
Managing Discipline-Specific Metadata Within an Integrated Research
Data Management System

Marius Politze a, Sarah Bensberg and Matthias S. Müller
IT Center, RWTH Aachen University, Templergraben 55, Aachen, Germany

Keywords: Semantic Web, Linked Data, Knowlegde Graph, Service Oriented Architecture, Web Service, Data Reposi-
tory.

Abstract: Our university intends to improve the central IT-support for management of research data. A core demand is
supporting FAIR guiding principles. In order to make research data findable for future research projects, an
application for the creation and storage of structured meta data for research data was developed. The created
meta data repository enable creating, maintaining and querying research data based on discipline-specific
properties. Since large number of meta data standards exist for different scientific domains, technologies from
the areas of Linked Data and Semantic Web are used to process and store meta data. This work describes
the requirements, the design and the implementation a the meta data application that can be integrated into
existing research work flows and gives an overview of technical backgrounds used for creating the meta data
repository.

1 INTRODUCTION

Within a research data management system we in-
tend to create IT services allowing researchers to
store, retrieve and work with research data. Since re-
search data is fundamental for scientific knowledge,
one challenge therefore is the long-term storage and
availability for re-use within future research projects.
Only preserving the raw data is fairly enough to make
it available to future researchers. In order to endorse
good data management the FAIR Guiding Principles
to support discoverability of scientific data (Wilkin-
son et al., 2016). These principles place requirements
towards both, the actual research data and describing
meta data to allow researchers and their peers the re-
trieval and meaningful interpretation of re-used data.

It is therefore our goal as a university IT-service
provider to foster the creation, consolidation and us-
ability of IT services, resources and infrastructure to
provide additional value to researchers across scien-
tific disciplines. There is a tension between discipline
specific use cases show how tailored, decentralized
IT-systems can support scientific processes (Kirsten,
Kiel, Wagner, Rühle, and Löffler, 2017; Curdt et al.,
2016) and approaches focusing on generic and cen-
tralized support of research process not accounting for

a https://orcid.org/0000-0003-3175-0659

discipline-specific needs (Van Garderen, 2010; Kraft
et al., 2016). Discipline-specific services often pro-
vide higher value to the researcher, however generic
systems offer higher scalability. To combine both
scalability and individualization we established a dis-
tributed infrastructure that offers services from vari-
ous providers to build a generic system that can be
integrated into discipline-specific research processes
(Politze, Decker, and Eifert, 2017).

While working with research data, each data set
can be processed in different environments that de-
fine its visibility and accessibility to researchers and
their peers. The domain model formalizes that re-
search data is processed in and transferred between
different domains of access from personal via group
to persistent (Klar and Enke, 2013). Other mod-
els depict research data management as a life cycle
with data passing through different phases of Collec-
tion and Analysis to Preservation and Re-Use (“Re-
search Data Lifecycle”, 2012). The goal of a research
data management system thus is to provide tools for
the researchers to allow transitions between phases
(Schmitz and Politze, 2018). Both models share the
assumption that data is used more actively within ini-
tial phases. Thus, more knowledge about data sets is
available: When research data is produced meta in-
formation like authors, associated research projects
or used instruments are easily available. As the data

Politze, M., Bensberg, S. and Müller, M.
Managing Discipline-Specific Metadata Within an Integrated Research Data Management System.
DOI: 10.5220/0007725002530260
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 253-260
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

253

passes through the life cycle, this implicit knowledge
is often not transferred and is then lost for peers re-
using the data. In accordance to the FAIR guiding
principles, it is our goal to retain this information.
Meta data associated to data sets can provide imme-
diate value if used by peers within a research group.
Additionally, meta data allows data sets to cross do-
main boundaries to long-term storage and persistence
and forms the basis for re-use of data in future con-
texts.

Bibliographic information like authorship, de-
scriptions or licensing are widely standardized by
meta data schemas like the DataCite Metadata
Schema (DataCite Metadata Working Group, 2017).
Looking at the diverse disciplines of research at
the university, shows that each of these disciplines
poses its own discipline-specific requirements to-
wards meta data. Recording discipline-specific meta
data within an integrated system used across dis-
ciplines thus demands a high flexibility from data
models. Models provided by linked data applica-
tions give exactly this flexibility by describing digital
(and also real world) objects using triples of the form
(sub ject, predicate,ob ject).

