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Abstract: Software evolution analysis can shed light on various aspects of software development and maintenance. Up 

to date, there is little empirical evidence on the evolution of JavaScript (JS) applications in terms of 

maintainability and changeability, even though JavaScript is among the most popular scripting languages 

for front-end web applications, including IoT applications. In this study, we investigate JS applications’ 

quality and changeability trends over time by examining the relevant Laws of Lehman. We analyzed over 

7,500 releases of JS applications and reached some interesting conclusions. The results show that JS 

applications continuously change and grow, there are no clear signs of quality degradation while the 

complexity remains the same over time, despite the fact that the understandability of the code deteriorates. 

1 INTRODUCTION 

In the past decade, the developers’ interest in 

dynamic languages, such as JavaScript, Python, and 

Ruby has resurged, a fact confirmed by the growth 

and penetration of the languages (Amanatidis and 

Chatzigeorgiou, 2016). Undoubtedly, JavaScript (JS) 

is today among the most popular programming 

languages as according to GitHub statistics1, it was 

the most active language in 2017.  

JS is a high-level dynamic, object-based, multi-

paradigm, interpreted, and weakly typed pro-

gramming language (Diakopoulos and Cass, 2017). 

The majority of websites are written in JS, and all 

current web browsers have a built-in JS engine to 

support without needing plug-ins (Diakopoulos and 

Cass, 2017). Additionally JS has already started to 

support the emerging needs of new types of 

applications for controlling elements in the physical 

world within the context of IoT. Despite this, there is 

little knowledge today regarding the maintenance 

and evolution of JS applications in terms of quality 

and changeability.  

The objective of this study is to explore the 

evolution of JS applications over time, in terms of 

quality and changeability. Software evolution refers 

                                                           
1 https://madnight.GitHub.io/githut/#/pull_requests/2017/ 

[Accessed: 15 February 2019] 

to maintaining both software performance and 

usefulness across time and occurs through software 

development and maintenance processes (Belady 

and Lehman, 1976). The motivation behind the need 

to analyze the evolution in terms of quality and 

changeability of applications developed in JS is the 

fact that this language is considered to be weakly 

typed (Diakopoulos and Kass, 2017). This means 

that it has looser type rules, which may generate 

unpredictable results during an application’s life-

cycle. In this context, we want to explore (a) 

whether this fact may cause problems to the quality 

of projects through time and (b) the level to which 

changes are performed during the evolution of JS 

applications helping towards their maintenance.  

In order to assess the evolution of JS applications, 

we performed an empirical study on twenty (20) 

popular Open Source Software (OSS) projects 

downloaded from GitHub repository and examined 

the five laws of evolution as introduced by Lehman 

(1996) regarding the quality and the level of changes 

performed in an application. We considered 

Lehman’s Laws for assessing the evolution of JS 

projects, as being representative for traditional 

studies of software evolution (Belady and Lehman, 

1976). We followed the analysis steps firstly 

demonstrated in earlier similar studies, experi-

menting with different languages (Amanatidis and 

Chatzigeorgiou, 2016), (Godfrey and Tu, 2000). 

Thus, we also enable the comparison with other 

Chatzimparmpas, A., Bibi, S., Zozas, I. and Kerren, A.
Analyzing the Evolution of Javascript Applications.
DOI: 10.5220/0007727603590366
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 359-366
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

359



 

popular programming languages such as C, C++, 

Java, and PHP. 

The rest of the paper is organized as follows: 

Section 2 provides related work overview. In 

Section 3, we describe the case study design. Section 

4 presents the results on twenty JS project analysis. 

In Sections 5 and 6, we discuss the results and 

conclude the paper. 

2 RELATED WORK 

Over forty years ago, Lehman’s laws have been 

considered as a reference to software evolution. 

Belady and Lehman (1976) were the first that on an 

empirical basis studied the changes in both 

complexity and size of several large programs. They 

conducted a quantitative study over release versions 

that summarized their three initial qualitative laws of 

program evolution dynamics. This initiated a large 

number of research efforts, which were introduced 

by adopting a variety of metrics to test the validity 

of each law. 
Lawrence (1982) tested statistically the first five 

of Lehman's laws before law revisions twenty years 

later that included the role of process feedback 

(Lehman, 1996). Gall et al. (1997) were the first to 

provide a confirmation based on software release 

data. Other researchers proposed different metrics 

and frameworks over software evolution. Kemerer 

and Slaughter (1999) conducted a longitudinal 

empirical business case study, while Godfrey and Tu 

(2000) analyzed data from the growth of the Linux 

kernel finding linear growth in evolution. Paulson et 

al. (2004) analyzed empirical data for various 

systems to confirm previous software evolution 

assumptions. 

