
ETL Development using Patterns: A Service-Oriented Approach

Bruno Oliveira1 a, Óscar Oliveira1 b, Vasco Santos1 c and Orlando Belo2 d
1CIICESI, School of Management and Technology, Porto Polytechnic, Felgueiras, Portugal

2 ALGORITMI R&D Centre, University of Minho, Campus de Gualtar, Braga, Portugal

Keywords: Data Warehousing Systems, ETL Patterns, ETL Component-Reuse, Services, ETL as a Service.

Abstract: Extract-Transform-Load (ETL) workflows are commonly developed using frameworks and tools that provide

a set of useful pre-configured components to develop complete ETL packages. The pattern concept for ETL

development is being studied as a way to simplify and improve the ETL development lifecycle. Patterns are

independent composite tasks that can be changed without affecting the ETL structure. The pattern

implementation reveals several challenges when used with existing ETL tools, mainly due to the monolith

architectural style usually followed. The use of small and loosely-coupled components provided by the

microservices architectural style can improve the way ETL patterns are used. In this paper, we present an

analysis for the use of microservices for ETL application development using patterns.

1 INTRODUCTION

An Extract-Transform-Load (ETL) workflow, used

as a Data Warehouse (DW) populating system, is a

set of tasks that align, through complex

transformation processes, operational data sources

according to the target decision requirements

expressed by the DW schema. Like in any workflow,

tasks must be orchestrated to preserve the

transformation constraints while the transformation

processes are applied. Additionally, since we are

dealing with a substantial amount of data, the

transformation processes assume a critical role

because they must guarantee both data consistency

and process performance. If some of these

assumptions fail, the DW adequacy is compromised.

The ETL heterogeneous nature imposes

challenging problems ranging from simple access to

information sources to complex strategies for

conciliating data and ensure their quality. Since they

are developed considering specific data requirements,

each ETL system is unique, even considering the

same problem domain. For that reason, the ETL

development represents a critical challenge for DW

implementation (Kimball and Caserta, 2004)

a https://orcid.org/0000-0001-9138-9143
b https://orcid.org/0000-0003-3807-7292
c https://orcid.org/0000-0002-3344-0753
d https://orcid.org/0000-0003-2157-8891

requiring teams with specific knowledge and

expertise.

Most of the ETL tools that normally support the

ETL development do not provide techniques that

allow reusable tasks to be applied. Also, some of the

well-known design patterns for ETL development are

still poorly supported (not with-standing that some

tools already include standard procedures like Slowly

Changing Dimension (SCD) handling (Kimball and

Caserta, 2004) and the available libraries that support

typical tasks like data conversion from common

formats, resources accessibility like databases or files

do not provide great flexibility).

In (Oliveira and Belo, 2012) a pattern-oriented

approach was proposed that can be applied for ETL

development, covering the conceptual, logical and

physical stages. Each one of these phases represents

a new detail degree covering more detailed aspects to

enrich ETL skeletons, i.e., physical templates, that

can be used for the generation of target executable

packages to be executed using existing commercial

tools.

The microservices approach for software

development is emerging in several software

development areas. The term is relatively new;

however, this architectural style shares several

216
Oliveira, B., Oliveira, Ó., Santos, V. and Belo, O.
ETL Development using Patterns: A Service-Oriented Approach.
DOI: 10.5220/0007727502160222
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 216-222
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

aspects with traditional approaches used for software

development. The basic idea resides in the use of

small autonomous software components (services)

framed within a service-oriented architecture that

work together in a cohesive ecosystem.

We propose, in this paper, a new approach for

ETL development considering that the microservice

architectural style present several benefits and frame

quite well with the pattern-oriented approach.

This paper is organized as follow. Section 2

presents the existing development approaches for

ETL development, identifying the current downsides

and open questions, and the approach to minimize

them, namely the Pattern-oriented approach. In

section 3 the main concepts related to service-

oriented approach are presented and framed to the

conceptual and logical design principles from the

Pattern oriented approach to support ETL execution.

In the last section conclusions are given and some

research guidelines for future work are discussed.

2 ETL DEVELOPMENT

Despite several contributions over the years, there is

still a lack of a complete ETL development

methodology allowing that the effort given in the

conceptual and logical phases to be effectively used

in the physical implementation. The principal flaws

of the existent approaches are essentially related to

the use of fine-grained tasks in the ETL workflow.

