
Human-Computer Cloud: Application Platform and Dynamic

Decision Support

A. Smirnov, N. Shilov, A. Ponomarev a and M. Schekotov
SPIIRAS, 14th Line, St. Petersburg, Russia

Keywords: Human-Computer Cloud, Human-in-the-Loop, Crowdsourcing, Crowd Computing, Human Factors.

Abstract: The paper describes a human-computer cloud environment supporting the deployment and functioning of

human-based applications and allowing to decouple computing resource management issues (for this kind of

applications) from application software. The paper focuses on two specific contributions lying in the heart of

the proposed human-computer cloud environment: a) application platform, allowing to deploy human-based

applications and using digital contracts to regulate the interactions between an application and its contributors,

and b) the principles of ontology-based decision support service that is implemented on top of the human-

computer cloud and uses task decomposition in order to deal with ad hoc tasks, algorithms for which are not

described in advance.

1 INTRODUCTION

The proliferation of information and communication

technologies allowing people to access global

networks from almost any point on Earth pushes

network-based collaborative and collective initiatives

to a new level, resulting in an upsurge of crowd

computing and crowdsourcing.

Common problem with the systems involving

human participation is that each of these systems

usually requires a large number of contributors and

collecting this number of contributors may require

significant effort and time. This problem is partially

alleviated by crowdsourcing platforms (like Amazon

Mechanical Turk, Yandex.Toloka etc.), providing

tools for requesters to post tasks and an interface for

workers to accomplish these tasks. However, existing

platforms bear two main disadvantages: a) most of

them implement only ‘pull’ mode in distributing

tasks, therefore not providing any guarantees to the

requester that his/her tasks will be accomplished, b)

they are designed for mostly simple activities (like

image/audio annotation). The ongoing project is

aimed on the development of a unified resource

management environment, that could serve as a basis

on which any human-based application could be

deployed much like the way cloud computing is used

a https://orcid.org/0000-0002-9380-5064

nowadays to decouple computing resource

management issues from application software. The

proposed human-computer cloud (HCC) environment

addresses all three cloud models: infrastructure,

platform and software. Infrastructure layer is

responsible for resource provisioning, platform layer

provides a set of tools for development and

deployment of human-based applications, and on top

this environment there are several software services

leveraging human problem-solving abilities.

This paper focuses on two specific contributions

lying in the heart of the proposed human-computer

cloud environment: a) application platform, allowing

to deploy human-based applications (HBA) and using

digital contracts to regulate the interactions between

an application and its contributors, and b) the

principles of ontology-based decision support service

that is implemented on top of the human-computer

cloud and that uses task decomposition routines in

order to deal with ad hoc tasks algorithms for which

are not described in advance.

The rest of the paper is structured as follows.

Section 2 briefly describes other developments aimed

on building hybrid human-computer cloud

environments. Section 3 describes the organization of

the platform layer of the proposed HCC with a focus

on the digital contract concept. Section 4 describes

ontology-based decision support service. Sections 5

120
Smirnov, A., Shilov, N., Ponomarev, A. and Schekotov, M.
Human-Computer Cloud: Application Platform and Dynamic Decision Support.
DOI: 10.5220/0007725201200131
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 120-131
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

and 6 describe cloud platform implementation and

evaluation respectively.

2 RELATED WORK

Typical types of resources managed by cloud

environments are hardware (CPU, storage) and

software (cloud applications, platforms). Attempts of

applying the principles of cloud computing (on-

demand elastic resource provisioning) to a wider

spectrum of resource types can be classified into two

groups: 1) cloud sensing and actuation environments

and 2) cloud-managed human resource environments.

One of the earliest examples of cloud sensing and

actuation environment was presented in (Distefano et

al., 2012), where sensing resource is regarded as a

service that can be allocated and used in some unified

way independently of the application that needs

access to the resource. Based on this work Merlino et

al., (2016) proposed a cloud architecture for mobile

crowdsensing MCSaaS (Mobile CrowdSensing as a

Service), which defines a unified interface allowing

any smartphone user to become a part of a cloud and

allow to use his/her smartphone sensors in some way

that he/she finds acceptable in exchange for some

monetary reward or even voluntary.

Another approach is proposed in ClouT

(Cloud+IoT) project (Formisano et al., 2015). It is

aimed on providing enhanced solutions for smart

cities by using cloud computing in the IoT domain.

Formisano at al. propose multi-layer cloud

architecture where lower (infrastructure) layer

manages both sensing and computing resources. Both

ClouT and MCSaaS approaches are highly relevant to

the environment presented in this paper. However,

they are focused mostly on sensing and consider

human resources only due to the fact, that human can

provide the access to his/her smartphone and can

control it to make some operations (i.e. point camera

lens to some object and make a picture) requested by

the application working on top of the infrastructure

layer, or a specific kind of virtual sensor. A human,

however, may be not only a supplier of information

(like sensor), but a processor of it.

The second group, namely cloud-managed human

resource environments, has another perspective

aiming on managing member’s skills and

competencies in a standardized flexible way (e.g.

