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Abstract: The paper describes a human-computer cloud environment supporting the deployment and functioning of 

human-based applications and allowing to decouple computing resource management issues (for this kind of 

applications) from application software. The paper focuses on two specific contributions lying in the heart of 

the proposed human-computer cloud environment: a) application platform, allowing to deploy human-based 

applications and using digital contracts to regulate the interactions between an application and its contributors, 

and b) the principles of ontology-based decision support service that is implemented on top of the human-

computer cloud and uses task decomposition in order to deal with ad hoc tasks, algorithms for which are not 

described in advance. 

1 INTRODUCTION 

The proliferation of information and communication 

technologies allowing people to access global 

networks from almost any point on Earth pushes 

network-based collaborative and collective initiatives 

to a new level, resulting in an upsurge of crowd 

computing and crowdsourcing. 

Common problem with the systems involving 

human participation is that each of these systems 

usually requires a large number of contributors and 

collecting this number of contributors may require 

significant effort and time. This problem is partially 

alleviated by crowdsourcing platforms (like Amazon 

Mechanical Turk, Yandex.Toloka etc.), providing 

tools for requesters to post tasks and an interface for 

workers to accomplish these tasks. However, existing 

platforms bear two main disadvantages: a) most of 

them implement only ‘pull’ mode in distributing 

tasks, therefore not providing any guarantees to the 

requester that his/her tasks will be accomplished, b) 

they are designed for mostly simple activities (like 

image/audio annotation). The ongoing project is 

aimed on the development of a unified resource 

management environment, that could serve as a basis 

on which any human-based application could be 

deployed much like the way cloud computing is used 
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nowadays to decouple computing resource 

management issues from application software. The 

proposed human-computer cloud (HCC) environment 

addresses all three cloud models: infrastructure, 

platform and software. Infrastructure layer is 

responsible for resource provisioning, platform layer 

provides a set of tools for development and 

deployment of human-based applications, and on top 

this environment there are several software services 

leveraging human problem-solving abilities. 

This paper focuses on two specific contributions 

lying in the heart of the proposed human-computer 

cloud environment: a) application platform, allowing 

to deploy human-based applications (HBA) and using 

digital contracts to regulate the interactions between 

an application and its contributors, and b) the 

principles of ontology-based decision support service 

that is implemented on top of the human-computer 

cloud and that uses task decomposition routines in 

order to deal with ad hoc tasks algorithms for which 

are not described in advance. 

The rest of the paper is structured as follows. 

Section 2 briefly describes other developments aimed 

on building hybrid human-computer cloud 

environments. Section 3 describes the organization of 

the platform layer of the proposed HCC with a focus 

on the digital contract concept. Section 4 describes 

ontology-based decision support service. Sections 5 
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and 6 describe cloud platform implementation and 

evaluation respectively. 

2 RELATED WORK 

Typical types of resources managed by cloud 

environments are hardware (CPU, storage) and 

software (cloud applications, platforms). Attempts of 

applying the principles of cloud computing (on-

demand elastic resource provisioning) to a wider 

spectrum of resource types can be classified into two 

groups: 1) cloud sensing and actuation environments 

and 2) cloud-managed human resource environments. 

One of the earliest examples of cloud sensing and 

actuation environment was presented in (Distefano et 

al., 2012), where sensing resource is regarded as a 

service that can be allocated and used in some unified 

way independently of the application that needs 

access to the resource. Based on this work Merlino et 

al., (2016) proposed a cloud architecture for mobile 

crowdsensing MCSaaS (Mobile CrowdSensing as a 

Service), which defines a unified interface allowing 

any smartphone user to become a part of a cloud and 

allow to use his/her smartphone sensors in some way 

that he/she finds acceptable in exchange for some 

monetary reward or even voluntary. 

Another approach is proposed in ClouT 

(Cloud+IoT) project (Formisano et al., 2015). It is 

aimed on providing enhanced solutions for smart 

cities by using cloud computing in the IoT domain. 

Formisano at al. propose multi-layer cloud 

architecture where lower (infrastructure) layer 

manages both sensing and computing resources. Both 

ClouT and MCSaaS approaches are highly relevant to 

the environment presented in this paper. However, 

they are focused mostly on sensing and consider 

human resources only due to the fact, that human can 

provide the access to his/her smartphone and can 

control it to make some operations (i.e. point camera 

lens to some object and make a picture) requested by 

the application working on top of the infrastructure 

layer, or a specific kind of virtual sensor. A human, 

however, may be not only a supplier of information 

(like sensor), but a processor of it. 

The second group, namely cloud-managed human 

resource environments, has another perspective 

aiming on managing member’s skills and 

competencies in a standardized flexible way (e.g. 