To this time, a growing interest in whether the 

laws apply to OSS emerged (Oliveira and Almeida, 

2016). Wu and Holt (2004) measured the size 

evolution of two large systems confirming the first 

four laws. German (2004) analyzed software trails 

over a single system, demonstrating a methodology 

to recover software evolution information. Neamtiu, 

Foster, and Hicks (2005) mined software re-

positories of popular C systems focusing on code 

function names and revealed trends, present 

semantic differences, and software evolution traces. 

Later Neamtiu, Xie, and Chen (2013) analyzed 

official software releases to confirm Lehman's first 

five laws and indicated violations. Gyimothy, 

Ferenc, and Siket (2005) already proposed and 

applied metrics on one project to detect fault-

proneness as a software evolution derivation and 

Kim, Whitehead, and Bevan (2006) investigated 

signature changes in seven projects to detect 

evolution patterns using statistical correlations. 

The growing interest over OSS projects 

continued to emerge through a growing number of 

research efforts. Herraiz et al. (2007) studied the 

evolution in size of a project over time by applying 

time series analysis. Fernandez-Ramil (2008) 

studied the growth trend on popular libre operating 

systems to contradict three of Lehman's laws, 

confirming the latter five. Antoniol et al. (2007) 

focused more on the role of the identifier lexicon on 

overall software evolution, while Businge et al. 

(2010) investigate 5 out of 8 laws confirming the 

results of previous research. Grechanik et al. (2010) 

investigated Java applications and expanded the law 

validity by practice-at-large on Java development. 

Kaur et al. (2014) researched the law applicability 

on two prominent OSS C++ applications. 

Amanatidis and Chatzigeorgiou (2016) analyzed 

data acquired from successive versions of PHP 

projects to evaluate the validity of each law by 

applying primarily trend tests.  

In this paper, our goal is to extend current 

research efforts to evaluate the validity of Lehman’s 

laws concerning JS applications.  

3 CASE STUDY 

The case study performed was designed following 

Runeson and Höst’s (2008) guidelines. We 

examined JS applications evolution from the 

perspective of Lehman’s laws, which characterize 

trends in quality and changes of the evolving 

software systems. 
Concerning the Research questions of this study, 

the main goal is to explore the trends in changes and 

quality of JS applications, over time, from the 

perspective of Lehman’s laws of evolution. Since 

our main focus is on the changes performed between 

successive versions and their impact on quality, the 

remaining three laws relevant to size remained out 

of our scope. Therefore, we examined the following 

research questions: 

RQ1: Is Law I: “Continuous Change” confirmed 

by JavaScript applications, as an indicator of a 

trend in changes? 

In this research question, we aim to see whether 

JS applications actually support continuous change 

and if this change is more intense or loose over the 

successive releases. 
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RQ2: Is Law II: “Increasing complexity” 

confirmed by JavaScript applications, as an 

indicator of a trend in quality? 

In this question, we will explore whether the 

complexity of JS applications is constantly 

increasing or whether the maintenance actions 

performed are sufficient to keep complexity levels 

stable. 

RQ3: Is Law IV regarding “Conservation of 

Organizational Stability” confirmed by JavaScript 

applications, as an indicator of a trend in changes? 

In this question, we will explore whether the 

work produced between successive releases of JS 

applications is constant. 

RQ4: Is Law V regarding “Conservation of 

Familiarity” confirmed by JavaScript applications, 

as an indicator of a trend in changes?  

In this question, we will explore whether the new 

content added between successive releases of JS is 

stable or present large deviations. 

RQ5: Is Law VII regarding “Declining Quality” 

confirmed by JavaScript applications, as an 

indicator of a trend in quality? 

In this research question, we aim to check if the 

quality of a software system deteriorates during the 

lifecycle of a software system. 

Table 1: JS projects examined in the study. 