Based on a previously developed linked data
model (Politze and Decker, 2016), our goal thus is to
provide an integrated application allowing researchers
of various disciplines to describe their research data
using discipline-specific meta data schemas and trace
their data sets along the research data life cycle
(RDLC). The application should integrate into the ex-
isting research data management system and research
processes within research groups. Considering the
data stored in this kind of repository, we therefore aim
at building a queryable knowledge graph, as proposed
by Galkin et al. (Galkin, Auer, Vidal, and Scerri,
2017) or Decker (Decker, 2017), to make meta data
accessible and interoperable and thus make research
data findable within and across organization bound-
aries.

2 SOFTWARE ARCHITECTURE

The application and work flows are designed to fit
into an existing decentralized IT-service landscape.
Even though services are provided by different or-
ganizations within the university, they share a com-
mon understanding and nomenclature in terms of the
supported business processes. This is achieved by in-
troducing abstraction layers (see Fig. 1). Individual
services are merged to consistent minimal valuable
processes that are in turn used by different applica-
tions. The connection and integration of the systems

T
ra

n
sc

en
d

en
t

A
u

th
o
ri

za
ti

o
n

 &

S
ec

u
ri

ty
 L

a
y

er

Integrated Services
Local

Data

Integrated Business-Processes

PublishArchiveCollab.
Sync &

Share
Manage …

Discipline-Specific Applications

Installed

Applications

Connected

Instruments
Web Applications …

Meta Data:

Knowledge Graph

Data:

Object Store

Identifiers:

PID
…

REST Interface

REST Interface

Figure 1: Overview of the integrated system landscape sup-
porting research processes.

is governed by a transcendent layer providing means
for security and authorization.

2.1 Data Model

The Resource Description Format (RDF)
data model defines triples of the form
(sub ject, predicate,ob ject) that form graphs of
connected entities. In order to identify data sets
within the graph they need an Internationalized
Resource Identifiers (IRI) compatible identifier, that
allows the flexibility to follow the data along the
RDLC. While several ways to create such Persistent
Identifier (PID) exist, the application uses the EPIC
service that in turn is based on the Handle system
(Kálmán, Kurzawe, and Schwardmann, 2012). EPIC
allows creation of PIDs for data set as soon as they
are created. Additional key-value-pairs that are part
of the PIDs’ meta data allow further tracing the
state of data sets. Following this idea, every data
set is identified by the URI of the PID connecting
data and meta data. Data sets thus are nodes in a
graph of meta data forming a knowledge graph of
linked resources (Bizer, Heath, and Berners-Lee,
2009). RDF offers several serialization formats
like Turtle (Beckett, Berners-Lee, Prud’hommeaux,
and Carothers, 2014), RDF/XML (Gandon and
Schreiber, 2014) and JSON-LD (Sporny, Longley,
Kellogg, Lanthaler, and Lindström, 2014) that
are well suitable for conveying machine readable
information. It is unlikely that researchers author
meta data in these formats due to their complexity.
To provide researchers with a more comprehensive
interface, matching discipline-specific requirements
and restricted the expressiveness, for each discipline
this is done by gradually identifying the following
entities1:

Vocabularies provide sets of terms and their rela-
tionships. Relations are often hierarchical but can also
present other structures. Terms refer to digital or real

1Unfortunately these entities are ambivalently used
throughout literature and contexts. Within this paper these
definitions are followed.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

254

world objects or any other type of concept, includ-
ing but not limited to concepts like numbers, texts or
dates.

Schemas are sets of properties that make up the
meta data and their relationships. A property is an
attribute that describes a certain detail of an entity.
The range of each these properties is a vocabulary.

Standards additionally define a set of required at-
tributes from one or more schemas in order to fulfill
the standard.

(Application) Profiles select properties from mul-
tiple schemas and combine them to discipline-specific
templates. Profiles may further narrow the range of
properties or define default values used in provided
interfaces. Often profiles are used to extend standards
with additional properties.

Meta Data (Sets) then are instances of a profile
describing a real world object or a digital data set.