Dustdar and Bhattacharya, 2011; Sengupta et al., 

2013), regarding human as a specific resource that 

can be allocated from a pool for performing some 

tasks. For example, Dustdar and Bhattacharya (2011) 

consider the cloud consisting of human-based 

services and software-based services. On the 

infrastructure layer, they define a human-computing 

unit, which is a resource capable of providing human-

based services. Like hardware infrastructure is 

described in terms of some characteristics (CPU, 

memory, network bandwidth), human-computing 

unit in this model is described by the set of skills. The 

authors do not list the exact skills, leaving it to the 

application domain. 

The human-computer environment described in 

this paper adopts the idea of sensor virtualization and 

cloud implementation of IoT from (Merlino et al., 

2016) and (Formisano et al., 2015), but also extends 

this idea by directly managing human resources by 

infrastructure layer (similar to (Dustdar and 

Bhattacharya, 2011)). Besides, the proposed 

approach includes an application platform based on a 

machine-processable specification of obligations in a 

form of a digital contract and a decision support 

service that is deployed on top of all resource-

management services and can be used to solve ad hoc 

problems in some domain. 

3 HUMAN-COMPUTER CLOUD: 

PLATFORM-AS-A-SERVICE 

This section introduces main design rationales and 

concepts of the proposed platform. It identifies main 

actors, interacting with the platform, major 

requirements that drive the design, information 

associated with applications and contributors, 

allowing to fulfill the requirements. The section 

finishes with main use cases presenting a general 

view of the platform. 

There are three main categories of actors involved 

in the proposed cloud platform: 

End users (application/service developers), who 

use the platform to create and run applications and/or 

services that require human effort. Of course, these 

applications can also use other services and hardware, 

like in any other PaaS. 

Contributors, who are available to serve as human 

resources in a human-computer cloud environment. 

System Administrators and Infrastructure 

Providers, who own and maintain the required 

infrastructure. 

Primary requirements from the side of End users 

considered in the platform design are following: 

 The platform must provide tools to deploy, run, 

and monitor applications that require human 

information processing.  

 The platform must allow to specify what kind of 
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human information processing is required for an 

application (as some human-based services, like, 

e.g., image tagging, require very common skills, 

while others, like tourism decision support, require 

at least local expertise in certain location). 

 The platform must allow to estimate and monitor 

human resources available for the application. 

This requirement contrasts to conventional cloud 

applications, where overall amount of resources 

possessed by cloud provider is considered to be 

inexhaustible, and the capacity consumed by an 

application is in theory limited only by the 

available budget. However, human resources are 

always limited, especially when it comes to people 

with some specialized competencies and 

knowledge. Besides, the particular rewarding 

scheme designed by the application developer may 

be not appealing and not able to collect the 

required number of contributors. Therefore, 

application developer should be able to have 

information to know what capacity is available to 

the application. Based on this information he/she 

may change the rewarding scheme, set up his/her 

own SLA (for his/her consumers) etc. 

 The platform must account for temporal 

dimension of resource availability. Like in the 

previous requirement, this is specific mostly for 

human resources. For example, some contributors 

are ready to participate in information processing 

activities controlled by the cloud platform in their 

spare time (non-working hours) only. It means that 

resource capacity during non-working hours will 

be larger than during working hours. However, for 

some applications (e.g., online tourist support) 

reaction time is important. Therefore, tourist 

decision support service developers should have 

temporal perspective of the resource availability. 

3.1 Application Description 

The aim of any cloud environment providing the PaaS 

service model is to streamline the development and 

deployment of the applications by providing 

specialized software libraries and tools that help 

developers to write code abstracting from many 

details of resource management. Instead, those 

resource management operations are performed 

automatically by PaaS environment usually 

according to some description (declarative 

configuration) provided by the developer of the 

service being executed. The human-computer cloud 

environment being developed supports similar 

approach, however, with inevitable extensions caused 

by the necessity of working with human resources. To 

streamline the development of applications that 

require human actions, the platform allows both a 

developer to describe what kind of human resources 

are required for this particular application, and a 

contributor to describe what kind of activities he/she 

can be involved in and what competencies he/she 

possesses. Declarative specification of service 

requirements is quite typical for cloud environments. 

They are used, for example, in cloud orchestration 

definition language TOSCA (Brogi et al., 2014), that 

allows, for example, to specify how many virtual 

machines and with what services should be created 

for a particular application running in cloud. 