Dustdar and Bhattacharya, 2011; Sengupta et al.,

2013), regarding human as a specific resource that

can be allocated from a pool for performing some

tasks. For example, Dustdar and Bhattacharya (2011)

consider the cloud consisting of human-based

services and software-based services. On the

infrastructure layer, they define a human-computing

unit, which is a resource capable of providing human-

based services. Like hardware infrastructure is

described in terms of some characteristics (CPU,

memory, network bandwidth), human-computing

unit in this model is described by the set of skills. The

authors do not list the exact skills, leaving it to the

application domain.

The human-computer environment described in

this paper adopts the idea of sensor virtualization and

cloud implementation of IoT from (Merlino et al.,

2016) and (Formisano et al., 2015), but also extends

this idea by directly managing human resources by

infrastructure layer (similar to (Dustdar and

Bhattacharya, 2011)). Besides, the proposed

approach includes an application platform based on a

machine-processable specification of obligations in a

form of a digital contract and a decision support

service that is deployed on top of all resource-

management services and can be used to solve ad hoc

problems in some domain.

3 HUMAN-COMPUTER CLOUD:

PLATFORM-AS-A-SERVICE

This section introduces main design rationales and

concepts of the proposed platform. It identifies main

actors, interacting with the platform, major

requirements that drive the design, information

associated with applications and contributors,

allowing to fulfill the requirements. The section

finishes with main use cases presenting a general

view of the platform.

There are three main categories of actors involved

in the proposed cloud platform:

End users (application/service developers), who

use the platform to create and run applications and/or

services that require human effort. Of course, these

applications can also use other services and hardware,

like in any other PaaS.

Contributors, who are available to serve as human

resources in a human-computer cloud environment.

System Administrators and Infrastructure

Providers, who own and maintain the required

infrastructure.

Primary requirements from the side of End users

considered in the platform design are following:

 The platform must provide tools to deploy, run,

and monitor applications that require human

information processing.

 The platform must allow to specify what kind of

Human-Computer Cloud: Application Platform and Dynamic Decision Support

121

human information processing is required for an

application (as some human-based services, like,

e.g., image tagging, require very common skills,

while others, like tourism decision support, require

at least local expertise in certain location).

 The platform must allow to estimate and monitor

human resources available for the application.

This requirement contrasts to conventional cloud

applications, where overall amount of resources

possessed by cloud provider is considered to be

inexhaustible, and the capacity consumed by an

application is in theory limited only by the

available budget. However, human resources are

always limited, especially when it comes to people

with some specialized competencies and

knowledge. Besides, the particular rewarding

scheme designed by the application developer may

be not appealing and not able to collect the

required number of contributors. Therefore,

application developer should be able to have

information to know what capacity is available to

the application. Based on this information he/she

may change the rewarding scheme, set up his/her

own SLA (for his/her consumers) etc.

 The platform must account for temporal

dimension of resource availability. Like in the

previous requirement, this is specific mostly for

human resources. For example, some contributors

are ready to participate in information processing

activities controlled by the cloud platform in their

spare time (non-working hours) only. It means that

resource capacity during non-working hours will

be larger than during working hours. However, for

some applications (e.g., online tourist support)

reaction time is important. Therefore, tourist

decision support service developers should have

temporal perspective of the resource availability.

3.1 Application Description

The aim of any cloud environment providing the PaaS

service model is to streamline the development and

deployment of the applications by providing

specialized software libraries and tools that help

developers to write code abstracting from many

details of resource management. Instead, those

resource management operations are performed

automatically by PaaS environment usually

according to some description (declarative

configuration) provided by the developer of the

service being executed. The human-computer cloud

environment being developed supports similar

approach, however, with inevitable extensions caused

by the necessity of working with human resources. To

streamline the development of applications that

require human actions, the platform allows both a

developer to describe what kind of human resources

are required for this particular application, and a

contributor to describe what kind of activities he/she

can be involved in and what competencies he/she

possesses. Declarative specification of service

requirements is quite typical for cloud environments.

They are used, for example, in cloud orchestration

definition language TOSCA (Brogi et al., 2014), that

allows, for example, to specify how many virtual

machines and with what services should be created

for a particular application running in cloud.

However, these definitions turn out to be insufficient

for the purpose of human-computer cloud. One of the

reasons is multifarious nature of possible human

skills and competencies. While virtual machine can

be described with a very limited number of features

(e.g. cpu, ram, i/o capacity), human contributor’s

skills and abilities are highly multidimensional, they

can be described in different levels of detail and be

connected to a wide range of particular application

areas. Besides, the same skills can be described in

different ways, and, finally, most of the skill

descriptions in real world are incomplete (however,

there might be a possibility to infer some skills that a

human might possess from those that he/she explicitly

declared).

