correlation were not per-
formed. The authors not tuned the results. Besides,
they did not provide the scripts containing the data set
with metrics generated.

In order to compare the performance of search
based algorithms with machine learning algorithms,
(Bansal, 2017) constructed models related to both ap-
proach. The C&K metric are also chosen along with
a metric called SLOC. These metrics were collected
from two open source Apache projects: Rave and
Commons Math. The generated datasets present im-
balanced classes, 32.8 and 23.54 changed classes, re-
spectively. The author take this in consideration and
use g-mean to measure the performance of the mod-
els. However, better results could possibly be ob-
tained whether resampling techniques where used be-
fore training ML methods.

(Catolino et al., 2018) analyze 20 data sets exploit-
ing the combination of developer-related factor, prod-
ucts and evolution metrics. Due to the amount of data
set, this paper does not provide basic information as
statistical analysis (overview, correlation, normaliza-
tion) nor outliers detection. Some of these data sets
are imbalanced. However, there is no treatment to
avoid misclassifications in minority labels. Besides,
there is no tuning in algorithms used.

(Kaur et al., 2016) study a relationship between
different types of object-oriented metrics, code smells
and change-prone classes. They argued that code
smells are better predictors of change-proneness com-
pared to OO metrics. However, after collecting this
one, there was not the minimum treatment with these
metrics as statistical analysis, outlier detection or fea-
ture selection. They also not provide the generated
metrics collected from data set analyzed.

3 THE GUIDELINE PROPOSED

This section describes the proposed guide to sup-
port change-proneness prediction, which is organized
into two phases: designing the data set and apply-
ing change-proneness prediction. Each one of these
phases will be detailed next.

3.1 Phase 1: Designing the Data Set

Figure 1: Phase 1 - Designing the Data Set.

The first phase aims to design and build the data set
that will be used by the machine learning algorithms
to predict change-prone classes. This phase, illus-
trated in Figure 1, encompasses the following activ-
ities: choose the dependent variables, choose the in-
dependent variable and collect the selected metrics.

3.1.1 Choose the Independent Variables

In order to predict change-prone classes, different cat-
egories of software metrics have been used, such as:
OO metrics (Zhou et al., 2009), C&K metrics (Chi-
damber and Kemerer, 1994), McCabe metrics (Mc-
Cabe, 1976), code smells (Khomh et al., 2009), de-
sign patterns (Posnett et al., 2011) and evolution met-
rics (Elish and Al-Rahman Al-Khiaty, 2013). Then,
the first step to design a proper data set consists of
answering the following question “which set of met-
rics (features) should be chosen as input to the pre-
diction model?”. In other words, which independent
variables to choose? The independent variables, also
known in a statistical context as regressors, represent
inputs or causes, that is, potential reasons for varia-
tion on the target feature (called dependent variable).
So, they are used to predict the target feature. It is im-
portant to highlight that the choose of a suitable set of
metrics impacts directly in the prediction model per-
formance.

3.1.2 Choose the Dependent Variable

The next step consists in defining the dependent vari-
able, which is the variable being predicted. Change-
prone prediction studies the changes of a class ana-
lyzing difference between an old version and a more
recent new version. (Lu et al., 2012) defines a change
of a class when there is an alteration in the number of

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

270



Figure 2: Phase 2 - Applying Change-Proneness Prediction.

Lines of Code (LOC). The domain of change-prone
prediction can be either labels 0-1 to indicate whether
there was some alteration or not.

3.1.3 Collect Metrics

This step consists in collect the metrics chosen previ-
ously (independent and dependent variables) from a
given software project. (Singh et al., 2013) cite a list
of tools to collect the most common metrics accord-
ing to used programming language (JAVA, C++, C#,
etc). At the end of this phase, a proper data set was
built.

3.2 Phase 2: Applying Prediction

The second phase in the proposed guide aims to build
change-prone class prediction models. A prediction
model is designed by learning from historical labeled
data in a supervised way. Besides, this phase encom-
passes the activities related to the analysis of the pre-
diction model performance metrics, the presentation
of the results and the ensure of the experiments re-
producibility. Figure 2 illustrates the activities that
composes the second phase of the proposed guide.