This typically results in big workflows hard to read,

implement and maintain.

Several authors addressed this problem, providing

design methodologies to simplify ETL development.

Moreover, the existing commercial tools do not offer

convincing approaches for ETL modelling, as they

have their own notation framed with specific

architectural specificities.

Vassiliadis et al. (Vassiliadis et al., 2002) presented a

generic, customizable and extensible framework

(Vassiliadis et al., 2005) to support ETL lifecycle

(Simitsis and Vassiliadis, 2008; Vassiliadis et al.,

2001)

The use of model-driven approaches was

addressed by several authors (El Akkaoui et al.,

2011), using models as “first-class citizens” for ETL

development. These works revealed several

interesting aspects not only for ETL high-level

representation but also on how models can be

translated to executable primitives.

5 https://www.omg.org/spec/QVT/

Muñoz (Muñoz et al., 2009) proposed a model-driven

approach to enrich ETL conceptual models,

corresponding ETL processes components with

model-driven artefacts, allowing for the generation of

ETL processes based on Query

/View/Transformation5 (QVT). Thus, these platform

independent models can be used to automatically

generate final code considering a specific platform.

Akkaoui et al. (El Akkaoui et al., 2011) proposed a

model-driven framework for a common and

integrated development strategy using vendor-

independent models for ETL design. The authors

used a Business Process Modelling and Language

(BPMN) for ETL conceptual modelling and specific

transformations were used for the automatic

generation of ETL code to be interpreted by a

commercial tool.

At this point and even with these interesting

contributions, there is still a lack of a complete

methodology that embodies the strengths both for

ETL conceptual modelling and ETL execution,

providing the means to translate both representations.

Considering the ETL physical implementation, the

ETL commercial tools such as Pentaho Data

Integration or Microsoft Integration Services, provide

powerful constructors that effectively help ETL

development. This was already addressed using ETL

patterns (Oliveira and Belo, 2012). Patterns can be

understood as set of components that represent the

most used processes for ETL development. They

represent a reusable and partial solution to a frequent

problem, enhancing the domain best practices and

improve final system quality. When analysing the

ETL domain several tasks such as Surrogate Key

Generator (SKG), SCD and Data Quality

Enhancement (DQE) (Belo et al., 2014) are recurrent

procedures. The use of patterns was studied at three

different development phases:

 Conceptual Design: Patterns are represented as

BPMN sub-processes, acting as black boxes that

can be configured at a later stage to produce a

specific result. This allows to represent ETL

processes in a simplified manner, identifying the

main procedures that must be applied without

implementation details;

 Logical Design: Based on the conceptual

specification describing the main tasks and their

sequence using a workflow language, at this stage,

the behaviour of each pattern using a Domain-

Specific Language (DSL) is specified;

ETL Development using Patterns: A Service-Oriented Approach

217

 Physical Implementation: Considering the last

previous phases, the conceptual describing the

tasks and the workflow, and the logical describing

the behaviour of each pattern, specific templates,

i.e. skeletons, are used to generate the

correspondent physical model that can be executed

in existing commercial tools.

This approach covers the main ETL development

phases, helping ETL designers to communicate,

organize and manage all development processes.

However, inevitably ETL packages grows as new

transformations are required and old ones must be

removed or updated, which may revel flaws, software

limitations or undesired behaviours. At certain point,

the workflow is so big and complex that there is

extremely difficult to maintain. Since reusability

and/or scalability is hard to achieve due to tight

coupling and high level of replication on the existent

processes. Akkaoui et al. (El Akkaoui et al., 2013)

addressed this problem extending their model-driven

framework using model-to-model transformations

that maintains ETL models synchronized when data

sources change.

The problems related to the maintenance phase

are essentially related to the nature of the physical

environment. The produced conceptual models,

independently of the approach taken, addresses ETL

construction using high-level constructs that need to

be decomposed in several low-level tasks when

physical models are generated, i.e., the patterns

bounded context identified and applied at more

abstract levels are not preserved by physical

environments.