However, these definitions turn out to be insufficient 

for the purpose of human-computer cloud. One of the 

reasons is multifarious nature of possible human 

skills and competencies. While virtual machine can 

be described with a very limited number of features 

(e.g. cpu, ram, i/o capacity), human contributor’s 

skills and abilities are highly multidimensional, they 

can be described in different levels of detail and be 

connected to a wide range of particular application 

areas. Besides, the same skills can be described in 

different ways, and, finally, most of the skill 

descriptions in real world are incomplete (however, 

there might be a possibility to infer some skills that a 

human might possess from those that he/she explicitly 

declared). 

Application that is to be deployed in the proposed 

human-computer cloud beside the source code must 

contain a descriptor that includes following 

components (here we list all the components, but 

focus on those, relevant to human part): 

 configuration parameters (e.g. environment 

variables controlling the behavior of the compiled 

code); 

 software dependencies of the application (what 

platform services and/or other applications it 

relies on, e.g., database service, messaging 

service, etc.); 

 human resource requirements, specifying what 

human skills and competencies the application 

needs to function. These requirements are also (as 

software requirements) are resolved during the 

service deployment, but as (1) resolving these 

requirements employs ontology matching which 

may result in some tradeoffs, (2) human resources 

are much more limited than hardware/software, 

the status and details of the requirements 

resolution are available to the developer and can 

be browsed via the management console; 

 digital contract template for each type of human 

resources. By the type of human resource we 

mean each specific profile of requirements. For 
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example, an itinerary planning application may 

require people with significant local expertise as 

well as people with shallow local expertise but 

good language skills. The application defines 

these two requirements profiles and may associate 

different digital contracts for them (in terms of 

reaction time and/or payment). 

One of the distinguishing features of the proposed 

platform is the way to formally specify requirements 

addressing the different ways of describing the same 

human capabilities. First of all, we adopt the three-

way understanding (knowledge, skill, and attitude) of 

human competencies, as it is common in current 

literature (Sampson and Fytros, 2008; Lundqvist et 

al., 2011; Miranda et al., 2017). Then (and the most 

important) we allow to use arbitrary ontology 

concepts as specific skills or knowledge areas. The 

major benefit of using ontologies is that it is possible 

to discover resources defined with related, similar but 

not exact terms. This is done either by using existing 

public mappings between ontologies (stating 

equivalence between concepts of different 

ontologies), or by ontology inference, or potentially 

even by ontology matching (Euzenat and Shvaiko, 

2013). 

It is important that we do not fix any particular set 

of ontologies, but support ontology-based resource 

discovery. It allows tourist applications deployed on 

the platform to use public cultural, historical, and 

geographical ontologies, whereas, e.g., applications, 

that employ human-based information processing in 

the area of medicine or biology use the ontologies of 

the respective domain. The only restriction is that 

these ontologies have to be expressed in OWL 2 

(OWL 2). Moreover, to guarantee computational 

efficiency, they have to conform to OWL 2 EL 

profile. 

Another distinguishing feature of the approach is 

the concept of digital contract. It is an agreement 

between contributor and platform about terms of 

work, quality management principles and rewarding. 

This contract may be as lightweight as commonly 

accepted in modern microtask markets (like Amazon 

Mechanical Turk), specifying that a contributor may 

pick tasks from common service pools when he/she is 

comfortable and as many as he/she can. However, this 

contract may also be rather strict, requiring that a 

contributor should be available during the specified 

time and be able to process not less than specified 

number of tasks per time interval. Terms of this 

digital contract are essential for estimating the 

amount of resources available for a service and its 

capacity (including time perspective of the capacity). 

The necessity of this digital contract is caused by the 

fact that human resources are limited. In case of 

ordinary hardware, the cloud infrastructure provider 

can buy as many computers as needed, human 

participation is less controllable due to free will, 

therefore, attracting and retaining contributors can be 

a complex task. As a result, the abstraction of 

inexhaustible resource pool that is exploited in the 

provider-consumer relationship of current cloud 

environments turns out to be inadequate for human-

computer cloud. A consumer should be informed 

about the human capacity available for his/her 

application to make an informed decision about 

revising digital contracts (making contribution to this 

application more appealing), or providing changes to 

their own service level agreements. This creates a 

competition between consumers for the available 

resources and finally will create a kind of job market 

where different digital contract statements will have 

its own price. 

3.2 Contributor Description 

When a contributor joins the cloud platform he/she 

provides two main types of information, that are very 

similar to the respective pieces of application 

descriptor. Namely, competencies definition, and 

work conditions. The competencies definition is 

made in terms of any ontology the contributor is 

aware of. For those contributors who cannot use 

ontologies there is another option, the definition of 

competencies is made iteratively via contributors’ 

text description analysis followed by ontology-based 

term disambiguation. In any case, internally, each 

contributor is described by skills, knowledge and 

attitude, linked to concepts of some shared ontology. 