Application that is to be deployed in the proposed

human-computer cloud beside the source code must

contain a descriptor that includes following

components (here we list all the components, but

focus on those, relevant to human part):

 configuration parameters (e.g. environment

variables controlling the behavior of the compiled

code);

 software dependencies of the application (what

platform services and/or other applications it

relies on, e.g., database service, messaging

service, etc.);

 human resource requirements, specifying what

human skills and competencies the application

needs to function. These requirements are also (as

software requirements) are resolved during the

service deployment, but as (1) resolving these

requirements employs ontology matching which

may result in some tradeoffs, (2) human resources

are much more limited than hardware/software,

the status and details of the requirements

resolution are available to the developer and can

be browsed via the management console;

 digital contract template for each type of human

resources. By the type of human resource we

mean each specific profile of requirements. For

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

122

example, an itinerary planning application may

require people with significant local expertise as

well as people with shallow local expertise but

good language skills. The application defines

these two requirements profiles and may associate

different digital contracts for them (in terms of

reaction time and/or payment).

One of the distinguishing features of the proposed

platform is the way to formally specify requirements

addressing the different ways of describing the same

human capabilities. First of all, we adopt the three-

way understanding (knowledge, skill, and attitude) of

human competencies, as it is common in current

literature (Sampson and Fytros, 2008; Lundqvist et

al., 2011; Miranda et al., 2017). Then (and the most

important) we allow to use arbitrary ontology

concepts as specific skills or knowledge areas. The

major benefit of using ontologies is that it is possible

to discover resources defined with related, similar but

not exact terms. This is done either by using existing

public mappings between ontologies (stating

equivalence between concepts of different

ontologies), or by ontology inference, or potentially

even by ontology matching (Euzenat and Shvaiko,

2013).

It is important that we do not fix any particular set

of ontologies, but support ontology-based resource

discovery. It allows tourist applications deployed on

the platform to use public cultural, historical, and

geographical ontologies, whereas, e.g., applications,

that employ human-based information processing in

the area of medicine or biology use the ontologies of

the respective domain. The only restriction is that

these ontologies have to be expressed in OWL 2

(OWL 2). Moreover, to guarantee computational

efficiency, they have to conform to OWL 2 EL

profile.

Another distinguishing feature of the approach is

the concept of digital contract. It is an agreement

between contributor and platform about terms of

work, quality management principles and rewarding.

This contract may be as lightweight as commonly

accepted in modern microtask markets (like Amazon

Mechanical Turk), specifying that a contributor may

pick tasks from common service pools when he/she is

comfortable and as many as he/she can. However, this

contract may also be rather strict, requiring that a

contributor should be available during the specified

time and be able to process not less than specified

number of tasks per time interval. Terms of this

digital contract are essential for estimating the

amount of resources available for a service and its

capacity (including time perspective of the capacity).

The necessity of this digital contract is caused by the

fact that human resources are limited. In case of

ordinary hardware, the cloud infrastructure provider

can buy as many computers as needed, human

participation is less controllable due to free will,

therefore, attracting and retaining contributors can be

a complex task. As a result, the abstraction of

inexhaustible resource pool that is exploited in the

provider-consumer relationship of current cloud

environments turns out to be inadequate for human-

computer cloud. A consumer should be informed

about the human capacity available for his/her

application to make an informed decision about

revising digital contracts (making contribution to this

application more appealing), or providing changes to

their own service level agreements. This creates a

competition between consumers for the available

resources and finally will create a kind of job market

where different digital contract statements will have

its own price.

3.2 Contributor Description

When a contributor joins the cloud platform he/she

provides two main types of information, that are very

similar to the respective pieces of application

descriptor. Namely, competencies definition, and

work conditions. The competencies definition is

made in terms of any ontology the contributor is

aware of. For those contributors who cannot use

ontologies there is another option, the definition of

competencies is made iteratively via contributors’

text description analysis followed by ontology-based

term disambiguation. In any case, internally, each

contributor is described by skills, knowledge and

attitude, linked to concepts of some shared ontology.

The contributor’s competency definition is multi-

layered. The first layer is provided by the contributor

him-/herself, while additional layers are added by

applications in which a contributor takes part. For this

purpose, a human resource management API

available for the application code can manage

application-specific skills and qualifications, which

also can be described in some ontology (application-

specific or not).

Therefore, despite initial description of

competencies may be rather terse, during the

contributor’s participation in different applications

running over the platform it becomes more and more

rich. It alleviates further human resource discovery.

Note, however, that each application can access its

own contributor description layer, all the layers are

visible only for deployment and resource discovery

services of the platform.

Work conditions include preferred skills, as well

Human-Computer Cloud: Application Platform and Dynamic Decision Support

123

as payment threshold, reactivity and availability

limitations. These parameters are also similar to those

included in digital contract template in the

application descriptor. During application enquiry

and application deployment its contract template is

matched against contributors’ work conditions.

Moreover, this matching touches not only

contributor’s declared work conditions and one

application contract (of the deployed application) but

also other applications which contracts this

contributor has already accepted, controlling overall

responsibilities that are taken by the contributor and

resolving possible conflicts.