By creating application profiles based on common
schemas and standards, meta data remain compatible
and form a consistent graph. There exist several lan-
guages to define requirements towards RDF graphs
like the SHACL (Knublauch and Kontokostas, 2017)
or SHEX (Prud’hommeaux, Boneva, Labra Gayo, and
Kellogg, 2017) and these are in principle feasible for
building profiles. Without loss of generality, a first ap-
proach for profiles are described in RDF. RDF already
supplies general properties like label and range ,
but additional properties need to be defined to sup-
port consistency or increase usability of generated in-
terfaces, for example: position defines the order in
which properties appear, calculatedValue defines a
template for a default value.

As an illustrative and simplified example, the
code below shows such a profile that combines prop-
erties from two meta data schemas, Dublin Core
(ISO, 2017) and the Core Scientific Metadata Model
(Matthews and Fisher, 2013):
dc:creator

··a·owl:AnnotationProperty·;

··md:calculatedValue·"{ME}"·;

··md:position·1;

··rdfs:label·"Lab·Technician"@en·;

··rdfs:range·rdfs:Literal·.

dc:title

··a·owl:AnnotationProperty·;

··md:position·2;

··rdfs:label·"Description"@en·.

dc:subject

··a·owl:AnnotationProperty·;

··rdfs:range·<http://udcdata.info/029653>·;

··md:position·3;

··rdfs:label·"Subject·Area"@en·.

:solute

··rdfs:subPropertyOf·

csmd:sampletype_molecularFormula·;↪→

Store

research data

Gather

research data

Register

meta data

Validate

conformity

Save

meta data

Create

PID

Set meta

data URL

Set data

URL

Researcher
or

Connected
Instrument

Storage
Service

MetaData
Service

PID
Service

Figure 2: Integration of meta data management in a research
data management process.

··a·owl:AnnotationPropery·;

··md:position·4;

··rdfs:label·"Solute"@en·.

:solvent

··rdfs:subPropertyOf·

csmd:sampletype_molecularFormula·;↪→
··a·owl:AnnotationPropery·;

··md:position·5;

··rdfs:label·"Solvent"@en·.

The code defines meta data properties e.g.
creator . Some attributes of a property are defined or

overridden in the profile: calculatedValue , label

and range . The label for the property is overrid-
den to be Author instead of Creator . The range is
defined as Literal , meaning any kind of plain text.
The calculatedValue is converted at application run
time to the name of the user as a default value for the
property. In the case of subject the range is defined
by referencing a fixed sub set of terms from the uni-
versal decimal classification vocabulary. solute and
solvent finally define two discipline-specific prop-

erties used to describe conditions chemical experi-
ment.

To satisfy requirements of researchers for
discipline-specific support, profiles need to be care-
fully crafted for each discipline to select adequate
meta data properties. Researchers therefore are to be
guided by librarians and information scientists before
using the application. On the long run this allows the
creation of a consistent ontology the super set of all
profiles, schemas and vocabularies.

Each data set is assigned a PID allowing reso-
lution using the handle system. As such, PIDs can
be transferred between applications and are then en-
riched using application specific capabilities. A pro-
cess, as shown in Fig. 2, is established within the in-
tegrated research data management system. This pro-
cess allows distributed handling of data sets. Appli-
cations only take a specific role like handling data or
meta data. Applications store their states within the
PIDs’ meta data by which it becomes accessible in
the process. Allowing to trace data sets across differ-
ent phases of the RDLC.

Managing Discipline-Specific Metadata Within an Integrated Research Data Management System

255

2.2 Functional Requirements

The application will be prototyped as an HTML5
web application. While this provides an easy-to-use
way for researchers to manually register meta data,
future use-cases should instead use a RESTful API
that allows automation and integration into digital re-
search work flows. Nevertheless, the prototype will
use AJAX-Requests and thus the same API intended
for future applications. Depending on the affiliation
of the researcher, different profiles can be selected.
These are used to create a user interface (UI) and to
validate the input provided by the researcher. Addi-
tionally, to the entered meta data, the application also
records the users’ affiliation and selected profile. The
API and prototype therefore need to support the fol-
lowing use cases:

F1: Retrieve Available Profiles: The application
should present the user a list of the available profiles.
The available profiles depend on the affiliation of the
user.