Concerning the Case Study Design to explore the 

evolution of JS applications, several criteria were 

employed to select the JS applications, which were 

included in the analysis. Initially, all JS applications 

hosted in GitHub were ranked according to their 

popularity. Then, we filtered the applications and 

selected the ones with at least 95% of JS code, two 

or more years of lifespan, and more than thirty 

releases. Afterward, we chose small, medium, and 

large-sized applications depending on the lines of 

code (LoC) for their last release.  

Table 1 presents the application complete lifespan 

until August 2017, their number of releases, the 

scope of each, as well as certain metrics referring to 

the first and last release of each. Moreover, Table 2 

presents the metrics adopted to assess the validity of 

each law. 

Table 2: Metrics used for each law. 

The final set of metrics was collected with the 

following process (a) by initially mining the 

webpage of GitHub projects to get general project 

information using a parser tool developed by the 

first author and (b) downloading all successive 

releases from git for each project in order to derive 

source code metrics with the help of JSClassFinder 

or SonarQube. 

Concerning the Data Analysis, we employed 

statistical hypothesis testing to check whether the 

five laws of Lehman are confirmed or not. We 

applied the Mann-Kendall (M-K test) trend test, 

which is a nonparametric test used to identify a trend 

                                                           
2 https://blog.sonarsource.com/cognitive-complexity-because-

testability-understandability [Accessed: 15 February 2019] 

Name Releases First Release Last Release 

Date Size Date Size 

Lodash 380 2012 78,559 2017 3,541 
Material-UI 161 2014 2,649 2017 3,627 

Dropzone 97 2012 947 2017 3,751 

Bower 102 2012 5,663 2017 4,559 
WebTorrent 257 2013 592 2017 4,639 

Yarn 110 2016 1,455 2017 5,372 

Q 65 2010 568 2014 6,768 

Cropper 52 2013 7,076 2017 19,477 
Video.js 327 2014 5,791 2017 19,552 

Jasmine 58 2009 9,940 2017 20,045 

Medium-Editor 150 2013 2,116 2017 20,709 
Hexo 120 2012 55,186 2017 24,826 

Webpack 253 2013 15,300 2017 42,404 
Chart.js 37 2013 4,787 2017 44,925 

JSHint 66 2011 199,130 2017 66,579 

PDF.js 44 2011 40,996 2017 76,238 

Vue 207 2013 12,840 2017 89,095 
Hyper 42 2016 5,222 2017 92,988 

OpenLayers  161 2006 7,354 2017 102,097 

ESLint 171 2013 15,264 2017 234,324 

Law Property Metric Description 

I Changes 

Days Between 

Releases  

Recent release date – 

Previous release date. 

Lines of Code 
Lines of Code of the release 
(excluding comments). 

II Quality 

Cyclomatic 

Complexity 

Cyclomatic Complexity 

Number (total code paths or 

splits in flow)/Lines of Code. 

Cognitive 

Complexity 

A measure of the relative 

understandability of methods, 

calculated by SonarQube2. 

IV Changes 

Maintenance 

Effort 

Incremental Changes/Days 

Between Releases. 

# of Commits Project commits/releases. 

V Changes 

Incremental 

Changes 

Number of functions added/ 
/modified/removed. 

Number of 

new Functions 

Number of new 

functions/releases. 

 

VII 
 

Quality 

Comment Rate  
Comments/(Lines of Code + 

Comments) %. 

Maintainability 

The ratio between the cost to 

develop and cost to fix 

potential bugs found in a 
release. It is calculated by 

SonarQube based on the 

Lehman’s (1996) technical 
debt concept. 

Analyzing the Evolution of Javascript Applications

361



 

in a time series. The Mann-Kendall test explores the 

following hypotheses in the context of this study:  

H0: The null hypothesis H0 is that there is no 

trend supported by the software data analyzed, so the 

relevant law cannot either be confirmed or 

contradicted.  

H1: The non-null hypothesis Η1 refers to the 

alternative hypotheses that there is a negative, non-

null, or positive trend regarding the relevant Law.  

The "p-value" is automatically generated to 

distinguish the two hypotheses. A value less than 

0.05 indicates that there is a trend exhibiting the 

dependent variable and vice versa for a value greater 

than 0.05. The threshold of 0.05 is common practice 

(Garg et al., 1998) when deciding upon a hypothesis 

(Sen, 1968). 