3.2.1 Statistical Analyses

Initially, a general analysis of the data set is strongly
recommended. The software engineer can build a ta-
ble containing, for each feature, a set of important in-
formation, such as: minimum, maximum, mean, me-
dian (med) and standard deviation (SD) values. As-
sess the correlation between the features, e.g. Pearson
Correlation, is high recommended as well. This is re-
lated to the fact that the generated prediction model

may be highly biased by correlated features, then it is
important to identify those correlations.

3.2.2 Normalization

Next, it is essential to check if the features are in
the same scale. For example, two features A and B
may have two different ranges: the first one a range
between zero and one, meanwhile the second one a
range in the integers domain. In this case, it is nec-
essary to normalize all features in the data set. There
are different strategies to normalize data. However,
it is important to emphasize that the normalization
approach must be chosen according to the nature of
the investigated problem and the used prediction algo-
rithm. For example, for activation function in neural
network is recommended that the data be normalized
between 0.1 and 0.9 rather than 0 and 1 to avoid sat-
uration of the sigmoid function. Normalization tech-
niques to deal with these scenarios are Min-Max nor-
malizarion or Z-score (Han et al., 2012).

3.2.3 Outlier Detection

Outliers are extreme values that deviate from other
observations on data, i.e., an observation that diverges
from an overall pattern on a sample. Detected outliers
are candidates for aberrant data that may otherwise
adversely lead to model mispecification, biased pa-
rameter estimation and incorrect result. It is therefore
important identify them prior to create the prediction
model.

A survey to distinguish between univariate vs.
multivariate techniques and parametrics (Statistical)
vs. nonparametrics procedures has done by (Ben-
Gal, 2005). Detecting outliers is possible only when
multivariate analysis is performed and the interactions

A Practical Guide to Support Change-proneness Prediction

271



among variables are compared with the class of data.
In the other words, an instance can be a multivariate
outlier but a usual data in each feature and an instance
can have values that are outliers in several features but
the whole instance might be a usual multivariate data.

As example, there are two techniques to detect
outliers: Interquartile Range (an univariate paramet-
ric approach) and K-distance of an instance (a multi-
variate nonparametric approach).

3.2.4 Feature Selection

High dimensionality data is problematic for classifi-
cation algorithms due to high computational cost and
memory usage. So, it is important to check if all fea-
tures in the data set are indeed necessary. The main
benefits from feature selection techniques are reduce
the dimensionality space, remove redundant, irrele-
vant or noisy data and performance improvement to
gain in predictive accuracy.

Feature selection methods can be distinguished
into three categories: filters, wrappers, and embed-
ded/hybrid method. Wrapper methods are brute-force
feature selection which exhaustively evaluates all pos-
sible combinations of the input features, and then find
the best subset. Filter methods have low computa-
tional cost but inefficient reliability in classification
compared to wrapper methods. Hybrid/ embedded
methods are developed which utilize advantages of
both filters and wrappers approaches. A hybrid ap-
proach uses both an independent test and performance
evaluation function of the feature subset.

3.2.5 Resample Techniques for Imbalanced Data

Machine Learning techniques require an efficient
training data set, which have an amount similar of in-
stances of the classes; however, in real world prob-
lems some data sets can be imbalanced i.e. a ma-
jority class containing most samples meanwhile the
other class contains few samples, this one generally of
our interest. Using imbalanced data sets to train mod-
els leads to higher misclassifications for the minority
class. It occurs because there is a lack of information
about the minority class.

The state-of-the-art methods which deal with im-
balanced data for classification problems can be cat-
egorized into two main groups: Under-sampling
(US): it refers to the process of reducing the num-
ber of instances of the majority class. Over-sampling
(OS): It consists of generating synthetic data in the
minority class in order to balance the proportion of
data.

For imbalanced multiple classes classification
problems, (Fernandez et al., 2013) have done an ex-

perimental analysis to determine the behaviour of the
different approaches proposed in the specialized liter-
ature. (Vluymans et al., 2017) also proposed an ex-
tension to multi-class data using one-vs-one decom-
position.

It is important to mention that is necessary to sepa-
rate the imbalanced data set into two sub sets: training
and test. After that, any of the techniques aforemen-
tioned should only be applied in the training set. The
Figure 3 shows how must to be this splitting approach.