The contributor’s competency definition is multi-

layered. The first layer is provided by the contributor 

him-/herself, while additional layers are added by 

applications in which a contributor takes part. For this 

purpose, a human resource management API 

available for the application code can manage 

application-specific skills and qualifications, which 

also can be described in some ontology (application-

specific or not). 

Therefore, despite initial description of 

competencies may be rather terse, during the 

contributor’s participation in different applications 

running over the platform it becomes more and more 

rich. It alleviates further human resource discovery. 

Note, however, that each application can access its 

own contributor description layer, all the layers are 

visible only for deployment and resource discovery 

services of the platform. 

Work  conditions  include preferred skills, as  well 
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as payment threshold, reactivity and availability 

limitations. These parameters are also similar to those 

included in digital contract template in the 

application descriptor. During application enquiry 

and application deployment its contract template is 

matched against contributors’ work conditions. 

Moreover, this matching touches not only 

contributor’s declared work conditions and one 

application contract (of the deployed application) but 

also other applications which contracts this 

contributor has already accepted, controlling overall 

responsibilities that are taken by the contributor and 

resolving possible conflicts. 

3.3 Main Platform Functions 

Application/service developers can deploy 

application (which initiates advertisement process to 

identify human resources available to this 

application), edit digital contracts, monitor, and 

delete application (this releases all resources 

allocated for the application, including human 

resources). Editing digital contracts is necessary, for 

example, when application developer is trying to 

compete for resources with other applications by 

offering higher rewards. This effectively changes the 

descriptor of the deployed application (producing a 

new version of it) and leads to a new wave of 

advertisements. Monitor application use case 

generalizes various functions that are necessary for 

application developer and are common to many 

current PaaS, like reading usage statistics, logs and 

other. This also includes monitoring of the available 

human resources by each requirement type as well its 

prediction. Inner scenario of application advertising 

includes identifying compatible resources based on 

matching of resource definition (competence profile) 

and requirement specification. 

Contributor can edit competence profile, 

providing the initial version of it or reflecting further 

changes, browse application advertisements routed to 

him/her (compatible with his/her competence profile 

and work conditions) with an option to accept some 

of them by signing digital contract and attaching to 

the respective application. Further, contributor can 

perform application-specific tasks and detach from 

application. 

System administrator, besides monitoring the 

status of the platform (usage of hardware/human 

resources, communication channels throughput, 

platform services’ health) can also do some activities 

in tuning the platform parameters, e.g., editing 

ontology mappings, that are used by the platform 

during identification of compatible resources 

(contributors) for advertising applications. The 

explicit mappings represent one of the ways for the 

platform to match competencies expressed in 

different ontologies. 

3.4 Application Deployment Scenario 

When a contributor registers at the human-computer 

platform he/she is not immediately available for 

requests of all human-based applications that may run 

on this environment. However, he/she starts to 

receive advertisements of applications, which are 

being deployed (or are already deployed) based on the 

similarity of a declared competence profile (including 

additional layers created by applications a contributor 

participates) and applications’ competence requests 

and correspondence of digital contract templates of 

the application and working conditions of contributor. 

These advertisements include description of service 

(its end-user functionality), type of human-based 

activities that are required for this service, the 

proposed rewarding scheme, specific performance 

evaluation techniques and so on. Based on the 

information contained in the advertisement, a 

contributor makes a decision if he/she will receive 

tasks from this application in future and what is 

acceptable schedule and maximum load. In other 

words, if a registered contributor agrees to contribute 

to the particular service a digital contract is signed 

specifying intensity of task flow, the rewarding and 

penalty details and quality measurement strategy. In 

general, there is many-to-many relation between 

applications and platform contributors, i.e, one 

contributor may sign digital contracts with several 

applications. 

After a contributor and the platform (on behalf of 

particular application) signed a digital contract, 

application’s requests for human operations are made 

available to the contributor. A contributor also can 

detach from an application (however, the mechanism 

and terms of this detaching can also be a part of 

digital contract to ensure the application provider can 

react to it accordingly). 

As it was already noted, the process of service 

advertising is based on ontological representation of 

service requirements and human competencies and 

their matching. 

4 ONTOLOGY-BASED DECISION 

SUPPORT SERVICE 

The  René  decision  support  service is an application, 
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running on top of the human-computer cloud 

infrastructure exposed as a SaaS and leveraging some 

features of the platform (e.g., resource management 

and provisioning). Expected user of René is a 

decision-maker who passes some task specification to 

the service to build an on-the-fly network capable of 

performing the task. It should be noted, that René 

exposes an API, by which ontology-based structured 

representation of the task specification is passed. The 

problem of creating such specification (for example, 

as a result of text analysis) is out of the scope both of 

this paper and of René functions. 