In the case where the null hypothesis is rejected, 

we calculated the Sen’s estimator (Sen, 1968) value 

to assess the slope of the fitted trendline. Based upon 

Sen’s slope estimator, we can draw a conclusion 

related to the trend that a variable exhibits and 

statistically confirm or not the relevant law. In the 

case where the null hypothesis is not rejected for the 

majority of projects, we plotted the relevant metrics 

in subsequent releases of projects that do not present 

a trend, so as to allow the visual inspection of their 

evolution through time. 

4 RESULTS 

In this section, we present the results of the trend 

analysis performed to confirm or contradict the 

Lehman's law hypothesis on software evolution. The 

results are presented in Tables 3 to 7. For each 

examined metric, we can see the results of Mann 

Kendall trend test in the form of the p-value and also 

the slope value (in the case of a trend), which is 

accompanied by a trend arrow sign that indicates 

either a positive trend (meaning increase over time) 

or a negative trend (indicates decrease over time). 

4.1 Law I: Continuing Change 

To obtain insights on the 1st law of Lehman, we have 

statistically tested two metrics the Lines of Code 

(LoC) and the Days Between Releases (DBR).  

LoC is an indicator of the changes performed 

between successive releases. In Table 3, we observe 

that LoC presents a positive trend in almost every 

application, which leads to the confirmation of the 

law. Also, the positive trend implies that the changes 

performed in successive releases are increased over 

time may be due to the need to add new 

functionalities. The second metric we tested is DBR. 

A positive trend in DBR implies that the number of 

days elapsed between successive releases tends to 

increase as time passes by, leading to the conclusion 

that new software releases are published more 

rarely. As we can observe in Table 3, in most of the 

applications there is no statistical evidence for the 

presence or the absence of a distinct trend. To 

visually investigate the evolution of DBR, we 

plotted a chart for the projects with the p-value 

greater than 0.05 (Figure 1) that presents the DBR 

metric in successive releases. The chart has lots of 

fluctuations, a fact that strengthens the assumptions 

that almost all JS projects change over time, 

presenting though, an unknown rate of change. In 

conclusion, Law I is confirmed statistically and 

visually confirmed, by taking into consideration the 

LoC metric results and the DBR metric plots. We 

can say that JS applications continuously change, 

but the rate of change is unknown. 

Table 3: RQ1 - trend analysis results. 

 

Figure 1: DBR for successive releases of JS applications 

with no trend. 

Law I Continuing Change 

Program LoC DBR 
 p Slope p Slope 

Lodash 0.116  <10-4 - 

Material-UI < 10-4 28.27↑ <10-4 -0.03↓ 
Dropzone < 10-4 7.397↑ 0.001 0.05↑ 

Bower < 10-4 7.824↑ 0.051  

WebTorrent < 10-4 2.169↑ 0.105  
Yarn < 10-4 2.268↑ 0.141  

Q < 10-4 31.72↑ 0.001 0.7↑ 

Cropper < 10-4 6.417↑ 0.074  
Video.js < 10-4 22.97↑ 0.377  

Jasmine < 10-4 31.72↑ 0.375  

Medium-Editor < 10-4 20.63↑ 0.088  
Hexo < 10-4 12.88↑ <10-4 0.09↑ 

Webpack < 10-4 13.33↑ 0.001 0.01↑ 
Chart.js < 10-4 38.63↑ 0.990  

JSHint < 10-4 6.000↑ 0.022 0.4↑ 

PDF.js < 10-4 12.09↑ 0.328  
Vue < 10-4 31.72↑ 0.848  

Hyper < 10-4 104.9↑ 0.297  

OpenLayers  < 10-4 21.49↑ 0.246  
ESLint < 10-4 122.4↑ 0.665  
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4.2 Law II: Increasing Complexity 

To check the 2nd law, we statistically test two 

metrics the Cyclomatic Complexity metric and the 

Cognitive Complexity metric. The Cyclomatic 

Complexity is an indicator of the source code 

complexity and is mainly used for measuring the 

testability of a software method. As we can observe 

in Table 4, no statistical trend is found in seventeen 

applications. The absence of a trend is a strong 

indicator that Cyclomatic Complexity remains at the 

same levels as time passes by, a fact that weakens 

the validity of Law II. The Cognitive Complexity is 

an indicator of the effort required to understand a 

method and is a measure of the understandability of 

a software method. As we can observe in Table 5, in 

the majority of applications there is a positive trend. 

That means Cognitive Complexity increases as time 

passes by, a fact that strengthens the validity of Law 

II. 