F2: Save New Meta Data Set: The application
should validate meta data according to a profile and
save them to the data store. Meta data is converted
from a simplified JSON serialization to RDF. Data
sets are associated with a PID that identifies the data
set.

F3: Metadata Visibility: A level of visibility for
meta data allows users to make meta data publicly
findable, to keep it for a research group or just pri-
vately for themselves.

F4: Show All Own Meta Data Sets: All meta data
sets created by the user can be retrieved by the appli-
cation.

F5: Edit Stored Meta Data Set: User who created
a meta data set can also edit the meta data. If the meta
data set is visible all researchers within the research
group should be able to edit the meta data.

F6: Query Stored Meta Data Sets: Researchers
can search the data store to find data sets according
to a query. Queries should allow searching within
meta data properties and account for hierarchical rela-
tionships defined by vocabularies. As in F2, the API
should be based on a comprehensive JSON serializa-
tion that is translated to conform the RDF data store.

F7: Suggestions for Vocabulary Ranges: While
searching and editing meta data users may require
suggestions for ranges defined by a vocabulary. The
application needs to give human readable suggestions
according to ranges defined by profiles.

F8: Render Meta Data form based on Schema:
The prototype should provide the functionality to cre-
ate an input form from a profile as an easy-to-use way
to store meta data.

Terms & Vocabularies

Meta data sets

Profile labels and

affiliations

Properties from all

meta data schemas

default properties

profileN

Profile overriding meta

data schemas

profile1

…

Profile overriding meta

data schemas

…

Figure 3: Different contexts encapsulate meta data and def-
inition of profiles.

2.3 Non-functional Requirements

The prototype should ensure that it can be integrated
within the RDLC and that meta data sets can be trans-
ferred data across domains:

N1: Internationalization: By default all terminol-
ogy should be presented in English. However, the
application should allow switching the language and
support multi language profiles and meta data sets.

N2: Compatibility to DCAT: The Data Catalog
Vocabulary (DCAT) (Maali and Erickson, 2014) is
(according to the definition above) a meta data stan-
dard to allow interoperability of published data cat-
alogs. Meta data sets registered by the application
should be able to be mapped to DCAT to allow future
integration with data repositories.

N3: Dublin Core as Cross Discipline Standard:
Well established cross discipline standards should be
adhered. For example DCAT and Data Cite reuse
fields from the Dublin Core meta data schema (ISO,
2017). Assuring that meta data is compatible to these
standards allows seamless integration with applica-
tions in other domains of the RDLC.

2.4 Database Model

For the database management system Virtuoso is used
as it allows to efficiently store and retrieve RDF
triples. Virtuoso offers a SPARQL (“SPARQL 1.1
Overview”, 2013) endpoint to query or manipulate
the stored triples. Within one database instance Vir-
tuoso supports storing multiple graphs. This property
of Virtuoso is used to save different profiles as shown
in Fig. 3.

Queries concerning meta data are run against the
default graph holding information about meta data,

definitions of terms, vocabularies and labels of de-
fined profiles. Additionally, the default graph holds
information about the association of profiles with af-
filiated research groups.

A properties graph contains the definition of all
properties from schemas and therefore forms a super

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

256

set of all defined profiles. An explicit record of all
properties, labels and potential ranges defined by any
of the profiles is necessary to allow more efficient
computation of suggestions needed for query inter-
faces.

Every profile is an additional graph. This gives the
flexibility to re-use properties from the properties
graph but also allows narrowing down ranges or over-
riding of properties for discipline-specific applica-
tions. All profiles are associated with a URI identify-
ing their current version. The set of profiles therefore
forms a vocabulary in the default graph. Likewise,
also affiliations are defined as a vocabulary to define
the ownership of profiles and meta data.

3 IMPLEMENTATION

To allow integration within already existing digital re-
search work flows, the main focus of the application
lies on the implementation of a RESTful API. This
API provides a discipline specific interface for the re-
searchers and translates calls to RDF and SPARQL
accordingly.