3.3 Main Platform Functions

Application/service developers can deploy

application (which initiates advertisement process to

identify human resources available to this

application), edit digital contracts, monitor, and

delete application (this releases all resources

allocated for the application, including human

resources). Editing digital contracts is necessary, for

example, when application developer is trying to

compete for resources with other applications by

offering higher rewards. This effectively changes the

descriptor of the deployed application (producing a

new version of it) and leads to a new wave of

advertisements. Monitor application use case

generalizes various functions that are necessary for

application developer and are common to many

current PaaS, like reading usage statistics, logs and

other. This also includes monitoring of the available

human resources by each requirement type as well its

prediction. Inner scenario of application advertising

includes identifying compatible resources based on

matching of resource definition (competence profile)

and requirement specification.

Contributor can edit competence profile,

providing the initial version of it or reflecting further

changes, browse application advertisements routed to

him/her (compatible with his/her competence profile

and work conditions) with an option to accept some

of them by signing digital contract and attaching to

the respective application. Further, contributor can

perform application-specific tasks and detach from

application.

System administrator, besides monitoring the

status of the platform (usage of hardware/human

resources, communication channels throughput,

platform services’ health) can also do some activities

in tuning the platform parameters, e.g., editing

ontology mappings, that are used by the platform

during identification of compatible resources

(contributors) for advertising applications. The

explicit mappings represent one of the ways for the

platform to match competencies expressed in

different ontologies.

3.4 Application Deployment Scenario

When a contributor registers at the human-computer

platform he/she is not immediately available for

requests of all human-based applications that may run

on this environment. However, he/she starts to

receive advertisements of applications, which are

being deployed (or are already deployed) based on the

similarity of a declared competence profile (including

additional layers created by applications a contributor

participates) and applications’ competence requests

and correspondence of digital contract templates of

the application and working conditions of contributor.

These advertisements include description of service

(its end-user functionality), type of human-based

activities that are required for this service, the

proposed rewarding scheme, specific performance

evaluation techniques and so on. Based on the

information contained in the advertisement, a

contributor makes a decision if he/she will receive

tasks from this application in future and what is

acceptable schedule and maximum load. In other

words, if a registered contributor agrees to contribute

to the particular service a digital contract is signed

specifying intensity of task flow, the rewarding and

penalty details and quality measurement strategy. In

general, there is many-to-many relation between

applications and platform contributors, i.e, one

contributor may sign digital contracts with several

applications.

After a contributor and the platform (on behalf of

particular application) signed a digital contract,

application’s requests for human operations are made

available to the contributor. A contributor also can

detach from an application (however, the mechanism

and terms of this detaching can also be a part of

digital contract to ensure the application provider can

react to it accordingly).

As it was already noted, the process of service

advertising is based on ontological representation of

service requirements and human competencies and

their matching.

4 ONTOLOGY-BASED DECISION

SUPPORT SERVICE

The René decision support service is an application,

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

124

running on top of the human-computer cloud

infrastructure exposed as a SaaS and leveraging some

features of the platform (e.g., resource management

and provisioning). Expected user of René is a

decision-maker who passes some task specification to

the service to build an on-the-fly network capable of

performing the task. It should be noted, that René

exposes an API, by which ontology-based structured

representation of the task specification is passed. The

problem of creating such specification (for example,

as a result of text analysis) is out of the scope both of

this paper and of René functions.

To decompose a task specification into a smaller

tasks René uses a problem-specific task ontology,

where domain tasks and their input and output

parameters are described. After performing the

decomposition René tries to distribute the elementary

subtasks among the available resources. The list of

available resources is retrieved via an API from

underlying layers of the environment, which monitor

all the contributor’s connections and disconnections

and software resource registrations. The resource

management service under the hood treats human and

software resources a bit differently. Human resources

(contributors) describe their competencies with a help

of ontology and receive advertisements to join

human-based applications if their requirements are

compatible to the declared competencies of the user.

In this sense, René is one of these human-based

applications and may only distribute subtasks to those

contributors who agreed to work with it. Software

services are made available to René by their

developers and maintainers by placing a special

section into the deployment descriptor of the

application. Practical assignment is also done via

interfaces of underlying resource management layer,

aware of the status and load of the resources and terms

of their digital contracts.

Finally, René monitors the availability of the

resources (via the underlying layer) during execution

of the subtasks and rebuilds the assignment if some of

the resources fail or become unavailable.

4.1 Task Decomposition

Task decomposition is the first step for building the

resource network. Main operation that drives the

decomposition is actually task composition, i.e.

deriving networks of tasks connected by input/output

parameters. Furthermore, task decomposition in this

approach can be viewed as finding such composition

of basic tasks defined in the ontology that is

equivalent to the task given by the user.

For the purposes of decision support system, a

structure of the task ontology is proposed. According

to the proposed structure, the task ontology should

consist of a set of tasks and subtasks, sets of input and

output parameters of task, set of valid values of

parameters, as well as the set of restrictions

describing the relations between tasks/subtasks and

parameters and between parameters and their valid

values:

O = (T, IP, OP, I, E) (1)

where T is set of tasks and subtasks, IP – set of input

task parameters, OP – set of output task parameters, I

– set of valid parameter values, E – restrictions on the

parameters of the task and parameter domain.