MODEL

CLASSIFIER

RESAMPLE

TECHNIQUES

TEST SET

TRAINING

SET

OUTPUT

ORIGINAL

IMBALANCED

DATA SET

STEP 1 STEP 2 STEP 3

Figure 3: Splitting and Resampling Data Set.

3.2.6 Cross Validation

Training an algorithm and evaluating its statistical
performance on the same data yields an overopti-
mistic result. Cross Validation (CV) was raised to fix
this issue, starting from the remark that testing the
output of the algorithm on new data would yield a
good estimate of its performance. In most real ap-
plications, only a limited amount of data is available,
which leads to the idea of splitting the data: Part of
data (the training sample) is used for training the algo-
rithm, and the remaining data (the validation sample)
are used for evaluating the performance of the algo-
rithm. The validation sample can play the role of new
data. A single data split yields a validation estimate
of the risk, and averaging over several splits yields a
cross-validation estimate. The major interest of CV
lies in the universality of the data splitting heuristics.

A technique widely used to generalize the model
in classification problems is k-Fold Cross Validation.
This approach divides the set in k subsets, or folds, of
approximately equal size. One fold is treated as test
set meanwhile the others k−1 folds work as training
set. This process occurs k times. According to (James
et al., 2013), a suitable k value is k = 5 or k = 10.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

272



3.2.7 Tuning the Prediction Model

All the steps presented in this paper so far have served
to show good practicals on how to obtain baseline ac-
cording to machine learning algorithm selected. Tun-
ing it consists in finding the best possible configura-
tion of this algorithm at hand, where with best config-
uration we mean the one that is deemed to yield the
best results on the instances that the algorithm will be
eventually faced with. Tuning machine learning algo-
rithms consist of finding best set of hyperparameters
which yields the best results. Hyperparameters are
tuned by hand at trial-and-error procedure guided by
some rules of thumb, however, there are papers that
analyze a set of hyperparameters for specifics algo-
rithms in Machine Learning for tuning them, as (Hsu
et al., 2016) which recommend a grid-search on Sup-
port Vector Classification algorithm using RBF ker-
nel.

After defining a grid-search in a specific region, a
nested cross validation must be used to estimate the
generalization error of the underlying model and its
hyperparameter search. Thus it makes sense to take
advantage of this structure and fit the model iteratively
using a pair of nested loops, with the hyperparameters
adjusted to optimise a model selection criterion in the
outer loop (model selection) and the parameters set to
optimise a training criterion in the inner loop (model
fitting/training).

3.2.8 Selection of Performance Metrics

To evaluate a machine learning model for the classifi-
cation problem is necessary to select the appropriate
performance metrics according to two possible sce-
narios: for balanced or imbalanced data set.

In the case of balanced data sets, metrics like ac-
curacy, precision, recall and specificity can be used
without more concerns. However, in case of im-
balanced data these metrics are not suitable, since
they can lead to dubious results. For example, ac-
curacy metric is not suitable because it tends to give a
high score due a correct prediction of the bigger class
(Akosa, 2017).

It is important to highlight that in case of imbal-
anced data the more suitable metrics are AUC (Area
Under the ROC Curve) and F-score. These perfor-
mance metrics are suitable for imbalanced data be-
cause they takes the minority classes correctly classi-
fied into account, unlike the accuracy.

3.2.9 Ensure the Reproducibility

The last step in this phase consists in ensure the ex-
periments reproducibility, in order to verify the credi-

bility of proposed study. There are some authors who
have proposed basic rules for reproducible computa-
tional research, as (Sandve et al., 2013) which pro-
posed list ten rules.

4 A CASE STUDY

In order to evaluate the guidelines proposed in this
paper, we performed an exploratory case study using
a large data set, extracted from a wide commercial
software, containing the values of 8 static OO met-
rics. Then, different data analysis techniques were
applied over this data set in order to predict change-
prone classes and get insights about this process.

4.1 Phase 1: Designing the Data Set

4.1.1 Independent Variables

The majority of the metrics obtained in the context of
this work were proposed by (Chidamber and Kemerer,
1994), which quantify the structural properties of the
classes in an OO system. In addition to these metrics,
it was obtained Cyclomatic Complexity proposed by
(McCabe, 1976) and Lines of Code.

4.1.2 Dependent Variable

In this work, the change-proneness was adopted as
the dependent variable in order to investigate its rela-
tionship with the independent variables presented in
the previous subsection, following the definition pro-
posed by (Lu et al., 2012). The authors define that a
class will be labeled as 1 if in the next release occurs
alteration in the LOC independent variable.