3.1 RESTful API

To create new meta data, the API endpoint Create
accepts the meta data in JSON-LD as well as a sim-
plified JSON serialization. In the simplified format all
triples within the meta data are assumed to have the
data set as subject. If no PID is specified as an URL
for the data set a new PID is created and used. Within
the simplified JSON serialization triples are therefore
reduced to pairs of (predicate,ob ject). Rather than
using the URIs defining the predicates, substitution of
properties by the labels defined in the profile allows
submitting meta data sets as simple JSON key-value-
pairs. Basing on the profile in the example above the
endpoint accepts a document of the form:
{

····"Description":·"Solving·salt·in·water",

····"Lab·Technician":·"John·Doe",

····"Subject·Area":·"http://udcdata.info/030042",

····"Solute"·:·"NaCl",

····"Solvent"·:·"H2O"

}

If the provided values exactly match with the URI
of an object within the range of the property, this ob-
ject is used. Otherwise, the back end will then retrieve
the most likely properties based on similarity accord-
ing to the labels by querying the graph of the profile
using a SPARQL query:

SELECT·?s·WHERE·{

····GRAPH·<profileN>·{

········?s·rdf:label·?label·.

········FILTER·REGEX(STR(?label),·"Value",·"i")·.

····}

}

In order to retrieve a list of all available schemas,
the GetAllProfiles endpoint retrieves a list of pro-
files available for the affiliation of the user. The
GetProfile endpoint then retrieves a single profile

with full information about all used properties.
The API endpoint GetAll allows to retrieve all

stored meta data sets. The method works uses an ad-
ditional properties to assess the affiliation and visibil-
ity of the meta data. To achieve this behaviour the
back end translates the request into a SPARQL query:
SELECT·?s·?title·?author·WHERE·{

····GRAPH·<default>·{

········?s·dc:title·?title·.

········?s·dc:creator·?author·.

········?s·md:hasOwner·?owner·.

········?s·md:publishMetadata·?visibility·.

········?s·md:hasAffiliation·?affiliation·.

········FILTER·(

············?owner·=·"#U#"·||

············?visibility·=·md:metadataIsPublic·||

············?visibility·=·md:metadataIsProtected·&&

············?affiliation·=·#A#

········)

····}

}

Where the placeholders #U# and #A# are re-
placed with identifications of the user and the affili-
ations. The GetAll endpoint then provides URIs of
all described data sets visible for the user. Retrieval
of a single meta data set identified by its URI is then
performed by the Get endpoint.

Especially for vocabulary ranges, it is necessary
to get valid terms for a property. The GetRange end-
point therefore allows to retrieve those terms match-
ing a query. Especially for hierarchies vocabularies
sometimes use different ways to describe the relation-
ship between the terms. In order to resolve hierarchies
GetRange uses the following strategies:

RDF Schema Class Hierarchies: Given a class C
all other classes ?c that transitively satisfy the condi-
tion ?c rdfs:subClassOf C are within the range.

RDF class instantiations or DCMI Abstract
Model members: Given a class C all terms ?t that
satisfy one of the conditions ?t rdf:type C or
?t dcam:memberOf C are within range.

Simple Knowledge Management Organization
System (SKOS) Instances (Miles and Bechhofer,
2009): Given an skos:Concept C all other
terms ?t transitively satisfying the the condition
?t skos:narrower C are within range.

Managing Discipline-Specific Metadata Within an Integrated Research Data Management System

257

In order to transitively resolve matching terms, the
SPARQL query additionally needs the TRANSITIVE
option. In the case of SKOS the query with place-
holders for the given Concept #C# and a query #Q#
looks as follows:
SELECT·DISTINCT·?subject·STR(?label)·AS·?label·WHERE{

····?subject·skos:prefLabel·?label

····{

········SELECT·?subject·?y·WHERE·{

············GRAPH·<default>·{

················?subject·skos:broader·?y

············}

········}

····}

····OPTION(TRANSITIVE,·t_in(?y),·t_out(?subject))

····FILTER(?y·=·#C#)·.

····FILTER·regex(STR(?label),·"#Q#",·"i")

}

After storing meta data sets in the repository, re-
searchers furthermore are able to retrieve data sets
based on the provided meta data. The Find endpoint
queries both, meta data sets created by the user and
public meta data sets according to their visibility and
retrieves a list of matching meta data sets according to
a query. This query can either be a full text search or
conform to a query syntax that allows targeting single
meta data fields. The placeholder #Q# creates such a
full text query:
SELECT·?s·?title·?author·WHERE·{

····GRAPH·<default>·{

········?s·dc:title·?title·.