To decompose a task specification into a smaller 

tasks René uses a problem-specific task ontology, 

where domain tasks and their input and output 

parameters are described. After performing the 

decomposition René tries to distribute the elementary 

subtasks among the available resources. The list of 

available resources is retrieved via an API from 

underlying layers of the environment, which monitor 

all the contributor’s connections and disconnections 

and software resource registrations. The resource 

management service under the hood treats human and 

software resources a bit differently. Human resources 

(contributors) describe their competencies with a help 

of ontology and receive advertisements to join 

human-based applications if their requirements are 

compatible to the declared competencies of the user. 

In this sense, René is one of these human-based 

applications and may only distribute subtasks to those 

contributors who agreed to work with it. Software 

services are made available to René by their 

developers and maintainers by placing a special 

section into the deployment descriptor of the 

application. Practical assignment is also done via 

interfaces of underlying resource management layer, 

aware of the status and load of the resources and terms 

of their digital contracts. 

Finally, René monitors the availability of the 

resources (via the underlying layer) during execution 

of the subtasks and rebuilds the assignment if some of 

the resources fail or become unavailable. 

4.1 Task Decomposition 

Task decomposition is the first step for building the 

resource network. Main operation that drives the 

decomposition is actually task composition, i.e. 

deriving networks of tasks connected by input/output 

parameters. Furthermore, task decomposition in this 

approach can be viewed as finding such composition 

of basic tasks defined in the ontology that is 

equivalent to the task given by the user. 

For the purposes of decision support system, a 

structure of the task ontology is proposed. According 

to the proposed structure, the task ontology should 

consist of a set of tasks and subtasks, sets of input and 

output parameters of task, set of valid values of 

parameters, as well as the set of restrictions 

describing the relations between tasks/subtasks and 

parameters and between parameters and their valid 

values: 

O = (T, IP, OP, I, E) (1) 

where T is set of tasks and subtasks, IP – set of input 

task parameters, OP – set of output task parameters, I 

– set of valid parameter values, E – restrictions on the 

parameters of the task and parameter domain. 

Unlike task decomposition ontology containing 

relationships between task and their subtasks in 

explicit form (Ko et al., 2012), in the proposed task 

composition ontology these relationships are implicit. 

Such principle of ontology structure allows, on the 

one hand, to specify tasks and subtasks in the same 

axiomatic form and, on the other hand, to derive task 

composition structure by reasoning tools. Thus, the 

proposed ontology opens the possibility to describe a 

number of different tasks in the same form and after 

that to construct a number of their compositions using 

appropriate criteria. 

For the purpose of task composition ontology 

development the ontology language OWL 2 is used. 

The ontology is expressed by ALC description logic, 

which is decidable and has PSpace-complete 

complexity of concept satisfiability and ABox 

consistency (Baader et al., 2005) in the case when 

TBox is acyclic. In addition, SWRL-rules are 

specified for composition chain deriving. The main 

concepts of the ontology are “Task”, “Parameter”. 

The concept “Parameter” is used to describe a task 

semantically. The main requirement for TBox 

definition is that it shouldn’t contain cyclic and 

multiple definitions, and must contain only concept 

definitions specified by class equivalence. 

The task should have at least one input and one 

output parameter. The parameter taxonomy in the 

OWL 2 ontology is presented by a number of 

subclasses of the class “Parameter”. The type of 

parameters related to their input or output role are 

defined by appropriate role construct. The 

corresponding OWL 2 syntax expression is the 

Object Property. In the ontology, the appropriate 

object properties are “hasInputParameter” and 

“hasOutputParameter”. The domain of the properties 

is “Task” and the range – “Parameter”. Thereby the 

parameter could be input parameter of one task and 
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output parameter of another. The task definition is 

expressed formally as follows: 

T ≡ (∃𝑅.IP1 ⊓ ∃𝑅.IP2 … ⊓ ∃𝑅.IPN) ⊓  

(∃𝑅.OP1 ⊓ ∃𝑅.OP2 … ⊓ ∃𝑅.OPN) 
(2) 

where T is the task, IPi – the input parameter subclass, 

OPi – the input parameter subclass, R – the 

appropriate role. In other words, the task is defined 

solely by its input and output parameters. 

The proposed task definition (2) is used for task 

composition process because in composition output 

parameters of one task are input for another. This 

relationship is used to construct task composition by 

the SWRL rule. The corresponding SWRL rule 

specifies input and output parameter match condition 

in the antecedent and if the antecedent condition is 

satisfied, infers the relationship “nextTask” between 

the respective tasks. This relationship essentially 

means that one task should be done after another. To 

encode this relationship in the ontology an object 

property has been created binding two tasks, where 

the domain is the predecessor task and range is the 

accessor one. Neither two tasks are connected by the 

property explicitly. The rule of task composition can 

be expressed as follows:  

hasInputParameter(?ta, ?p)^ 

hasOutputParameter(?tb, ?p)  

nextTask(?tb,?ta) 

(3) 

where hasInputParameter, hasOutputParameter, 

nextTask are the mentioned object properties, ta – the 

next task, tb – the previous task, p – the parameter. 
 