4.1.3 Collect Metrics

The data set of this work is generated from the back-
end source code of a WEB application started in
2013, and until 2018 were collected 8 releases to an-
alyze change-prone classes. This application has in-
volved the development of modules which manages
the needs of multinationals related to processes, such
as return control of merchandise and product quality.
The back-end system has been implemented in C#
totaling 4183 classes; all its features were collected
through the Visual Studio NDepends plugin. At the
end of this phase, a data set containing the values of 8
static OO metrics, for 4183 classes, in 8 releases was
built. Now, it is possible to use this information to
predict change-prone classes.

A Practical Guide to Support Change-proneness Prediction

273



4.2 Phase 2: Applying Prediction

4.2.1 Environment Setup

The exploratory case study presented in this section
was developed using Python 3.7 through the Ana-
conda platform and Jupyter Notebook 5.6.0.

4.2.2 Statistical Analysis

As the first step of this phase, we performed a gen-
eral statistic analysis of the proposed data set. Table
1 shows the descriptive statistics of this data set for
each feature.

Table 1: Descriptive Statistics.

Metric Min Max Mean Med SD

LOC 0 1369 36.814 12 91.211
CBO 0 162 7.107 3 12.305
DIT 0 7 0.785 0 1.764
LCOM 0 1 0.179 0 0.289
NOC 0 189 0.612 0 6.545
RFC 0 413 9.966 1 25.694
WMC 0 56 1.558 0 4.244
CC 0 488.0 15.918 8 30.343

4.2.3 Normalization

Since there are features with a different scale the data
set was normalized using min-max normalization into
[0,1] range. For example, LCOM and LOC have dif-
ferent ranges: [0,1] and [0,1369], respectively.

4.2.4 Outlier Detection

The next step was to investigate the existence of out-
liers. In order to do this, we used the box plot method,
for each feature. However, since the proposed data set
contains 8 features, we used a multivariate strategy to
remove outliers, which is described as follows. If an
instance contains at least 4 features with outliers, it
will be dropped. Table 2 shows the number of in-
stances with label 0 and 1, before and after outliers
removal.

Table 2: Overview of the Data Set Before and After Outliers
Removal.

0 1 Total

Before outliers removal 3871 312 4183
After outliers removal 3637 287 3924

4.2.5 Feature Selection

The proposed data set has 8 features. So, not all
features may be necessary or even useful to gener-
ate good predictive models. Therefore, it is neces-
sary to investigate some feature selection methods.
Thus, in this step we explored four (three univariate
and one multivariate) feature selection methods and
compared their results in order to choose the best set
of features. More precisely, we used Chi-square (CS),
One-R (OR), Information Gain (IG) and Symmetrical
Uncertainty (SU). The last one is a multivariate con-
cept in Correlation-based Feature technique.

Table 3 shows the results obtained of each feature
selection techniques for each metric, that is, the rele-
vance of the metric in a specific method.

Another criteria to determine the number of fea-
tures to keep is to get the value of the highest sum and
establish a threshold of half of its value. 5 features
contain their sum into [28,14], however, according to
Pearson’s correlation CBO and RFC have value 0.89,
i.e., they are strongly correlated. Since RFC has the
sum less than CBO, RFC is dropped. Therefore, the
features selected were CBO, WMC, CC and LCOM.

Table 3: Feature Selection Results.

CS IG OR SU ∑

CBO 8 7 7 6 28
RFC 7 6 6 5 24
WMC 6 5 6 4 21
CC 4 4 5 3 16
LCOM 3 4 4 3 14
LOC 5 3 3 2 13
DIT 2 2 2 2 8
NOC 1 1 1 1 4

4.2.6 Resample Techniques and Cross Validation

Now, we used the data set to run 10 classification
algorithms with the default values of Scikit-Learn
ver. 0.20.0 for its hyperparameters, which is known
as baseline. The 10 classifiers explored in this step
were: Logistic Regression, LightGBM (Ke et al.,
2017), XGBoost (Chen and Guestrin, 2016), Deci-
sion Tree, Random Forest, KNN, Adaboost, Gradient
Boost, SVM with Linear Kernel and SVM with RBF
kernel. Each classifier was performed in four differ-
ent scenarios: with and without outliers and with and
without feature selection. Methods like XgBoost and
LightGBM have used random state = 42 and KNN
method has set number of neighbour as 5. To vali-
date these results, a k-fold cross validation was used,

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

274



with k = 10 and the scoring function has been set to
“roc auc” instead of accuracy, default of Scikit-Learn.

