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Abstract: The increased use of digital video and image processing technology has paved the way for extending the 

traffic enforcement applications to a wider range of violations as well as making the enforcement process 

more efficient. Automated traffic enforcement has mainly been applied towards speed and red light violations 

detection. In recent years, there has been an extension to other violation detection tasks such as seat-belt usage, 

tailgating and toll payment violations. In the recent years, automated driver cell phone usage violation 

detection methods have aroused considerable interest since it results in higher mortality rates than the 

intoxicated driving. In this study, we propose a novel automated technique towards driver’s phone usage 

violation detection using deep learning algorithms. Using an existing license plate recognition camera system 

placed on an overhead gantry, installed on a highway, real world images are captured during day and night 

time. We performed experiments using more than 5900 real world images and achieved an overall accuracy 

of 90.8 % in the driver cell phone usage violation detection task.

1 INTRODUCTION 

Modern cities stand on the edge of a transformational 

change that is driven by the technological innovation. 

Smart city technologies are revolutionizing the way 

we live, see and think the cities we live in. Thanks to 

the proliferation of sensors placed around the city, 

cities continuously collect data to monitor security 

and welfare of its citizens. Law enforcement agencies 

may also benefit from data streaming from these 

sensors. In the recent years, many companies have 

proposed smart law enforcement solutions using 

machine learning techniques towards traffic 

enforcement, predictive policing and crime 

prevention (IBM report, 2012).   

Traffic enforcement on highways and roads is 

typically performed manually by a road-side police 

officer. However, this process is known to be 

laborious and ineffective due to the lack of sufficient 

personnel to perform the inspection. Therefore, there 

has been a need to develop automated systems that 

would assist police officers in the enforcement 

process. Camera based enforcement systems on 

roadways have been gaining popularity. Using the 

existing license plate recognition cameras that are 

installed for smart city purposes, we propose a driver 

cell phone usage enforcement method using deep 

learning algorithms.  

Although mobile phone usage while driving is 

prohibited in many countries, roadside surveys 

indicate that around 1% to 11% of drivers use phone 

while driving (ERSO report, 2015). In a recent study, 

the World Health Organization (WHO) reports that 

distracted driving (e.g. driver cell phone usage) 

results in higher mortality rates than that of 

intoxicated driving (WHO2017). Therefore, traffic 

safety agencies highly desire an automated cell phone 

usage violation detection system. Roadway 

surveillance camera images may offer an inexpensive 

and efficient solution to this problem (Artan et al., 

2014; Berri et al., 2014; Seshadri et al., 2015; Le at 

al., 2016; Elings 2018). 

Many studies in the past have proposed image 

based solutions towards traffic enforcement purposes. 

Most of these earlier studies present solutions towards 

seat belt detection, red-light violation detection, 

autonomous driving etc. to name a few (Zhou et al., 

2017; Bojarski et al., 2016). In this study, we propose 

driver cell phone usage violation detection using 

license plate recognition camera images. Proposed 

method utilizes deep learning based object detection 

method in the subtasks of the cell phone violation 
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detection process; windshield region detection, driver 

detection and phone usage detection.  

In the next section, we discuss previous works for 

our task. Section 3 presents the details of our 

methodology. Then, we report our experiments and 

results using real world images. Final section presents 

our conclusion.  

2 RELATED WORKS 

In this section, we review the previous studies that 

proposed solutions to detect cell phone usage while 

driving. These studies utilized machine learning and 

deep learning based methods in their analysis as 

shown in Table 1. Artan et al., (2014) captured near 

infrared (NIR) images by a highway transportation 

imaging system for detecting cell phone usage by 

drivers. Once the NIR images are acquired, they 

detect windshield of the vehicle and apply DPM base 

face detector within localized windshield region. 

Upon the detection of drivers’ face, 3 locally 

aggregated descriptors BoW, VLAD and FV are used 

in image classification tasks. Berri et al., (2014) 

proposed an algorithm that can detect the use of cell 

phones by using the frontal camera mounted on the da 

shboard of a vehicle. They used machine learning 

based SVM classifier for classification stages. 