3 SERVICE ORIENTED

APPROACH FOR ETL

DEVELOPMENT

The monolithic development approach, typically

followed in ETL development, is easy to develop,

test, deploy and share. However, real world

applications are affected by business evolution and

increasing data complexity, which means that the

application is getting bigger and software packages

are in continuous development. The monolithic

approach is hard to maintain and scale (Deri, 1995) as

very simple changes affect the all system leading to a

new deployment.

Microservices architecture is often referred as

fine-grained SOA (Newman, 2015) that follows a

6 http://docs.oasis-open.org/wsbpel/2.0/

specific design approach. This approach is being used

for software development as a componentization via

services (Lewis and Fowler, 2014). This approach is

based on components as small software units that can

be changed independently of other components. This

is possible since each service consists in processes

that will always be developed and deployed together,

enhancing software scability, flexibility and overall

quality (Newman, 2015). The system is composed of

several services, working as building blocks of this

architecture, cooperating and communicating using

interfaces that expose the provided functionalities.

Services are developed considering a domain-driven

design approach (Evans, 2003) with a natural

correlation between service and context boundaries

(Lewis and Fowler, 2014), leading to several

advantages (Newman, 2015):

 Technology Independency: Instead of choosing a

specific technology or language for the all system,

each service can be implemented using most

suitable one;

 Error Handling: Since the system is composed by

several actors if one fails, it is simple to find the

component and solve the problem without

compromising the other ones;

 Scaling: Providing a system that can easily

grow(/shrink) with dynamic load request, not

requiring to upscale(/downscale) all the

components at the same time;

 Project Organization: Since services are

independent, they can be added, updated or

removed without stopping the system, allowing a

continuous integration and continuous

deployment. The development process can be

undergone with small autonomous teams

responsible by specific services, reducing

communication problems or incompatibilities;

 Reusability: Services can be reused to handle

requests to respond to similar processes, enhancing

system flexibility and maintenance.

Languages such as Business Process Execution

language6 (BPEL) are commonly used as mediator

for all services, and task sequences are orchestrated to

accomplish the target goal.

Building a service is not a straightforward task since

its incorrect identification can lead to several

problems. The microservices architectural style focus

on two concepts (Newman, 2015): loose coupling,

i.e., service isolation, and high cohesion, i.e.,

narrowed and bounded context services definition.

All the above characteristics fits well with the ETL

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

218

pattern definition discussed previously, i.e.,

configurable components that encapsulates logic that

is needed to perform tasks, identified in the logical

ETL design, intrinsically related to the DW domain.

Patterns as self-contained components should not

know how the other patterns work, they just need to

know how to communicate with them, enforcing

independence between them and providing flexibility

to the final ETL workflow implementation. Patterns

can be changed without affecting the consistency of

other patterns, preserving the structure of the final

system. A conceptual modelling process was

idealized for patterns (Oliveira and Belo, 2012),

allowing for a clear separation of the coordination

process (coordination layer) and the transformations

applied to the data (data transformation layer). The

ETL patterns aim to ensure flexibility, modularity and

system evolution to support new features without

affection all system. These are in fact the same key

system characteristics of microservices (Dragoni et

al., 2017). For that reason, microservices are

evaluated to support ETL pattern-oriented approach

for ETL development.

3.1 Pattern as a Service

Creating and using reconfigurable components avoid

rewriting some of the most repetitive tasks that are

regularly used in ETL process implementation.

Several tasks, such as SKG, lookup operations, data

aggregation processes, data quality filters or slowly

changing dimensions are just some few examples of

common procedures that are used frequently in any

DWS implementation.

The pattern structure contains the pattern rules

defined for supporting the operational requirements

and the logic behind them. Each pattern uses input

and output interfaces to communicate with ETL

layers and to the data layer that supports the pattern

application. The construction rules are provided by

each pattern to sustain well-formed workflows, while

the data from the data layer is used both for data

extraction and data storage, representing the pattern

intermediate or final outputs. As an integral part of

the pattern configuration, additional ETL metadata is

used to support the error and log strategies for

handling errors and pattern events.

In (Oliveira and Belo, 2013, 2012), a SOA oriented

approach for ETL was proposed, in which, each

pattern was represented as a web-service with specific

methods responsible to invoke existing stored

procedures to perform specific activity over data,

leaving the complexity related to data transformation

in the Database Management System and

orchestration logic to BPMN or BPEL. In practice

patterns acted as a bridge between the data

transformation and workflow orchestration layer.