Unlike task decomposition ontology containing

relationships between task and their subtasks in

explicit form (Ko et al., 2012), in the proposed task

composition ontology these relationships are implicit.

Such principle of ontology structure allows, on the

one hand, to specify tasks and subtasks in the same

axiomatic form and, on the other hand, to derive task

composition structure by reasoning tools. Thus, the

proposed ontology opens the possibility to describe a

number of different tasks in the same form and after

that to construct a number of their compositions using

appropriate criteria.

For the purpose of task composition ontology

development the ontology language OWL 2 is used.

The ontology is expressed by ALC description logic,

which is decidable and has PSpace-complete

complexity of concept satisfiability and ABox

consistency (Baader et al., 2005) in the case when

TBox is acyclic. In addition, SWRL-rules are

specified for composition chain deriving. The main

concepts of the ontology are “Task”, “Parameter”.

The concept “Parameter” is used to describe a task

semantically. The main requirement for TBox

definition is that it shouldn’t contain cyclic and

multiple definitions, and must contain only concept

definitions specified by class equivalence.

The task should have at least one input and one

output parameter. The parameter taxonomy in the

OWL 2 ontology is presented by a number of

subclasses of the class “Parameter”. The type of

parameters related to their input or output role are

defined by appropriate role construct. The

corresponding OWL 2 syntax expression is the

Object Property. In the ontology, the appropriate

object properties are “hasInputParameter” and

“hasOutputParameter”. The domain of the properties

is “Task” and the range – “Parameter”. Thereby the

parameter could be input parameter of one task and

Human-Computer Cloud: Application Platform and Dynamic Decision Support

125

output parameter of another. The task definition is

expressed formally as follows:

T ≡ (∃𝑅.IP1 ⊓ ∃𝑅.IP2 … ⊓ ∃𝑅.IPN) ⊓

(∃𝑅.OP1 ⊓ ∃𝑅.OP2 … ⊓ ∃𝑅.OPN)
(2)

where T is the task, IPi – the input parameter subclass,

OPi – the input parameter subclass, R – the

appropriate role. In other words, the task is defined

solely by its input and output parameters.

The proposed task definition (2) is used for task

composition process because in composition output

parameters of one task are input for another. This

relationship is used to construct task composition by

the SWRL rule. The corresponding SWRL rule

specifies input and output parameter match condition

in the antecedent and if the antecedent condition is

satisfied, infers the relationship “nextTask” between

the respective tasks. This relationship essentially

means that one task should be done after another. To

encode this relationship in the ontology an object

property has been created binding two tasks, where

the domain is the predecessor task and range is the

accessor one. Neither two tasks are connected by the

property explicitly. The rule of task composition can

be expressed as follows:

hasInputParameter(?ta, ?p)^

hasOutputParameter(?tb, ?p) 

nextTask(?tb,?ta)

(3)

where hasInputParameter, hasOutputParameter,

nextTask are the mentioned object properties, ta – the

next task, tb – the previous task, p – the parameter.

Figure 1: Task composition structure.

The proposed rule (3) allows to deriving all task

connections by the object property “nextTask”. The

example of task composition is presented in Fig. 1.

The abbreviation “ip” and “op” denote input

parameter and output parameters accordingly. E.g.,

relationship “nextTask” is inferred between tasks

“Task 1” and “Task 3” because parameter p6 is input

for “Task 3” and output for “Task 1”, meaning that

“Task 3” can only be executed after “Task 1”.

The advantages of the described approach is that

it allows to simplify task description (in comparison

to the approaches where task/subtask relations are

explicit) and to derive task compositions

dynamically. The shortcomings are the possible

deriving complexity and the lack of the support of

alternative task compositions.

4.2 Subtask Distribution

The specifics of the distribution of tasks in cloud

computing systems is that usually there is a very large

number of interchangeable computing resources

(Ergu et al., 2013; Kong et al, 2017). This paper is

focused on the solution of specialized tasks (subtasks)

that require certain competencies, which on the one

hand narrows the range of resources capable of

solving these subtasks, and on the other hand requires

taking into account these competencies. Therefore,

typical algorithms used in cloud computing cannot be

directly applied.

In the areas of distribution of tasks among the

robots or agents that are most similar to those under

consideration, the most common approach of instant

distribution of tasks (instantaneous task allocation)

(Sujit et al., 2008; Kim et al., 2015) focused on the

dynamic uncertain environment. This approach

involves tying tasks to resources that currently

provide the maximum “benefit” according to the

given priorities. This approach does not take into

account that at some point all resources with the

required competencies may be occupied. Thus, it is

usually supplemented by some heuristics specific to a

particular application area.