Seshadri et al., (2015) detect faces to check the 

presence of hands and cell phones. Challenging 

Strategic Highway Research Program (SHRP-2, 

2006-2015) face view videos are utilized for a study 

of driving behaviour. Their approach is to first detect 

the drivers’ face using Supervised Descent Method of 

(Xiong et al., 2013) and extract the left side and right 

side of the face region. Next, feature extraction 

techniques applied on these left/right side images, and 

these features are classified using Real Adaboost 

(Schapire et al., 1999) and SVM (Cortes et al., 1995) 

to detect cell phone usage.  

In recent years, deep learning algorithms have 

shown to be the most effective method producing 

state-of-the-art results on many challenging 

application areas such as object detection, image 

recognition, speech processing (Zhou et al., 2017; 

Bojarski et al., 2016; Liu et al., 2016; Redmon et al., 

2016; Ren et al., 2015; Huang et al., 2017). Le et al., 

(2016) present a deep learning based Multiple Scale 

Faster R-CNN approach to solve the problems of 

driver distraction monitoring and highway safety, 

namely, the hand on the wheel detection and the cell-

phone usage detection. They used Vision for 

Intelligent Vehicles and Applications (VIVA) Hand 

Database (Das et al., 2015) and SHRP-2 dataset. 

Results of this study show that it performs only very 

slightly better than regular Faster R-CNN (Ren et al., 

2015). Elings, (2018) proposed a straightforward 

convolutional neural network approach and a various 

combination of phone, hand and face detection and 

hand classification were compared. It must be noted 

that each study utilized different training and testing 

data, so comparison of this studies may be 

misleading.  

Table 1: Overview of the previous works. 

Authors Algorith

m 

Detected 

Objects 

Placed 

Artan et al. 

(2014) 

Machine 

Learning 

Windshield, 

Face 

Overhead 

Gantry on 

Highways 

Berri et al. 

(2014) 

Machine 

Learning 

Face Inside of 

the Vehicle 

Seshadri et 

al. (2015) 

Machine 

Learning 

Face Inside of 

the Vehicle 

Le at al. 

(2016) 

Deep 

Learning 

Face, hand, 

steering 

wheel 

Inside of 

the Vehicle 

Elings 

(2018) 

Deep 

Learning 

Face, Phone 

Pose, hand 

Mounted 

above the 

highway 

3 METHODOLOGY 

In this section, we describe the details of the proposed 

solution for driver’s cell-phone usage violation 

detection task. Proposed solution consists of 3-stages; 

windshield detection, driver region localization and 

phone usage violation detection. Steps of the 

proposed cell phone usage detection method is shown 

in Figure 1. 

 
Figure 1: Steps of the proposed method. Left, middle and 

right column show License Plate Recognition Camera 

vehicle image, detected windshield region and detected 

driver region, respectively. Yellow rectangle shows the 

presence of cell phone usage within the driver region. 

In this study, for object detection tasks, we utilize 

a popular deep learning based object detection 

technique, Single Shot Multi Box Detector (SSD) 

(Liu et al. 2016). General architecture of the SSD 

model can be seen in Figure 2. In terms of object 
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Figure 2: General architecture of SSD model (Liu et al., 2016). 

detection tasks, SSD model is shown to perform 

better than alternatives (You Only Look Once 

(YOLO) (Redmon et al., 2016) and Faster R-CNN 

(Ren et al., 2015)) in terms of speed and accuracy 

(Huang et al., 2017). 

3.1 Cell-Phone Usage Detection Stages 

3.1.1 Windshield Region Detection 

The first step in the violation detection task is the 

detection of the windshield region within the captured 

image. Windshield region constitutes the main region 

of interest (ROI) in phone usage detection task. 

Remaining part of the image is simply ignored since 

it is irrelevant for our objective. To construct 

windshield detector model, we fine-tuned a pre- 

trained SSD model using windshield region annotated 

training dataset. Afterwards, localized windshield 

region image is provided to driver and phone usage 

detection stages. 

3.1.2 Driver Region Localization 

Upon the completion of windshield detection, driver 

detection operation is performed within the detected 

windshield region. Driver detection is necessary since 

the image may contain undesired reflection effects 

due to environmental conditions. Driver detection   

allows us to eliminate the unnecessary violation 

detections in the images of windshield regions 

containing excessive amount of reflection. For driver 

detection model, we again fine-tuned a pre-trained 

SSD model using driver region annotated windshield 

images. At the end of this stage, localized driver 

region is given as input into the cell phone usage 

detection stage. 