Although a step forward in ETL development, this

approach does not ease to extend the pattern

behaviour without compromising the remaining

patterns that compose the system.

Using the microservices architectural style, each

pattern represents a bounded context that can be

composed by nested fine-grained bounded contexts

representing the pattern decomposition, creating

small ecosystems that allow for pattern flexibility and

extensibility.

3.2 Pattern Configuration

In (Oliveira and Belo, 2017), a Domain Specific

Language (DSL) was presented to support the

configuration of patterns (as defined previously). The

DSL covers the requirements of each pattern category

and provides a powerful way to configure behaviour.

To support the language syntax specification, a set of

static type statements and keywords was created to

describe each language component. The language

syntax and construction rules are composed of two

components: a JSON Schema (Pezoa et al., 2016) and

an ontology (Oliveira and Belo, 2016) that describes

the main entities and their relationship within the

DSL. The JSON Schema is used to validate the DSL

syntax, imposing the document structure and the

correctness of the language. The ontology to support

the pattern description represents the knowledge base

for patterns composition, covering the operational

stages and providing a solid framework for pattern

instances generation. Considering the ontology and

the syntax rules, the configuration language can be

automatically generated for each pattern, which

enhances the language flexibility. Since ontology

definition and language constructs are mapped, this

approach guarantees that if the ontology changes, the

correspondent grammar rules will continue consistent

(Oliveira and Belo, 2016). The patterns relationship

is derived from the class hierarchy defined in the

ontology.

3.3 Patterns Communication

In a traditional ETL workflow application,

components invoke one another via language-level

methods or function calls. The orchestration

(Mazzara and Govoni, 2005) is the most common

approach to deal with ETL tasks in a workflow

context. A central authority is used to rule all process

invocation and handle their response. Each system

ETL Development using Patterns: A Service-Oriented Approach

219

Figure 1: Architecture to support ETL patterns communication.

component receives their job, which may result in the

invocation of third-party components. This approach

is simple, mainly when we have several task

dependencies. This approach provides a good

platform to handle synchronous requests, in which the

client waits for the response.

In the microservices architectural style, the

choreography (Peltz, 2003) model is used for

communication between each service. Services talk

with each other to perform a given task or process,

based on specific conditions. The interactions

between multiple services are decentralized using

events. As consequence, when services are invoked,

the client application does not block waiting for the

service response (asynchronous invocation). When

comparing to orchestration, the choreography

approach enhances application decoupling,

improving system reliability (there isn’t a single point

of failure), performance (due its asynchronous

nature), flexibility (services can be deployed and

undeployed without affecting the remaining services)

and scaling (since services can be scaled

independently). However, the complexity of

asynchronous calling and the breakup of process flow

across several services arises several challenges for

process monitoring and control.

Typically, ETL synchronous workflows are

composed by long-running procedures, i.e., it returns

only when the action has finished, stopping the

program for the time the action takes. In the other

hand, with asynchronous calls, some tasks are

executed while the process flow continues to run.

Figure 1 depicts a possible architecture to support

ETL patterns communication considering a service-

oriented approach in which several ETL patterns,

namely, Surrogate Key Generator (SKG), Data

Conciliation and Integration (DCI), Intensive Data

Loading (IDL), Change Data Capture (CDC),

Surrogate Key Pipelining (SKP) and Data Quality

Enhancement (DQE). More about these patterns can

be found in (Oliveira and Belo, 2016)

In this context, patterns, i.e., first tier of services,

preserve their own logic provided by a set of specific

finer-grain (second tier of) services within a bounded

context. The pattern DSL is passed through a handler

(e.g., Message Bus), to be consumed by respective

service to produce the result back to the handler. All

this provided by an event-based asynchronous

environment.

Since services (from for first and second tier) can

be replicated to handle intensive procedures, load

balancers can be used to manage how the system

scale.

3.4 Data Handling

The Data Staging Area (DSA) is a location

(frequently a conventional database system) where

data gathered from data sources remains during the

patterns execution (for cleaning, surrogating,

conciliating, etc.) before being loaded and integrated

into the target DW (Kimball and Caserta, 2004). That

way, when a transformation takes place, the

operational systems normal functioning is not

affected. To optimize all data transactions, the DSA

is usually supported by simplified data structures.