········?s·dc:creator·?author·.

········?s·?p·?o·.

········FILTER·REGEX(STR(?o),·"#Q#",·"i")·.

····}

}

A little more complex queries can be performed
using a JSON query language supplying labels and
respective values in the form
{

····"property1":·"...",

····"property2":·"..."

}

The algorithm for matching properties that was al-
ready discussed for the Create endpoint is used to
select properties from the profile and a dynamic query
is created to target the specified properties. At the mo-
ment the Find endpoint only allows logical conjunc-
tion of properties. More advanced queries need an
extension of the simplified query language or require
the user to formulate them directly in SPARQL.

To build an interface for the user that allows build-
ing this kind of queries, the GetProperties endpoint
retrieves a list of properties from the properties
graph according to a query. Since properties can have
multiple labels within different profiles, all labels are
retrieved, however, the label provided by the meta
data schema is highlighted.

Table 1: RDF ranges mapped to HTML5 field types.

RDF Range HTML5 Type

rdfs:Literal text

xml:dateTime date

md:metadataVisibility radio

none text

other select

The requirements towards internationalization re-
sult in an optional parameter to supply the language
for all endpoints discussed above. Since RDF sup-
ports internationalization, the provided language, for
example en or de , can then be directly passed to the
data base within a sparql statement. RDF allows the
specification of labels with language classifiers:
dc:title

··a·owl:AnnotationProperty·;

··rdfs:label·"Title"@en,·"Titel"@de·.

When accesing labels from a SPARQL query a fil-
ter can be supplied to access only labels of a specific
language:
SELECT·STR(?label)

WHERE·{

····?s·rdfs:label·?label·.

····FILTER·(LANG(?label)·=·"en")

}

3.2 HTML5 Prototype

With the endpoints as a back end the prototype is re-
quired to build a presentation layer that can be eas-
ily used by researchers to manually register data sets
to the system. Depending on label and range of
the properties selected in the profile, the UI should
present different input fields. For presentation within
an web application Table 1 defines the mapping be-
tween range and HTML5 fields type .

Especially the fields of the type select require
dedicated attention. These fields present the re-
searcher suggestions based on the range of the prop-
erty. Each term is therefore identified by its URI that
can be used to link the term definition within the meta
data set. Instead of displaying the URI to users its
label should be used. Researchers need to be able to
submit a query to find a desired term based on its la-
bel. This is done using the GetRange endpoint. A
fully rendered meta data form is shown in Fig. 4.

The prototype also features a basic search inter-
face allowing researchers to retrieve stored meta data
sets. The interface lets users pick from a list of avail-
able properties and therefore allows building a query
that can be processed by the find endpoint. The
resulting meta data sets and their URIs are then dis-
played to the users.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

258

Figure 4: Screenshot of genreated UI for a meta data
schema.

Table 2: Block coverage by unit tests.

Area Coverage

SPARQL 95.92% 47/49

RDFWrapperSchema 100.00% 68/68

RDFWrapperMetadata 91.32% 442/484

API 85.50% 171/200

MetadataSchema 94.44% 34/36

Metadata 92.65% 189/204

Total 91.35% 951/1041

4 FIRST EVALUATION RESULTS

The back end application has been tested using an
extensive set of automated white box tests. The test
cases have been developed for various external and in-
ternal methods and cover both error and normal cases.
Table 2 shows that with 91.35% block coverage the
current testing methodology achieves satisfying re-
sults.

The biggest draw back of the current application is
the necessity of defining application profiles in RDF.
While RDF powers the flexibility of the application it
has shown to be a quite complex task to find adequate
meta data schemas and use them to build the neces-
sary profiles. Currently this is done by a joint team of
the university library and the IT Center forming a ser-
vice unit to support the researchers. To further elab-
orate the application it is necessary to at least lower
the threshold of building profiles based on available
shemas without in depth knowledge of the underlying
semantic data model.