Table 4: RQ2 - trend analysis results. 

 

In conclusion, we can say that the Complexity 

metric of JS applications remains the same in terms 

of testability, but it increases in terms of under-

standability. Maybe this could be explained due to 

the maintenance effort from the developers to keep 

low the complexity level of the JS software from the 

perspective of code control flow, a fact that on the 

other hand reduces the understandability of the code. 

Therefore, Law II is statistically confirmed with 

respect to the understandability of the appli-

cation but not confirmed in terms of testability. 

4.3 Law IV: Conservation of 
Organizational Stability 

To check the 4th law, the Maintenance Effort and 

the Number of Commits (NoC) metrics are 

statistically tested. In Table 5 for the Maintenance 

Effort, we can observe that in seventeen applications 

we have not any slope, so there is no evidence of a 

statistical trend. Figure 2 presents the Maintenance 

Effort metric evolution in subsequent releases for the 

applications with p-values greater than 0.05. 

Table 5: RQ3 - trend analysis results. 

Law IV Conservation of Organizational Stability 

Program Maintenance Effort Number of Commits 

 p Slope p Slope 

Lodash 0.669  <10-4 -0.03↓ 

Material-UI 0.401  0.790  

Dropzone 0.775  <10-4 -8.86↓ 
Bower 0.173  <10-4 -21.91↓ 

WebTorrent 0.076  <10-4 -0.2↓ 

Yarn 0.925  <10-4 -15.14↓ 
Q 0.020 -0.07↓ <10-4 -12.7↓ 

Cropper 0.825  <10-4 -18.9↓ 

Video.js 1.000  0.015 -4.2↓ 
Jasmine 0.035 0.14↑ <10-4 -4.6↓ 

Medium-Editor 0.594  <10-4 -0.54↓ 

Hexo 0.379  0.935  
Webpack 0.018 -0.05↓ <10-4 -8.03↓ 

Chart.js 0.958  0.564  

JSHint 0.108  < 10-4 -3.5↓ 
PDF.js 0.476  <10-4 -94.61 

Vue 0.163  <10-4 - 

Hyper 0.634  <10-4 -5.25↓ 
OpenLayers  0.268  <10-4 -69.36↓ 

ESLint 0.384  <10-4 -38.0↓ 

 

In Figure 2, we can observe that the Maintenance 

Effort is stable apart from a few exceptions that 

present extreme effort values during their evolution 

that deviate from the usual values. Regarding the 

NoC variable, we observe that the majority of 

applications present a negative slope, indicating that 

the number of commits is decreased as developers 

publish new releases. This law combines the activity 

and the work rate in a fraction (activity/work rate).  

 

Figure 2: Maintenance effort for successive releases of JS 

applications with no trend. 
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Law II Increasing Complexity 

Program Cyclomatic 

Complexity 

Cognitive Complexity 

 p Slope p Slope 

Lodash < 10-4  0.941  
Material-UI 0.0  0.107  

Dropzone < 10-4  <10-4 3.957↑ 

Bower < 10-4 0.01↑ <10-4 0.681↑ 
Web Torrent 0.621  0.426  

Yarn 0.034 -0.01↓ <10-4 0.268↑ 

Q < 10-4  <10-4 1.233↑ 
Cropper 0.008  <10-4 2.724↑ 

Video.js 0.724  <10-4 6.712↑ 

Jasmine < 10-4  <10-4 0.270↑ 
Medium-

Editor 

< 10-4  <10-4 3.548↑ 

Hexo < 10-4  < 10-4 5.109↑ 
Webpack < 10-4  < 10-4 2.603↑ 

Chart.js 0.002  < 10-4 7.096↑ 

JSHint 0.048  < 10-4 3.292↑ 
PDF.js < 10-4 0.01↑ < 10-4 4.123↑ 

Vue < 10-4  < 10-4 11.62↑ 

Hyper 0.174  < 10-4 7.727↑ 
OpenLayers < 10-4  < 10-4 2.488↑ 

ESLint 0.021  < 10-4 6.500↑ 
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As a proxy for an activity, we consider the 

Number of Commits metric and as a proxy for work 

rate, we consider the maintenance effort metric. 