However, as the proposed data set is imbalanced,
we rerun all the previous experiments using three
undersample and three oversample techniques: Ran-
dom Under-Sampler, Tomek’s Link (Tomek, 1976),
Edited Nearest Neighbours (Wilson, 1972), Random
Over-Sampler, SMOTE (Chawla et al., 2002) and
ADASYN (He et al., 2008), respectively. Figure 4
shows the results of these experiments. The x-axis
shows the AUC metric and y-axis the different sce-
narios. The best evaluation founded was using over-
sampled technique: SMOTE + Logistic Regression,
without outliers and without feature selection with
AUC 0.703 and SD ±0.056.

Figure 4: Performance Evaluation in Different Baselines
Scenarios.

4.2.7 Tuning the Prediction Model

This step aims to explore a region of hyperparame-
ters in order to improve the results. The grid search
function was used to performing hyperparameters op-
timization. The nested cross validation, i.e., the outer
cross validation used to generalize the model and the
inner cross validation used to validate the hyperpa-
rameters during the training phase have been set k =
10 for both of them.

In this step, we have used the data set in the most
recommended scenario by this guideline: without out-
liers and keeping only selected features (as defined
in section 4.2.5). We did so because this scenario
presents the data set more refined and possibly more
clear from noisy data. Besides, we have used the same
ten classifiers and the same six resample techniques as
in previous section.

We can punctuate that, in general, the AUC ob-
tained by tuning the models outperforms the AUC ob-
tained from baseline experiments. Besides, the best
result from this scenario in this phase outperforms

even the best AUC from any of the scenarios base-
line. This occurs using Random Under Sampler +
SVM Linear got an AUC 0,710. For this result, the
grid search was set as C: [0.002, 1, 512, 1024, 2048]
and Class Weight: [1:1, 1:10, 1:15, 1:20].

However, it is always important to warn that tun-
ing is not a silver bullet. For instance, we performed
the tuning over the model with the best result from
baseline experiments and achieved a worse model
where AUC has decreased from 0.703 to 0.699.

4.2.8 Ensure the Reproducibility

The results of all experiments run in this exploratory
case study are available in a public Github reposi-
tory1. This repository consists of two main folders:
data set and case study. The former contains a csv file
where all instances used in this paper are into, defined
in section 4.1.

5 CONCLUSIONS

In this paper, we presented a guide to support change-
proneness prediction in order to standardize a mini-
mum list of activities and roadmaps for optimal use
of predictive models in software change-proneness.
For the purpose of validating the proposed guide, we
performed it over a strongly imbalanced data set ex-
tracted from a wide commercial software, contain-
ing 8 static object-oriented metrics proposed by C&K
and McCabe. Additionally, we investigated empirical
studies about change-proneness prediction containing
balanced and imbalanced data sets in order to detect
missing points which our guide considers indispens-
able steps to guarantee minimally good results. As
future works, we plan to apply the proposed guide in
other commercial and open-source data sets. Besides,
we will explore another set of metrics, such as code
smells, design patterns and evolution metrics.

ACKNOWLEDGEMENTS

This research was funded by LSBD/UFC.

REFERENCES

Akosa, J. S. (2017). Predictive accuracy : A misleading
performance measure for highly imbalanced data. In
SAS Global Forum.

1https://github.com/cristmelo/PracticalGuide.git

A Practical Guide to Support Change-proneness Prediction

275



Amoui, M., Salehie, M., and Tahvildari, L. (2009). Tempo-
ral software change prediction using neural networks.
International Journal of Software Engineering and
Knowledge Engineering, 19(07):995–1014.

Bansal, A. (2017). Empirical analysis of search based algo-
rithms to identify change prone classes of open source
software. Computer Languages, Systems & Struc-
tures, 47:211–231.

Ben-Gal, I. (2005). Outlier Detection, pages 131–146.
Springer US, Boston, MA.