Let, A – is a task, which contains several subtasks

ai:

A = {ai}, i  {1, …, n} (4)

Let, O – is the vocabulary of competencies:

O = {o1, o2, …, om} (5)

Thus, the matrix of competencies required to

accomplish subtasks can be defined as:

aoi,j  {0, 1, …, 100}, i  {1, …, n},

 j  {1, …, m}
(6)

The set of human-computer cloud resources R is

defined as:

R = {r1, r2, …, rk} (7)

The set of resource characteristics (speed, cost, etc.)

С is defined as:

С = {с1, с2, …, сl} (8)

Thus, each resource ri is described by the following

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

126

pair of competencies and characteristics vectors:

ri = ((roi,1, …, roi,m), (rсi,1, …, rci,l)) (9)

where i  {1, …, n}, roi,j  {0, …, 100} – is the value

of competency j of the resource i, and rci,j is the value

of the characteristic j of the resource i.

The solution of the task A describes the

distribution of work among system resources and is

defined as:

SA = (si,j), i  {1, …, n}, j  {1, …, k} (10)

where si,j = 1, if the resource j is used for solving
subtask i, and si,j = 0 otherwise.

The objective function, which also performs

normalization of various characteristics, is defined as

follows:

F(SA) = f(F1(s1,1, s2,1, …, sn,1),

F2(s1,2, s2,2, …, sn,2), …,

Fk(s1,k, s2,k, …, sn,k))  min

(11)

Specific formulas for calculating partial assignment
efficiency (Fi) can use values of resource
characteristics (e.g., speed or cost) rci,j, as well as
competence values of both resources (roi,j) and
subtasks (aoi,j).

The minimization must be performed with respect

to the following constraints. First, each subtask must

be assigned to some resource:

i : ∑ 𝑠𝑖,𝑗
𝑘
𝑗=1 ≥ 1 (12)

Second, assignment can only be done if the

competency values of the resource are not less than

the required competency values of the subtask:

i,j,q : ((si,j = 1)  (roj,q  aoi,q)) (13)

4.2.1 Instantaneous Distribution of Tasks
Algorithm

Since the problem is NP-complete, it is not possible

to solve it by an exhaustive search method in a

reasonable time (provided that a real-world problem

is solved). As a result of the analysis of existing

methods it is proposed to use the approach of

instantaneous task allocation.

With regard to the problem, the algorithm based

on the approach of instantaneous distribution of tasks

is as follows:

1) Take the first subtask from the existing ai, and

exclude it from the set of subtasks A;

2) Select such resource j from the available resources

to satisfy all conditions and F(SA)  min, where

SA = (s1,1 = 0, …, s1,j = 1, …, s1,k = 0);

3) If a suitable resource is not found, assume that the

problem is unsolvable (the system does not have

a resource that meets the required competencies);

4) Repeat steps starting from step 4 until set A is

empty (i.e. all tasks are assigned to resources).

4.2.2 Multi-agent Distribution of Tasks

There are two types of agents that are used to perform

multi-agent modeling: the customer agent that is

responsible for generating jobs and making the final

decision, and the execution agents that represent the

resources of the cloud environment and perform on-

premises optimization for each resource. In the

optimization process, agents form coalitions that

change from step to step to improve the values of the

objective function.

In the process of negotiations, agents of 3 roles are

singled out: a member of the coalition (an agent

belonging to the coalition), a leader of the coalition

(an agent negotiating on behalf of the coalition) and

an applicant (an agent who can become a member of

the coalition).

At the beginning of the negotiations, each agent

forms a separate coalition (SC, which has the

structure of the SA solution), and becomes its leader.

Suggestions of agents (tabular representation F(s1,1,

s2,1, ..., sn,1) are published in all available agents

repository of information on the blackboard. At each

stage of the negotiations, the agents analyze the

proposals of other agents, and choose those whose

proposals can improve the coalition: to solve a larger

number of subtasks or the same number of subtasks

but with a better value of the objective function

(F(SC) > F(SC’), where SC is the current coalition,

SC’ – possible coalition). Coalition leaders make

appropriate proposals to agents, and the latter decide

whether to stay in the current coalition or move to the

proposed one. The transition to the proposed coalition

is considered if one of the above conditions is met:

the proposed coalition can solve more subtasks than

the current one, or the same number of subtasks, but

with a better value of the objective function.

The process is terminated if at the next stage there

is no changes in the composition of coalitions, after a

specified time, when the permissible value of the

objective function is reached.

5 IMPLEMENTATION

A research prototype of a cloud environment based

on the proposed models and methods has been

developed. In particular, two cloud computing mo

dels were implemented: platform-as-a-service (PaaS)

and software-as-a-service (SaaS). The platform pro-

Human-Computer Cloud: Application Platform and Dynamic Decision Support

127

Figure 2: Platform architecture overview.

vides the developers of applications that require

human knowledge and skills with a set of tools for

designing, deploying, executing and monitoring such

applications. The SaaS model is represented by an

intelligent decision support service (referred to as

René) that organizes (human-computer) resource

networks for on-the-fly tasks through ontology-based

task decomposition and subtasks distribution among

the resources (human participants and software

services).