 

Figure 1: Task composition structure. 

The proposed rule (3) allows to deriving all task 

connections by the object property “nextTask”. The 

example of task composition is presented in Fig. 1. 

The abbreviation “ip” and “op” denote input 

parameter and output parameters accordingly. E.g., 

relationship “nextTask” is inferred between tasks 

“Task 1” and “Task 3” because parameter p6 is input 

for “Task 3” and output for “Task 1”, meaning that 

“Task 3” can only be executed after “Task 1”. 

The advantages of the described approach is that 

it allows to simplify task description (in comparison 

to the approaches where task/subtask relations are 

explicit) and to derive task compositions 

dynamically. The shortcomings are the possible 

deriving complexity and the lack of the support of 

alternative task compositions. 

4.2 Subtask Distribution 

The specifics of the distribution of tasks in cloud 

computing systems is that usually there is a very large 

number of interchangeable computing resources 

(Ergu et al., 2013; Kong et al, 2017). This paper is 

focused on the solution of specialized tasks (subtasks) 

that require certain competencies, which on the one 

hand narrows the range of resources capable of 

solving these subtasks, and on the other hand requires 

taking into account these competencies. Therefore, 

typical algorithms used in cloud computing cannot be 

directly applied. 

In the areas of distribution of tasks among the 

robots or agents that are most similar to those under 

consideration, the most common approach of instant 

distribution of tasks (instantaneous task allocation) 

(Sujit et al., 2008; Kim et al., 2015) focused on the 

dynamic uncertain environment. This approach 

involves tying tasks to resources that currently 

provide the maximum “benefit” according to the 

given priorities. This approach does not take into 

account that at some point all resources with the 

required competencies may be occupied. Thus, it is 

usually supplemented by some heuristics specific to a 

particular application area. 

Let, A – is a task, which contains several subtasks 

ai: 

A = {ai}, i  {1, …, n} (4) 

Let, O – is the vocabulary of competencies:  

O = {o1, o2, …, om} (5) 

Thus, the matrix of competencies required to 

accomplish subtasks can be defined as: 

aoi,j  {0, 1, …, 100}, i  {1, …, n}, 

                                            j  {1, …, m} 
(6) 

The set of human-computer cloud resources R is 

defined as:  

R = {r1, r2, …, rk} (7) 

The set of resource characteristics (speed, cost, etc.) 

С is defined as: 

С = {с1, с2, …, сl} (8) 

Thus, each resource  ri  is  described  by the following 
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pair of competencies and characteristics vectors: 

ri = ((roi,1, …, roi,m), (rсi,1, …, rci,l)) (9) 

where i  {1, …, n}, roi,j  {0, …, 100} – is the value 

of competency j of the resource i, and rci,j is the value 

of the characteristic j of the resource i. 

The solution of the task A describes the 

distribution of work among system resources and is 

defined as: 

SA = (si,j), i  {1, …, n}, j  {1, …, k} (10) 

where si,j = 1, if the resource j is used for solving 
subtask i, and si,j = 0 otherwise. 

The objective function, which also performs 

normalization of various characteristics, is defined as 

follows: 

F(SA) = f(F1(s1,1, s2,1, …, sn,1),  

F2(s1,2, s2,2, …, sn,2), …,  

Fk(s1,k, s2,k, …, sn,k))  min 

(11) 

Specific formulas for calculating partial assignment 
efficiency (Fi) can use values of resource 
characteristics (e.g., speed or cost) rci,j, as well as 
competence values of both resources (roi,j) and 
subtasks (aoi,j). 

The minimization must be performed with respect 

to the following constraints. First, each subtask must 

be assigned to some resource: 

i : ∑ 𝑠𝑖,𝑗
𝑘
𝑗=1 ≥ 1 (12) 

Second, assignment can only be done if the 

competency values of the resource are not less than 

the required competency values of the subtask: 

i,j,q : ((si,j = 1)  (roj,q  aoi,q)) (13) 

4.2.1 Instantaneous Distribution of Tasks 
Algorithm 

Since the problem is NP-complete, it is not possible 

to solve it by an exhaustive search method in a 

reasonable time (provided that a real-world problem 

is solved). As a result of the analysis of existing 

methods it is proposed to use the approach of 

instantaneous task allocation. 