To allow interoperability with other repositories it
is possible to map the registered meta data to the data
model of DCAT. DCAT therefore defines three main
classes: Catalog, Dataset, Distribution and Catalo-
gRecord that can be mapped as follows:

Catalog: The application defines multiple cata-
logs. Each researcher manages a private catalog. By
associating each meta data set with a affiliation a cat-
alog for each organization is created. Additionally,

there is the public catalog that contains all meta data
sets that are publicly visible. A meta data set can be
part of multiple catalogs.

CatalogRecord: For each meta data set some
properties like the affiliation and user are automat-
ically assessed. This information maps to catalog
records.

Dataset: All properties provided by the researcher
form the data set. This includes minimal information
like author and title but also other discipline-specific
properties defined in the profile.

Distribution: The PID used as an identifier allows
resolving the research data. The integrated character
of the system allows gathering necessary information.
If the data is accessible this can be retrieved from ad-
ditional properties of the PID.

5 CONCLUSION

The presented application is a building block for a
continuous support of the RDLC. Central leverage
point for the integration into the research work flow
is the usage of PID identifiers throughout the research
process. PIDs and meta data are therefore not only
used as a virtual reference for the data set, but are also
used to store references to the data set and directly
query and retrieve them using standardized and open
protocols within the integrated research data manage-
ment system at our university.

By setting a minimal requirement towards the pro-
files, the application fosters FAIR guiding princi-
ples: Centrally collecting meta data and making pub-
lic meta data sets queryable by local and external re-
searchers using simplified JSON and complex, stan-
dardized SPARQL endpoints makes the data sets find-
able and meta data accessible. All data sets are addi-
tionally assigned a PID to clearly identify them and to
be able to reference data sets throughout the research
process. Using the linked data model based on RDF
also allows sharing and distributing profiles and meta
data schemas according to the FAIR guiding princi-
ples.

The application for creating and querying meta
data was successfully launched with several pilot
users at our university and is slowly introduced to
other research groups. It currently fulfills the dis-
cussed requirements. Discipline-specific profiles that
base on meta data schemas are formulated in RDF
and are then made available to the researchers via
the RESTful API and user interface. Researchers
can make use of these easy-to-use interfaces to in-
tegrate the registration of meta data sets at early
phases within the RDLC. We have shown that our ap-

Managing Discipline-Specific Metadata Within an Integrated Research Data Management System

259

proach to save and manage discipline-specific meta
data within an discipline-agnostic repository and
database can be successfully implemented as central
and scalalabe service at our university.

REFERENCES

Beckett, D., Berners-Lee, T., Prud’hommeaux, E., &
Carothers, G. (2014). RDF 1.1 Turtle. W3C. Re-
trieved June 10, 2018, from https://www.w3.org/TR/
turtle/

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked
Data - The Story So Far. International Journal on
Semantic Web and Information Systems, 5(3), 1–22.
doi:10.4018/jswis.2009081901

Curdt, C., Hoffmeister, D., Jekel, C., Udelhoven, K.,
Waldhoff, G., & Bareth, G. (2016). Implementa-
tion of a centralized data management system for
the CRC Transregio 32 ’Patterns in Soil-Vegetation-
Atmosphere-Systems’. In C. Curdt & C. Wilmes
(Eds.), Proceedings of the 2nd Data Management
Workshop (pp. 27–33). Kölner Geographische Ar-
beiten. doi:10.5880/TR32DB.KGA90.6

DataCite MetadataWorking Group. (2017). DataCite Meta-
data Schema Documentation for the Publication and
Citation of Research Data v4.1. doi:10.5438/0014

Decker, S. (2017). Rethinking access to Scientific
Knowledge: Knowledge Graphs. Retrieved Febru-
ary 3, 2018, from https://www.linkedin.com/
pulse/rethinking-scientific-knowledge-graphs-stefan-
decker/

Galkin, M., Auer, S., Vidal, M.-E., & Scerri, S.
(2017). Enterprise Knowledge Graphs: A Seman-
tic Approach for Knowledge Management in the
Next Generation of Enterprise Information Systems.
In Proceedings of the 19th International Confer-
ence on Enterprise Information Systems (pp. 88–98).
doi:10.5220/0006325200880098

Gandon, F., & Schreiber, G. (2014). RDF 1.1 XML Syn-
tax. W3C. Retrieved June 10, 2018, from http://
www.w3.org/TR/rdf-syntax-grammar/

ISO. (2017). Information and documentation - The Dublin
Core metadata element set. Geneva, Switzerland:
ISO.