 

 

 

 

3.1.3 Cell Phone Usage Detection 

Upon the completion of driver detection as described 

in earlier steps, we perform phone usage analysis on 

this localized driver region. Similar to windshield and 

driver detector models, we create another SSD model 

to capture the cell phone usage behaviour of driver. 

In our experiments, we compare the performance of 

proposed SSD object detection method with a 

convolutional neural network (CNN) and Fisher 

Vector (FV) based image classification methods for 

cell phone usage violation detection task as explained 

below.   

3.2 Architecture of Proposed Methods 

In this study, we utilized either an NIR image or RGB 

image in the decision making process. Instead of 

creating separate models for two types of image 

source, we convert single channel NIR images to 3 

channel NIR images by cloning them channel-wise 

and generate a single model using NIR and RGB 

images together. Below, we explain training 

procedures and hyper parameter selections used in the 

training process. 

3.2.1 SSD Model 

In this approach, SSD object detector is utilized to 

detect the presence of a phone usage within the input 

image. To this end, we trained SSD model to detect 

phone usage violation in detected driver region. 

During the windshield, driver and phone usage 

detection training process, we utilized transfer 

learning approach to make the training process more 

efficient. We utilize a base SSD model presented in 

(Liu et al., 2016). Using this base model, we fine-

tuned it with our specific dataset. Fine tuning 

operation is performed by freezing the weights of the 

first three convolutional blocks of the base model. 

The rationale behind this strategy is based on two
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Figure 3: General architecture of CNN-P model.

facts. First three convolutional blocks trained with a 

large dataset (ImageNet-1k dataset (Deng et al., 

2009)) behave as a feature extractor. Thus, there is no 

need to update these weights with our relatively small 

dataset. Secondly, since the first feature map to be 

analysed to detect objects fall into 4th convolutional 

block, it is logical to update weights starting from 

there. In our fine tuning operations, we set the batch 

size as 16. As learning hyper parameters, Adam 

optimizer (Kingma et al. 2014) with a relatively small 

learning rate 0.0003 is utilized. Also we applied 

learning rate decay strategy shown in Eq. 1 where ⋋ 

is the learning rate, 𝑖 is the epoch number.  

⋋𝑖+1= ⋋𝑖∗ 0.9𝑖  (1) 

Using validation set, confidence threshold to accept 

detections as valid in windshield detection is 

determined as 0.95. Best performance is achieved 

with the confidence threshold of 0.8 in the driver 

detection and phone usage detection cases.  

3.2.2 Convolutional Neural Network (CNN) 

Models 

Very deep CNN models have achieved state-of-the-

art performance in image classification tasks 

(Simonyan et al., 2014). In this study, we propose 

CNN based image classification. Proposed CNN 

architecture (CNN-P) is shown in Figure 3. In this 

architecture, the filter size of convolution layer 1 is 

chosen to be the same size as width of the phone 

usage within the image. Convolutional block of the 

model transforms input image to a 9x9x128 feature 

map. Then fully connected block works as a classifier 

to produce decision using feature map.  All 

convolution and fully connected layers include 

rectified linear unit as an activation function. Cross 

entropy is used as loss function to train this model.  

Since it is a small CNN model, we trained the 

model from scratch utilizing our dataset. Stochastic 

gradient descent (SGD) optimizer with learning rate 

0.01 is utilized during the training. In order to avoid 

overfitting, the training was finished after 66th
 epoch.  