With regard to the problem, the algorithm based 

on the approach of instantaneous distribution of tasks 

is as follows: 

1) Take the first subtask from the existing ai, and 

exclude it from the set of subtasks A; 

2) Select such resource j from the available resources 

to satisfy all conditions and F(SA)  min, where 

SA = (s1,1 = 0, …, s1,j = 1, …, s1,k = 0); 

3) If a suitable resource is not found, assume that the 

problem  is  unsolvable (the  system  does not have 

a resource that meets the required competencies); 

4) Repeat steps starting from step 4 until set A is 

empty (i.e. all tasks are assigned to resources). 

4.2.2 Multi-agent Distribution of Tasks 

There are two types of agents that are used to perform 

multi-agent modeling: the customer agent that is 

responsible for generating jobs and making the final 

decision, and the execution agents that represent the 

resources of the cloud environment and perform on-

premises optimization for each resource. In the 

optimization process, agents form coalitions that 

change from step to step to improve the values of the 

objective function. 

In the process of negotiations, agents of 3 roles are 

singled out: a member of the coalition (an agent 

belonging to the coalition), a leader of the coalition 

(an agent negotiating on behalf of the coalition) and 

an applicant (an agent who can become a member of 

the coalition). 

At the beginning of the negotiations, each agent 

forms a separate coalition (SC, which has the 

structure of the SA solution), and becomes its leader. 

Suggestions of agents (tabular representation F(s1,1, 

s2,1, ..., sn,1) are published in all available agents 

repository of information on the blackboard. At each 

stage of the negotiations, the agents analyze the 

proposals of other agents, and choose those whose 

proposals can improve the coalition: to solve a larger 

number of subtasks or the same number of subtasks 

but with a better value of the objective function 

(F(SC) > F(SC’), where SC is the current coalition, 

SC’ – possible coalition). Coalition leaders make 

appropriate proposals to agents, and the latter decide 

whether to stay in the current coalition or move to the 

proposed one. The transition to the proposed coalition 

is considered if one of the above conditions is met: 

the proposed coalition can solve more subtasks than 

the current one, or the same number of subtasks, but 

with a better value of the objective function. 

The process is terminated if at the next stage there 

is no changes in the composition of coalitions, after a 

specified time, when the permissible value of the 

objective function is reached. 

5 IMPLEMENTATION 

A research prototype of a cloud environment based 

on the proposed models and methods has been 

developed.  In  particular,  two  cloud  computing  mo 

dels were implemented: platform-as-a-service (PaaS) 

and software-as-a-service  (SaaS).  The  platform pro- 
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Figure 2: Platform architecture overview. 

vides the developers of applications that require 

human knowledge and skills with a set of tools for 

designing, deploying, executing and monitoring such 

applications. The SaaS model is represented by an 

intelligent decision support service (referred to as 

René) that organizes (human-computer) resource 

networks for on-the-fly tasks through ontology-based 

task decomposition and subtasks distribution among 

the resources (human participants and software 

services). 

The prototype environment comprises several 

components (Fig. 2): 1) a server-side code that 

performs all the resource management activities and 

provides a set of application program interfaces 

(APIs), 2) a set of command line utilities that run on 

the computers of appropriate categories of users 

(platform administrator, developer, administrator of 

IDSS) and by accessing the API, enable to implement 

the main scenarios necessary for these users, 3) Web-

applications for participants and decision makers. 

Also, it is possible to implement the interface of the 

participant for an Android-based mobile device. 

The prototype environment interacts with social 

networks (ResearchGate, LinkedIn) to build and 

refine a participant competence profile. Also, the 

environment interacts with the applications deployed 

                                                                                              

1 http://flynn.com 

on it, providing them certain services (for instance, 

request human-participants, data warehouses, etc.). 

Because at the heart of each application that uses 

human resources (HBA, human-based application), 

there is software code that provides a specific 

interface to the end users of this application, the open 

source platform Flynn 1  is chosen to support 

deployment and execution of this code. The 

capabilities of the platform are extended with special 

functions (registration of participants, an ontological-

oriented search for participants, and a mechanism for 

supporting digital contracts). 

The intelligent decision support service (IDSS) is 

an application deployed in the human-computer cloud 

environment and using the functions provided by the 

environment (for instance, to organize interactions 

with participants). Main functions of the IDSS are: 1) 

decomposition of the task that the decision maker 

deals with into subtasks using the task ontology and 

inference engine that supports OWL ontology 

language and SWRL-rules (e.g., Pellet, HermiT, etc.); 

2) allocation of the subtasks to participants based on 

coalition games. The IDSS provides REST API to 

interact with the platform. 
The architecture of IDSS (Fig. 3), in its turn, can 

be divided into several logical layers: 
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• The Data Access Layer is a series of DAO 

abstractions that use the JPA standard for object-

relational mapping of data model classes (Domain 

model) that perform the simplest CRUD 

operations using ORM Hibernate and 

implemented using Spring Data. 