Maintenance effort metric shows the amount of 

effort contributed to a particular release. In JS 

applications, we observe that in the majority of cases 

the activity declines while the work rate remains 

stable. This causes the decrease of the entire 

fraction, a fact that is in contrast to what the law 

proposes. So, the maintenance effort remains the 

same in general despite the fact that the commits are 

reduced over time. In conclusion, Law IV can be 

confirmed with respect to the work rate but not 

concerning the global activity. 

4.4 Law V: Conservation of Familiarity 

To check the 5th law, the Number of Functions 

(NoF) and the Incremental Changes (IC) metrics 

are statistically tested. NoF represents the number of 

new functions added in a release and is an indicator 

of the cumulative changes performed between 

successive releases. In Table 6, we observe that NoF 

presents a positive trend in almost every application, 

which leads to the conclusion that during the 

evolution of a JS application the rate in which new 

functions are inserted tend to increase. Taking into 

consideration this fact, we cannot confirm the law.  

Regarding IC metric we see in Table 6, that for 

eighteen applications we have not any slope, so no 

clue that proves the existence of a statistical trend. 

To visually examine the evolution of IC metric we 

plotted the projects with the p-value greater than 

0.05 for further investigation in Figure 3.  

Table 6: RQ4 - trend analysis results. 

The fluctuations of the plot indicate that some 

projects have a positive trend which implies that the 

number of functions added/modified/removed 

increases and for the others, this is not the case. It 

seems that there are breaking points in the lifecycle 

of JS applications were a great amount of 

functionality is added, or the existing code base is 

refactored as we can observe from various releases 

that present large deviations in terms of changes. In 

conclusion, Law V is not confirmed. 

 

Figure 3: Incremental changes for successive releases of 

JS projects with no trend. 

4.5 Law VII: Declining Quality 

To check the 7th law, the Comment Rate (CR) and 

Maintainability metrics are statistically tested. For 

the CR variable, as we observe in Table 7, 

approximately half of the projects have a negative 

trend. The CR metric seems to gradually decrease in 

new releases but still based on the slope values the 

level of decrease is too small.  

Table 7: RQ5 - trend analysis results. 