 

 

3.2.3 Fisher Vector (FV) Model 

Image vector representation using d-dimensional 

local image descriptors ubiquitously used in image 

classification studies. Suppose X= {xt, t = 1, . . , T } 

denote the set of T local descriptors extracted from a 

given image. We assume that the generation process 

of the local descriptors can be modelled by a 

probabilistic model p(X|θ), where θ denotes the 

parameters of the function. (Perronnin et al., 2010) 

proposed to describe X by the gradient vector; 

𝐺𝜃
𝑋 =

1

𝑇
𝛻𝜃 𝑙𝑜𝑔 𝑝(𝑋|𝜃) (2) 

In which the gradient of the log likelihood 

describes the contribution of the parameter θ to the 

generation process. A natural kernel on these gradient 

vectors is fisher kernel (Perronnin et al., 2010), 

𝐾(𝑋, 𝑌) = 𝐺𝜃
𝑋𝑇

𝐹𝜃
−1𝐺𝜃

𝑌 (3) 

where Fθ
−1 denotes the Fisher Information Matrix of 

p(X|θ). It is symmetric and positive definite, it also 

has a Cholesky decomposition Fθ
−1 =  Lθ

T Lθ , 

therefore, the kernel K(X,Y) can be written as a dot 

product between normalized vectors shown in Eq. 4, 

𝑔𝜃
𝑋 = 𝐿𝜃𝐺𝜃

𝑋 (4) 

where 𝑔𝜃
𝑋 is referred to as fisher vector of X. Fisher 

vector extends the BoW by encoding first and 

second-order statistics. This description vector is the 

gradient of the samples likelihood with respect to the 

parameters of this distribution, scaled by the inverse 

square root of the Fisher Information Matrix. As a 

result, it gives a direction in parameter space into 

which the learned distribution should be modified to 

better fit the observed data. Therefore, FV describes 

the deviation of local descriptors from an average of 

descriptors that are modelled parametrically. In this 

study, FV is used as a method to capture the 

information conveyed by a set of descriptors into a 

fixed length representation. 

In our experiments, we used Gaussian mixture 

models (GMM) with K = {32, 64, 128, 256, 512} 

Gaussians to compute fisher vectors. The GMMs are 

trained using the maximum likelihood (ML) criterion 
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and expectation maximization algorithm (EM). 

Similar to (Perronnin et al., 2010), we apply power 

and L2 normalization to fisher vectors to improve 

classification performance. In our experiments, we 

report results only for K = 256 since it achieved the 

best performance. For local image descriptors, we 

extract features from 32x32 pixel patches on regular 

grids at 3 scales. We only extract 128-D Scale-

Invariant Feature Transform (SIFT) feature 

descriptors for these patches. 

4 EXPERIMENTS  

4.1 Image Acquisition 

In this study, a 3MP (2048x1536) NIR and a 3MP 

(2048x1536) RGB camera pair with the same field of 

view (FOV) are placed on an overhead gantry 

approximately 4.5 m above the ground level. Video 

based triggering is used during the image acquisition. 

Figure 4 illustrates a camera directed at the 

windshield of the vehicle. 

 

Figure 4: Visual illustration of image acquisition system.  

4.2 Datasets  

In the training process of the windshield, driver and 

phone usage detection stages, we utilized 768 

(NIR+RGB) images to train models and 192 images 

were used for validation. Training dataset includes 

NIR and RGB images to be able to utilize models over 

both type of images. We have partitioned our training 

set into 3 classes; positive (violation), negative (no-

violation) and hard negative which is shown in Figure 

5.  

For testing purpose, 2264 RGB images (2173 

negative, 49 positive, 42 hard negative) and 3717 NIR 

images (3519 negative, 113 positive, 85 hard 

negative) were collected from various hours of a day. 

Positive and hard negative test images are relatively 

small from negative test images because of the 

difficulty in collecting data as a result of low  
   

 

Figure 5: First, second and third column represent negative, 

hard negative and positive images, respectively. First row 

shows RGB sample images, second raw illustrates NIR 

sample images. 

probability of encountering phone usage. The dataset 

has been put together carefully in order to emulate 

real life conditions. Images were collected from the 

summer days, excluding the hours between 12:00 and 

15:00 o’clock. On NIR and RGB images taken from 

this interval, inside of windshield cannot be seen due 

to excessive amount of reflection. Therefore, data 

from these hours are not included in test set. Figure 6 

shows some of the challenging cases in which 

windshield detection or driver detection fails.  

 

Figure 6: Samples of excessive amount of reflection on the 

windshield of vehicles. 