The prototype environment comprises several

components (Fig. 2): 1) a server-side code that

performs all the resource management activities and

provides a set of application program interfaces

(APIs), 2) a set of command line utilities that run on

the computers of appropriate categories of users

(platform administrator, developer, administrator of

IDSS) and by accessing the API, enable to implement

the main scenarios necessary for these users, 3) Web-

applications for participants and decision makers.

Also, it is possible to implement the interface of the

participant for an Android-based mobile device.

The prototype environment interacts with social

networks (ResearchGate, LinkedIn) to build and

refine a participant competence profile. Also, the

environment interacts with the applications deployed

1 http://flynn.com

on it, providing them certain services (for instance,

request human-participants, data warehouses, etc.).

Because at the heart of each application that uses

human resources (HBA, human-based application),

there is software code that provides a specific

interface to the end users of this application, the open

source platform Flynn 1 is chosen to support

deployment and execution of this code. The

capabilities of the platform are extended with special

functions (registration of participants, an ontological-

oriented search for participants, and a mechanism for

supporting digital contracts).

The intelligent decision support service (IDSS) is

an application deployed in the human-computer cloud

environment and using the functions provided by the

environment (for instance, to organize interactions

with participants). Main functions of the IDSS are: 1)

decomposition of the task that the decision maker

deals with into subtasks using the task ontology and

inference engine that supports OWL ontology

language and SWRL-rules (e.g., Pellet, HermiT, etc.);

2) allocation of the subtasks to participants based on

coalition games. The IDSS provides REST API to

interact with the platform.
The architecture of IDSS (Fig. 3), in its turn, can

be divided into several logical layers:

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

128

• The Data Access Layer is a series of DAO

abstractions that use the JPA standard for object-

relational mapping of data model classes (Domain

model) that perform the simplest CRUD

operations using ORM Hibernate and

implemented using Spring Data.

• The Business Logic Layer of the application is

represented by two main services: the task

ontology task decomposition service (Ontology

Decomposition Service) and the workflow

distribution service (Workflow Distribution

Service). The task decomposition service operates

with an ontology, described using the ontology

description language OWL 2, which includes

rules in SWRL and SQWRL. Knowledge output

(task decomposition) is carried out using

inference engines (e.g., Pellet or HermiT). To

extract data from ontology, Jena APIs are used for

ontologies recorded using OWL/RDF syntax

using the SPARQL query language and OWL API

for other ontology scenarios (changing ontology

structure, managing individuals, logical

inference). The workflow building service

provides support for the coalition game of agents

of the human-machine computing platform

agents.

• At the client level (Client Layer), REST API
services are implemented for interacting with the
platform.

Figure 3: IDSS architecture.

6 EVALUATION

An experimental evaluation of the research prototype

has been carried out. As the functionality of the

application of the problem-oriented IDSS built

according to the proposed approach is determined by

the task ontology (namely, the basic tasks represented

in this ontology and their input and output

parameters), a task ontology for the e-tourism domain

has been developed (specifically, for building tourist

itineraries). In the experiments, dynamic task

networks (for building tourist itineraries) did actually

organize, and their execution resulted in valid lists of

itineraries.

To evaluate the performance, the developed

software was deployed at the computing nodes of the

local network of the research laboratory (an access to

the server components from the Internet was also

provided). 34 people were registered as participants

available for task assignment. An ontology to

describe the competences of resources (and the

requirements for competences of deployable

applications requiring human participation)

representing 46 basic competences was used. With

the experimental parameters (performance of

hardware resources, number of participants, size of

the competence ontology), the application

deployment time differed from the application

deployment time in the Flynn core cloud environment

slightly (by 3-7%). The increase in time is inevitable,

because when deploying an application, in addition to

creating Docker containers, compiling and launching

an application (performed by Flynn), additionally a

semantic search of participants is carried out using the

competence ontology s and the comparison of digital

contracts. However, due to this slight increase in

application deployment time, the applications

deployed in the implemented cloud environment gain

an opportunity to access human resources. In the

future, most of the operations related to the resolution

of application dependencies on human resources can

be performed in the background, which will save the

deployment time at the level of the cloud

environment.

The task ontology in the electronic tourism

domain, represented in the OWL 2 language

corresponding to the description logic of ALCR (D)

and containing 293 axioms and 40 classes, was used

for testing the IDSS. In the course of the load testing,

an attempt was made to build a network of resources

for the task of building a tourist route (the network

assumes the fulfillment of 6 subtasks). The time of

task decomposition and network construction

obtained as a result of averaging over 25 tests is, on

Human-Computer Cloud: Application Platform and Dynamic Decision Support

129

average, 1157 ms (994 ms takes the task

decomposition, 163 ms takes the allocation of the

subtasks to resources). It should be noted that this

time only takes into account the task decomposition

and the resource network organization, and does not

take into account the time spent by the software

services and participants on solving the subtasks

assigned to them.

7 CONCLUSIONS

The paper describes main distinguishing features of

the ongoing development of an ontology-driven

human-computer cloud environment: application

platform, simplifying the development and

management of applications that require human

information processing operations, and decision

support service based on ontological task

representation and processing.