• The Business Logic Layer of the application is 

represented by two main services: the task 

ontology task decomposition service (Ontology 

Decomposition Service) and the workflow 

distribution service (Workflow Distribution 

Service). The task decomposition service operates 

with an ontology, described using the ontology 

description language OWL 2, which includes 

rules in SWRL and SQWRL. Knowledge output 

(task decomposition) is carried out using 

inference engines (e.g., Pellet or HermiT). To 

extract data from ontology, Jena APIs are used for 

ontologies recorded using OWL/RDF syntax 

using the SPARQL query language and OWL API 

for other ontology scenarios (changing ontology 

structure, managing individuals, logical 

inference). The workflow building service 

provides support for the coalition game of agents 

of the human-machine computing platform 

agents. 

• At the client level (Client Layer), REST API 
services are implemented for interacting with the 
platform. 
 

 

Figure 3: IDSS architecture. 

6 EVALUATION 

An experimental evaluation of the research prototype 

has been carried out. As the functionality of the 

application of the problem-oriented IDSS built 

according to the proposed approach is determined by 

the task ontology (namely, the basic tasks represented 

in this ontology and their input and output 

parameters), a task ontology for the e-tourism domain 

has been developed (specifically, for building tourist 

itineraries). In the experiments, dynamic task 

networks (for building tourist itineraries) did actually 

organize, and their execution resulted in valid lists of 

itineraries. 

To evaluate the performance, the developed 

software was deployed at the computing nodes of the 

local network of the research laboratory (an access to 

the server components from the Internet was also 

provided). 34 people were registered as participants 

available for task assignment. An ontology to 

describe the competences of resources (and the 

requirements for competences of deployable 

applications requiring human participation) 

representing 46 basic competences was used. With 

the experimental parameters (performance of 

hardware resources, number of participants, size of 

the competence ontology), the application 

deployment time differed from the application 

deployment time in the Flynn core cloud environment 

slightly (by 3-7%). The increase in time is inevitable, 

because when deploying an application, in addition to 

creating Docker containers, compiling and launching 

an application (performed by Flynn), additionally a 

semantic search of participants is carried out using the 

competence ontology s and the comparison of digital 

contracts. However, due to this slight increase in 

application deployment time, the applications 

deployed in the implemented cloud environment gain 

an opportunity to access human resources. In the 

future, most of the operations related to the resolution 

of application dependencies on human resources can 

be performed in the background, which will save the 

deployment time at the level of the cloud 

environment. 

The task ontology in the electronic tourism 

domain, represented in the OWL 2 language 

corresponding to the description logic of ALCR (D) 

and containing 293 axioms and 40 classes, was used 

for testing the IDSS. In the course of the load testing, 

an attempt was made to build a network of resources 

for the task of building a tourist route (the network 

assumes the fulfillment of 6 subtasks). The time of 

task decomposition and network construction 

obtained as a result of averaging over 25 tests is, on 
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average, 1157 ms (994 ms takes the task 

decomposition, 163 ms takes the allocation of the 

subtasks to resources). It should be noted that this 

time only takes into account the task decomposition 

and the resource network organization, and does not 

take into account the time spent by the software 

services and participants on solving the subtasks 

assigned to them. 

7 CONCLUSIONS 

The paper describes main distinguishing features of 

the ongoing development of an ontology-driven 

human-computer cloud environment: application 

platform, simplifying the development and 

management of applications that require human 

information processing operations, and decision 

support service based on ontological task 

representation and processing.  

The proposed resource management mechanism 

based on digital contracts makes the behavior of 

human-based applications more predictable and 

opens a way for building reactive human-based 

applications. 

The proposed approach for decision support is 

based on two described methods: 

 A method and algorithm to decompose a task into 

subtasks based on task ontology. As a result of 

applying this algorithm, a (probably complex) 

task set by the decision-maker can be decomposed 

into several simpler subtasks that can be 

accomplished by resources – either human or 

software. 

 A method and algorithm to distribute the subtasks 

among resources based on coalition games. 

The proposed methods and algorithms are used to 

implement decision support service René on top of 

the HCC, which allows to decompose a task received 

from a decision-maker and dynamically build a 

resource network (consisting of both software and 

humans) for it, capable of solving the task. René can 

be used in variety of domain areas characterized by 

rapid changes of the situation for building flexible 

automated decision support tools automatically 

configured by decision-maker. 

Experiments with a research prototype have 

shown the viability of the proposed models and 

methods. 
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