4.3 Test Results  

In our analysis, first, we would like to present the 

performance of the windshield detection and driver 

detection subtasks using test images. Detector output 

is considered as correct if its overlap with ground 

truth is greater than 80 %. On the test set, SSD 

detector achieves an accuracy of 99.5 % for 

windshield detection task. Once the windshield 

region is detected, the driver detector is applied to 

detect driver on the front seat. On the same test 

dataset, overall accuracy is measured as 99.3 %. Note 

that, 0.7 % loss does not only depend on the 

performance of the driver detector. It also depends on 

the performance of the windshield detector. These 

undetected windshield images causes additional loss 

to the driver detector, therefore performance of 

windshield detector affects the performance of driver 

detection. 
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Table 4: Confusion Matrix of proposed SSD method. Numbers in the table are presented as NIR and RGB test results, 

respectively. 

 

When the driver is detected, we apply phone 

usage violation detection/classification methods for 

either NIR or RGB images. Table 2 presents the 

overall performance of the proposed methods for 

phone usage violation detection and Table 3 shows 

visual illustration obtained for SSD method under 

various imaging conditions.  

Table 2: Accuracy Rates of the proposed methods. 

Methods SSD CNN FV 

Accuracy 

(NIR/RGB) 

0.904/ 

0.911 

0.739/ 

0.720 

0.641/

0.881 

Table 3: A visual illustration of SSD output for sample 

images. First, second and third column show no violation, 

violation and hard negative cases, respectively. 

 

In order to compare the performance of SSD, we 

utilized image classification based CNN and FV 

models. It is clear that SSD outperforms CNN model 

and FV model by giving the highest accuracy. SSD is 

very successful at learning a pattern thanks to its 

spatial and spectral learning mechanism. For better 

interpretation of the performance, confusion matrix of 

results, sensitivity and precision rates of SSD method 

are shown in Table 4. We have partitioned our test set 

as NIR and RGB images in order to analyse the results 

of different image representation. The results 

demonstrate that usage of either NIR or RGB images 

is convenient for our phone usage violation detection 

task. Hard negative case detection allows us to 

eliminate unnecessary violation detection in the 

driver region containing hand gestures.  

According to the results, even though high 

accuracy rate is observed, sensitivity and precision 

rate is relatively low. Considering our NIR and RGB 

test set sensitivity rate of SSD model is 44, 2 % and 

42, 8 %, respectively. In some cases, mobile phone 

use of driver may not be observed clearly. Therefore, 

detectors tend to decide as there is no violation and it 

causes serious reduction in sensitivity rate. From a 

different viewpoint, even though there is no violation 

in some cases, hand gestures of driver might cause a 

complexity making a right decision of detector. 

Therefore, For NIR and RGB images in the test set, 

precision rate drops to 68, 4 % and 60 %, respectively.  

Computation times of the proposed methods are 

analyzed using a computer with 16 GB RAM, Intel 

Core i7 processor and an Nvidia GeForceGTX 780 Ti 

GPU card. GPU card is utilized for SSD object 

detection and CNN image classification tasks. It is 

observed that SSD300 model produce detection 

results at 60 milliseconds and CNN model classifies 

an image at approximately 32 milliseconds as shown 

in Table 5.  

Table 5: Run-time of 3 methods for a single image. 

 SSD CNN FV 

Run Time (seconds) 0,060 0, 032 0,078 

5 CONCLUSION 

In this study, we proposed driver cell phone usage 

violation detection using license plate recognition 

camera images.  Proposed method combines state-of-

the-art deep learning based object detection 

technique. In order to compare our deep learning 

based SSD model, we utilized deep learning based 

CNN model, also we analysed machine learning 

based FV method as a prior work. Proposed SSD 

model typically achieve an overall accuracy around 

91 % on a test set consisting of 2264 RGB images and 

Actual Class / Predicted 

Class 

(NIR/RGB) 

Violation No-Violation Hard Negative Overall 

Violation 50/21 29/11 34/17 113/49 

No-Violation 15/10 3269/2020 235/143 3519/2173 

Hard Negative 8/4 35/15 42/23 85/42 

 Overall 73/35 3333/2046 311/183 3717/2264 
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3717 NIR images. In the future, we will look into 

using the combination of different deep learning 

based object classification techniques and well-

known classification techniques. 
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