Law VII Declining Quality 

Program Comment Rate Maintainability 

 p Slope p Slope 

Lodash 0.003 -0.04↓ 0.0 -0.03↓ 

Material-UI <10-4 0.01↑ <10-4 -0.01↓ 

Dropzone <10-4 -0.12↓ 0.623  
Bower 0.024 0.02↑ <10-4 -0.01↓ 

WebTorrent <10-4 0.09↑ <10-4 0.02↑ 

Yarn <10-4 -0.02↓ <10-4 0.01↑ 
Q 0.385  0.001 -0.11↓ 

Cropper 0.121  0.071  

Video.js 0.186  0.724  
Jasmine 0.003 0.05↑ 0.571  

MediumEditor <10-4 -0.02↓ 0.0  

Hexo <10-4 0.02↑ <10-4 -0.01↓ 

Webpack <10-4 -0.04↓ 0.118  

Chart.js 0.012 -0.08↓ <10-4 -0.01↓ 

Jhint 0.531  0.249  
PDF.js 0.513  0.368  

Vue <10-4 -0.05↓ <10-4 0.01↑ 

Hyper 0.001 -0.07↓ 0.252  
OpenLayers  <10-4 -0.06↓ 0.583  

ESLint 0.602  0.196    

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

373533312927252321191715131197531

IN
C

R
E

M
E

N
T

A
L

 C
H

A
N

G
E

S

P-VALUE > 0.05

Lodash

Dropzone

Bower

WebTorrent

Yarn

Cropper

Video.js

Jasmine

Medium-Editor

Hexo

Webpack

Chart.js

JSHint

PDF.js

Vue

Hyper

OpenLayers

ESLint

Law V Conservation of Familiarity 

Program NoF Incremental Changes 

 p Slope p Slope 

Lodash < 10-4 -2.01↓ 0.114  

Material-UI < 10-4 17.96↑ 0.041 0.16↑ 
Dropzone < 10-4 7.98↑ 0.677  

Bower < 10-4 15.96↑ 0.774  

WebTorrent < 10-4 2.65↑ 0.067  
Yarn < 10-4 0.95↑ 0.867  

Q < 10-4 24.21↑ 0.042 -0.94↓ 

Cropper < 10-4 7.28↑ 0.705  
Video.js < 10-4 12.42↑ 0.390  

Jasmine < 10-4 30.0↑ 0.872  

Medium-Editor < 10-4 12.46↑ 0.978  

Hexo < 10-4 30.33↑ 0.184  

Webpack < 10-4 8.2↑ 0.185  

Chart.js < 10-4 74.44↑ 0.340  
Jhint < 10-4 11.58↑ 0.438  

PDF.js < 10-4 55.45↑ 0.085  

Vue < 10-4 15.83↑ 0.577  
Hyper < 10-4 6.43↑ 0.392  

OpenLayers  < 10-4 61.96↑ 0.287  

ESLint < 10-4 34.77↑ 0.729  
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For the Maintainability variable in eleven samples, 

we have not any slope which means that there is no 

indication of a statistical trend. By examining each 

project separately, we can identify a small decrease 

in Maintainability and CR metrics, but it is 

important to note that the actual slopes are pretty 

low. In other words, the quality remains stable in 

most of the cases. In conclusion, the results cannot 

support the confirmation or not of Law VII. 

5 DISCUSSION 

5.1 Implications to Researchers and 
Practitioners 

The results of this study can be used both by 

researchers and practitioners to invest their efforts in 

the following areas: 
Since the JS applications participating in this study 

do not increase their cyclomatic complexity over 

time or present signs of quality degradation, it will 

be interesting for researchers to study which coding 

conventions (e.g., writing small methods, using 

design patterns or using micro-templates) help to 

reserve or decrease complexity over time. A 

comparison between applications that show signs of 

increased complexity with more stable ones may 

lead to some conclusions. For example, bad smells 

or anti-patterns might be found to the later ones.  
Additionally, researchers can also work on cost 

and quality models for estimating the effort required 

to maintain JS applications and assessing the quality 

level of subsequent releases. In that context, certain 

language-specific quality metrics (e.g., null pointer 

dereferences, deprecated functions) along with usage 

metrics (e.g., number of users of the application, 

types of browsers, types of devices) can help 

towards quantifying maintenance activities and 

effectively managing subsequent releases. 

The results show to practitioners that even 

though JS applications continuously change their 

complexity remains constant. JS applications present 

several points during their lifecycle at which a 

severe amount of new functionality is introduced. 

This fact demonstrates that software managers 

should often take large-scale maintenance actions. 

At the moment in most cases, we observed the big-

bang approach, where releases are offering many 

new requirements at once, an approach that can be 

risky. Instead of this, the appropriate flexible 

software development model should be selected to 

allow the introduction of new, small scale 

functionalities in short development lifecycles 

launched as many small releases. Also, continuous 

end-user involvement could help in that direction.  

5.2 Threats to Validity 

In this section, we discuss the threats to validity for 

this study, based on the categorization of Runeson 

and Höst (2008). Regarding Construct Validity, we 

should mention that the set of metrics used to assess 

the evolution of JS applications may affect the 

findings. Our rationale behind selecting these 

metrics was based on content and scope similarities 

with other studies adopting them (Amanatidis and 

Chatzigeorgiou, 2016) without denying the 

evaluation of non-selected alternative metrics as 

future work. Regarding Internal Validity we do not 

claim that the produced results form a causality 

between the metrics and the various evolution 

aspects, but we argue that our results indicate current 

trends. Concerning reliability, we believe that the 

replication of our research is safe and the overall 

reliability is ensured. The process that has been 

followed in this study has been thoroughly 

documented in the relevant section, so as to be easily 

reproduced by any interested researcher. The 

structural metrics calculation and the overall 

extraction of the defined data set were performed 

with the use of a widely used research tool 

(SonarQube). Concerning the external validity and 

in particular the generalizability supposition, 

changes in the findings might occur if we altered 

samples of OSS projects or closed source JS projects 

were studied. A future replication of this study, on 

larger JS project data sets and closed source projects, 

would be valuable to verify these findings. 

6 CONCLUSIONS 

In this study, we have explored the evolution of 

twenty popular OSS JS applications in terms of 

changes and quality by examining whether the 

relevant laws of Lehman can be confirmed. In total, 

we have recorded evolution metrics of more than 

7,500 releases of JS projects and performed trend 

tests to verify the applicability of the laws. The 

results show that JS applications continuously 

change and grow, there are no clear signs of quality 

degradation, while the complexity remains the same 

over time, despite the fact that the understandability 

of the code deteriorates.  
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