Some of this data is posteriorly deleted, while the

ETL metadata can persist. For example, the mapping,

dictionary, quarantine and log data is used to support

ETL subsequent activities to populate the target DW.

The DSA represents a shared database to support

the several ETL stages. Usually, the use of shared

databases leads to highly coupled (Lewis and Fowler,

2014) systems.

Considering the SOA using patterns, for

temporary data it makes sense to isolate them for each

pattern service, avoiding unpredicted changes that

can affect other patterns behaviour. However, several

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

220

Figure 2: Data structures to preserve ETL metadata.

aspects should be considered when data is

transformed by each pattern, which means the ETL

designer should be able to evaluate the data storage

requirements (for example to preserve process

milestones for handling recovering procedures).

Thus, two approaches can be followed for

temporary data, one or more databases shared

between patterns (a specific Application

Programming Interface (API) can be used to control

the access level of each pattern), and/or a local

(private) database for each pattern.

For ETL metadata, additional scenarios should be

considered. The log data is primarily stored using

pattern’s local database, maintaining the events

captured during pattern execution. Two event log

types can be distinguished: local events used for

pattern recovering and global event logs used to

record global milestones. The pattern’s local events

are stored locally at pattern’ context, while global

events are stored in a central repository, i.e., ETL

metadata (Figure 2). The Error handling metadata are

stored locally in each pattern, using specific

transactions identifiers to track the errors/exceptions

occurred during pattern execution. Support data (for

example: mapping and dictionary data) can be

defined manually or can be created after some pattern

execution. In both cases these “special” metadata

should be shared by some patterns or by all patterns.

To support the communication logic, these

relationships can be, for example, maintained using a

message broker with appropriated APIs to control the

access to the shared data.

In software built to serve business operational

needs and distributed data management, several

problems can emerge related to data access and to

guarantee atomicity, consistency, isolation and

durability (ACID) properties. In ETL environment

these problems do not affect ETL operationality since

DWs are used for OnLine Analytical Processing

(OLAP), i.e., they are used for complex queries to

analyse data rather than process transactions.

4 CONCLUSIONS

During the last few years many research efforts have

been done to improve the design of Extract,

Transform and Load (ETL) systems. These efforts

were quite oriented for helping the identification of

common problems and the correspondent strategies

for solving them appropriately. Despite these efforts,

ETL systems still raising a lot of challenge issues in

many application areas. Their nature (and goals)

make them very time-consuming and error-prone

pieces of software, involving many experts from

different knowledge domains in their design and

implementation. In this paper, the use of composite

tasks referred to as patterns were used to drive the

ETL development to facilitate, improve reliability

and safety to the development and maintenance

actions involved in ETL systems development. In

particular, the mapping from conceptual and logical

design to physical primitives of patterns composition

was studied under a services-oriented approach, or

more specifically its finer grained approach,

commonly referred to as micro-services. The

architecture style fits quite well the same principles

idealized for conceptual and logical design phases, as

this style provide high cohesion and loose coupling

concepts, enhancing scalability and system

flexibility.

As future work a case study could conducted in order

to validate the effectiveness of the approach presented

considering a real-world scenario.

ETL Development using Patterns: A Service-Oriented Approach

221

REFERENCES

Belo, O., Cuzzocrea, A., Oliveira, B., 2014. Modeling and

Supporting ETL Processes via a Pattern-Oriented,

Task-Reusable Framework, in: IEEE 26th International

Conference on Tools with Artificial Intelligence. IEEE,

Limassol, Cyprus, pp. 960–966.

https://doi.org/10.1109/ICTAI.2014.145

Deri, L., 1995. Droplets : Breaking Monolithic

Applications Apart. IBM Res. Rep.

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M.,

Montesi, F., Mustafin, R., Safina, L., 2017.

Microservices: Yesterday, Today, and Tomorrow, in:

Present and Ulterior Software Engineering.

https://doi.org/10.1007/978-3-319-67425-4_12

El Akkaoui, Z., Zimànyi, E., Mazón, J.-N., Trujillo, J.,

2013. A BPMN-Based Design and Maintenance

Framework for ETL Processes. Int. J. Data Warehous.

Min. 9, 46–72. https://doi.org/10.4018/jdwm.