Catolino, G., Palomba, F., Lucia, A. D., Ferrucci, F., and
Zaidman, A. (2018). Enhancing change prediction
models using developer-related factors. Journal of
Systems and Software, 143:14 – 28.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree
boosting system. CoRR, abs/1603.02754.

Chidamber, S. and Kemerer, C. (1994). A metrics suite for
object oriented design. IEEE Transaction on Software
Engineering, 20(6).

Elish, M., Aljamaan, H., and Ahmad, I. (2015). Three em-
pirical studies on predicting software maintainability
using ensemble methods. Soft Computing, 19.

Elish, M. O. and Al-Rahman Al-Khiaty, M. (2013). A
suite of metrics for quantifying historical changes to
predict future change-prone classes in object-oriented
software. Journal of Software: Evolution and Process,
25(5):407–437.

Fernandez, A., Lpez, V., Galar, M., del Jesus, M. J., and
Herrera, F. (2013). Analysing the classification of im-
balanced data-sets with multiple classes: Binarization
techniques and ad-hoc approaches. Knowledge-Based
Systems, 42:97 – 110.

Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Con-
cepts and Techniques. Morgan Kaufman, 3rd edition
edition.

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:
Adaptive synthetic sampling approach for imbalanced
learning. In 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 1322–1328.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2016). A practical
guide to support vector classification.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013).
An Introduction to Statistical Learning with Applica-
tions in R. Springer.

Kaur, A., Kaur, K., and Jain, S. (2016). Predicting software
change-proneness with code smells and class imbal-
ance learning. In 2016 International Conference on
Advances in Computing, Communications and Infor-
matics (ICACCI), pages 746–754.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly
efficient gradient boosting decision tree. In Advances
in Neural Information Processing Systems 30, pages
3146–3154. Curran Associates, Inc.

Khomh, F., Penta, M. D., and Gueheneuc, Y. (2009). An
exploratory study of the impact of code smells on soft-

ware change-proneness. In 2009 16th Working Con-
ference on Reverse Engineering, pages 75–84.

Koru, A. G. and Liu, H. (2007). Identifying and charac-
terizing change-prone classes in two large-scale open-
source products. Journal of Systems and Software,
80(1):63 – 73.

Lu, H., Zhou, Y., Xu, B., Leung, H., and Chen, L.
(2012). The ability of object-oriented metrics to pre-
dict change-proneness: a meta-analysis. Empirical
Software Engineering, 17(3).

Malhotra, R. and Khanna, M. (2014). Examining the effec-
tiveness of machine learning algorithms for prediction
of change prone classes. In 2014 International Con-
ference on High Performance Computing Simulation
(HPCS), pages 635–642.

McCabe, T. J. (1976). A complexity measure. IEEE Trans-
action on Software Engineering.

Posnett, D., Bird, C., and Dévanbu, P. (2011). An em-
pirical study on the influence of pattern roles on
change-proneness. Empirical Software Engineering,
16(3):396–423.

Runeson, P. and Höst, M. (2009). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical software engineering, 14(2):131–
164.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig,
E. (2013). Ten simple rules for reproducible com-
putational research. PLOS Computational Biology,
9(10):1–4.

Singh, P., Singh, S., and Kaur, J. (2013). Tool for generating
code metrics for c# source code using abstract syntax
tree technique. ACM SIGSOFT Software Engineering
Notes, 38:1–6.

Tomek, I. (1976). Two modifications of cnn. IEEE Trans.
Systems, Man and Cybernetics, 6:769–772.

van Koten, C. and Gray, A. R. (2006). An application of
bayesian network for predicting object-oriented soft-
ware maintainability. Inf. Softw. Technol., 48(1):59–
67.

Vluymans, S., Fernández, A., Saeys, Y., Cornelis, C., and
Herrera, F. (2017). Dynamic affinity-based classifica-
tion of multi-class imbalanced data with one-versus-
one decomposition: a fuzzy rough set approach.
Knowledge and Information Systems, pages 1–30.

Wilson, D. L. (1972). Asymptotic properties of nearest
neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-2(3):408–
421.

Zhou, Y., Leung, H., and Xu, B. (2009). Examining the po-
tentially confounding effect of class size on the asso-
ciations between object-oriented metrics and change-
proneness. IEEE Transactions on Software Engineer-
ing, 35(5):607–623.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

276