The proposed resource management mechanism

based on digital contracts makes the behavior of

human-based applications more predictable and

opens a way for building reactive human-based

applications.

The proposed approach for decision support is

based on two described methods:

 A method and algorithm to decompose a task into

subtasks based on task ontology. As a result of

applying this algorithm, a (probably complex)

task set by the decision-maker can be decomposed

into several simpler subtasks that can be

accomplished by resources – either human or

software.

 A method and algorithm to distribute the subtasks

among resources based on coalition games.

The proposed methods and algorithms are used to

implement decision support service René on top of

the HCC, which allows to decompose a task received

from a decision-maker and dynamically build a

resource network (consisting of both software and

humans) for it, capable of solving the task. René can

be used in variety of domain areas characterized by

rapid changes of the situation for building flexible

automated decision support tools automatically

configured by decision-maker.

Experiments with a research prototype have

shown the viability of the proposed models and

methods.

ACKNOWLEDGEMENTS

The research was partially supported by the RSF

(project # 16-11-10253), by the RFBR (# 19-07-

00928, # 19-07-01120) and by Russian State
Research # 0073-2019-0005.

REFERENCES

Baader, F., Milicic, M., Lutz, C., Sattler, U., Wolter, F.,

2005. Integrating description logics and action

formalisms for reasoning about web services, LTCS-

Report 05-02, Chair for Automata Theory, Institute for

Theoretical Computer Science, Dresden University of

Technology, Germany. Available at: http://lat.inf.tu-

dresden.de/research/reports.html [Accessed 15 Feb.

2019]

Brogi, A., Soldani, J., Wang, P., 2014. TOSCA in a

Nutshell: Promises and Perspectives. 3rd Service-

Oriented and Cloud Computing (ESOCC), Springer,

Lecture Notes in Computer Science, LNCS-8745,

pp.171-186.

Distefano, S., Merlino, G., Puliafito, A., 2012. SAaaS: a

framework for volunteer-based sensing clouds. Parallel

and Cloud Computing, vol. 1, no. 2, 21-33.

Dustdar, S., Bhattacharya, K., 2011. The social compute

unit. IEEE Internet Computing, 15(3), 2011, 64–69.

Ergu, D. et al. 2013. The analytic hierarchy process: task

scheduling and resource allocation in cloud computing

environment, The Journal of Supercomputing, vol. 64,

issue 3, pp. 835–848.

Euzenat, J., Shvaiko, P. 2013. Ontology Matching, 2nd

edition, Springer-Verlag, Berlin Heidelberg (DE).

Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T.,

Galache, J.A., Doguchi, K., Matranga, I., 2015. The

advantages of IoT and cloud applied to smart cities. 3rd

International Conference Future Internet of Things and

Cloud, pp. 325-332.

Kim, M.H., Baik, H., Lee, S., 2015. Resource welfare based

task allocation for UAV team with resource constraints,

Journal of Intelligent & Robotic Systems, vol. 77, issue

3-4, pp. 611–627.

Ko, R.K.L., Lee, E.W., Lee, S.G., 2012. BusinessOWL

(BOWL) - a hierarchical task network ontology for

dynamic business process decomposition and

formulation, IEEE Transactions on Service Computing,

vol. 5, issue 2, pp. 246–259.

Kong, Y., Zhang, M., Ye, D., 2017. A belief propagation-

based method for task allocation in open and dynamic

cloud environments, Knowledge-Based Systems,

vol. 115, pp. 123–132.

Lundqvist, K., Baker, K., Williams, S., 2011. Ontology

supported competency system. International Journal of

Knowledge and Learning, 7 (3/4), pp. 197–219.

Merlino, G., Arkoulis, S., Distefano, S., Papagianni, C.,

Puliafito, A., Papavassiliou, S., 2016. Mobile

crowdsensing as a service: a platform for applications

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

130

on top of sensing clouds. Future Generation Computer

Systems, vol. 56, 623-639.

Miranda, S., Orciuoli, F., Loia, V., Sampson, D., 2017. An

Ontology-Based Model for Competence Management.

Data & Knowledge Engineering, vol. 107, pp. 51–66.

OWL 2 Web Ontology Language Document Overview

(Second Edition). Available at: https://www.w3.org/

TR/owl2-overview/ [Accessed 15 Feb. 2019]

Sampson, D., Fytros, D., 2008. Competence Models in

Technology-Enhanced Competence-Based Learning.

Handbook on Information Technologies for Education

and Training, International Handbooks on Information

Systems, Springer Berlin Heidelberg, pp. 155–177.

Sengupta, B., Jain, A., Bhattacharya, K., Truong, H.-L.,

Dustdar, S., 2013. Collective problem solving using

social compute units. International Journal of

Cooperative Information Systems, vol. 22, no. 4.

Sujit P., George, G., Beard, R., 2008. Multiple UAV

coalition formation, in Proceedings of the American

Control Conference, pp. 2010–2015.

Human-Computer Cloud: Application Platform and Dynamic Decision Support

131