2013070103

El Akkaoui, Z., Zimànyi, E., Mazón, J.-N., Trujillo, J.,

2011. A model-driven framework for ETL process

development, in: Proceedings of the ACM 14th

International Workshop on Data Warehousing and

OLAP - DOLAP ’11, DOLAP ’11. ACM Press, New

York, New York, USA, p. 45. https://doi.org/10.

1145/2064676.2064685

Evans, E., 2003. Domain-Driven Design: Tackling

Complexity in the Heart of Software. Folia Primatol.

Int. J. Primatol. 70, 560. https://doi.org/10.1159/

000067454

Kimball, R., Caserta, J., 2004. The Data Warehouse ETL

Toolkit: Practical Techniques for Extracting, Cleaning,

Conforming, and Delivering Data. John Wiley & Sons,

Inc.

Lewis, J., Fowler, M., 2014. Microservices [WWW

Document]. http://martinfowler.com. URL

http://martinfowler.com/articles/microservices.html

(accessed 2.12.19).

Mazzara, M., Govoni, S., 2005. A Case Study of Web

Services Orchestration, in: Jacquet, J.-M., Picco, G.

Pietro (Eds.), Coordination Models and Languages.

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–

16. https://doi.org/10.1007/11417019_1

Muñoz, L., Mazón, J.-N., Trujillo, J., 2009. Automatic

Generation of ETL Processes from Conceptual Models,

in: Proceedings of the ACM Twelfth International

Workshop on Data Warehousing and OLAP, DOLAP

’09. ACM, New York, pp. 33–40.

https://doi.org/10.1145/1651291.1651298

Newman, S., 2015. Building Microservices: Designing

Fine-Grained Systems, 1st ed. O’Reilly Media.

Oliveira, B., Belo, O., 2017. On the specification of extract,

transform, and load patterns behavior: A domain-

specific language approach. Expert Syst. Spec. issue

Knowl. Discov. Bus. Intell. e12168 34. https://doi.org/

10.1111/exsy.12168

Oliveira, B., Belo, O., 2016. An Ontology for Describing

ETL Patterns Behavior, in: Francalanci, C., Helfert, M.

(Eds.), An Ontology for Describing ETL Patterns

Behavior. SciTePress, Lisboa, pp. 102–109.

https://doi.org/10.5220/0005974001020109

Oliveira, B., Belo, O., 2013. Approaching ETL conceptual

modelling and validation using BPMN and BPEL,

DATA 2013 - Proceedings of the 2nd International

Conference on Data Technologies and Applications.

SciTePress, Reykjavík,Iceland. https://doi.org/10.

1007/978-3-319-62911-7

Oliveira, B., Belo, O., 2012. BPMN Patterns for ETL

Conceptual Modelling and Validation. 20th Int. Symp.

Methodol. Intell. Syst. Lect. Notes Artif. Intell. 7661

LNAI, 445–454. https://doi.org/10.1007/978-3-642-

34624-8_50

Peltz, C., 2003. Web services orchestration and

choreography. Computer (Long. Beach. Calif).

https://doi.org/10.1109/MC.2003.1236471

Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.,

2016. Foundations of JSON Schema, in: Proceedings of

the 25th International Conference on World Wide Web

- WWW ’16. https://doi.org/10.1145/2872427.2883029

Simitsis, A., Vassiliadis, P., 2008. A method for the

mapping of conceptual designs to logical blueprints for

ETL processes. Decis. Support Syst. 45, 22–40.

https://doi.org/10.1016/j.dss.2006.12.002

Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.,

Skiadopoulos, S., 2005. A generic and customizable

framework for the design of ETL scenarios. Inf. Syst.

30, 492–525. https://doi.org/10.1016/j.is.2004.11.002

Vassiliadis, P., Simitsis, A., Skiadopoulos, S., 2002.

Conceptual modeling for ETL processes, in:

Theodoratos, D., Song, I.-Y. (Eds.), Proceedings of the

5th ACM International Workshop on Data

Warehousing and OLAP - DOLAP ’02. ACM Press,

New York, New York, USA, pp. 14–21.

https://doi.org/10.1145/583890.583893

Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis,

N., Sellis, T., 2001. ARKTOS: Towards the modeling,

design, control and execution of ETL processes. Inf.

Syst. 26, 537–561. https://doi.org/10.1016/S0306-

4379(01)00039-4

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

222