Kálmán, T., Kurzawe, D., & Schwardmann, U. (2012).
European Persistent Identifier Consortium - PIDs für
die Wissenschaft. In R. Altenhöner & C. Oellers
(Eds.), Langzeitarchivierung von Forschungsdaten
(pp. 151–164). Berlin, Germany: Scivero Verl.

Kirsten, T., Kiel, A., Wagner, J., Rühle, M., & Löffler, M.
(2017). Selecting, Packaging, and Granting Access
for Sharing Study Data. In M. Eibl & M. Gaedke
(Eds.), INFORMATIK 2017: Digitale Kulturen (pp.
1381–1392). GI Edition Lecture Notes in Informatics
Proceedings (LNI). doi:10.18420/in2017_138

Klar, J., & Enke, H. (2013). Projekt RADIESCHEN:
Rahmenbedingungen einer disziplinübergreifenden
Forschungsdateninfrastruktur, Report “Organisation
und Struktur”. doi:10.2312/RADIESCHEN_005

Shapes Constraint Language (SHACL). (2017). W3C. Re-
trieved June 10, 2018, from https://www.w3.org/TR/
shacl/

Kraft, A., Razum, M., Potthoff, J., Porzel, A., Engel, T.,
Lange, F., . . . Furtado, F. (2016). The RADAR Project
- A Service for Research Data Archival and Publica-
tion. ISPRS International Journal of Geo-Information,
5(3), 28. doi:10.3390/ijgi5030028

Data Catalog Vocabulary (DCAT). (2014). W3C. Re-
trieved June 10, 2018, from http://www.w3.org/TR/
vocabdcat/

Matthews, B., & Fisher, S. (2013). CSMD: the Core Scien-
tific Metadata Model. Retrieved June 10, 2018, from
http://icatproject-contrib.github.io/CSMD/csmd-
4.0.html

SKOS Simple Knowledge Organization System Refer-
ence. (2009). W3C. Retrieved June 10, 2018, from
https://www.w3.org/TR/skos-reference/

Politze, M., & Decker, B. (2016). Ontology Based Se-
mantic Data Management for Pandisciplinary Re-
search Projects. In C. Curdt & C. Wilmes
(Eds.), Proceedings of the 2nd Data Manage-
ment Workshop. Kölner Geographische Arbeiten.
doi:10.5880/TR32DB.KGA96.10

Politze, M., Decker, B., & Eifert, T. (2017). pSTAIX - A
Process-Aware Architecture to Support Research Pro-
cesses. In M. Eibl & M. Gaedke (Eds.), INFOR-
MATIK 2017: Digitale Kulturen (pp. 1369–1380).
GI Edition Lecture Notes in Informatics Proceedings
(LNI). doi:10.18420/in2017_137

Shape Expressions Language 2.0. (2017). Retrieved from
http://shex.io/shex-semantics/

Research Data Lifecycle. (2012). Retrieved February 13,
2019, from https://www.ukdataservice.ac.uk/manage-
data/lifecycle

Schmitz, D., & Politze, M. (2018). Forschungsdaten man-
agen – Bausteine für eine dezentrale, forschungsnahe
Unterstützung. o-bib. Das offene Bibliotheksjournal,
5(3), 76–91. doi:10.5282/o-bib/2018H3S76-91

SPARQL 1.1 Overview. (2013). W3C. Retrieved June
10, 2018, from https://www.w3.org/TR/sparql11-
overview/

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., &
Lindström, N. (2014). W3C. Retrieved June 10, 2018,
from https://www.w3.org/TR/json-ld/

Van Garderen, P. (2010). Archivematica: Using mi-
croservices and open-source software to deliver a
comprehensive digital curation solution. In A.
Rauber (Ed.), Proceedings of the 7th International
Conference on Preservation of Digital Objects (pp.
145–149). Books@ocg.at. Vienna, Austria: Österre-
ichische Computer Gesellschaft.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J.
J., Appleton, G., Axton, M., Baak, A., Mons, B.
(2016). The FAIR Guiding Principles for scientific
data management and stewardship. Scientific data, 3.
doi:10.1038/sdata.2016.18

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

260

