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Abstract: Internet traffic is comprised of data flows from various applications with unique traffic characteristics. For
many cloud applications, end-to-end latency is a primary factor affecting the perceived user experience. As
packet losses cause delays in the communication they impact user experience, making efficient handling of
packet losses an important function of transport layer protocols. Multipath TCP (MPTCP) is a modification to
TCP that enables simultaneous use of several paths for a TCP flow. MPTCP is known to improve throughput.
However, the performance of MPTCP is not optimal when handling certain loss scenarios. Efficient packet loss
recovery is thus important to achieve desirable flow completion times for interactive cloud-based applications.
In this paper we evaluate the performance of MPTCP in handling tail losses using traffic traces from various
cloud-based applications. Tail losses, losses that occur at the end of a flow or traffic burst, are particularly
challenging from a latency perspective as they are difficult to detect and recover in a timely manner. Tail
losses in TCP are handled by using a tail loss probe (TLP) mechanism which was adapted to MPTCP from
TCP. We investigate the performance of TLP in MPTCP, comparing the standard implementation to a recently
proposed, less conservative approach. Our experimental results show that a less conservative implementation
of TLP performs significantly better than the standard implementation in handling tail losses, reducing the
average burst completion time of cloud based applications when tail loss occurs by up to 50% in certain cases.

1 INTRODUCTION

Cloud applications contribute to a significant amount
of the Internet traffic. The interactive nature of many
cloud-based applications such as Google Docs and
Bing Maps make them sensitive to latency. User ex-
perience is significantly affected in such applications
when data delivery is delayed. Data delivery between
end-hosts is often carried out by reliable transport
layer protocols such as Transmission Control Proto-
col (TCP) (Postel, 1981). The evolution of transport
layer protocols in pursuit of performance improve-
ment, led to an extension of standard TCP that enables
data transfer using multiple flows known as Multipath
TCP (MPTCP) (Ford et al., 2013). MPTCP improves
end-to-end throughput of connections with simultane-
ous use of multiple paths between end points. How-
ever, application perceived latency is often affected
more by losses in transmission than throughput. Thus,
a transport protocol that can offer better loss recov-
ery and throughput is an optimal choice for interactive
cloud-based applications.

Applications perceive multiple MPTCP subflows
as a single TCP flow. To ensure transparency, MPTCP
handles several functions such as scheduling, packet

reordering, and loss recovery. This paper focuses
on handling losses in a tail loss scenario, that is
identified as a major cause of higher delays in short
flows (Dukkipati et al., 2013), especially due to the
way in which the lost packets are recovered. Tail
losses are packet losses that occur at the end of a
flow or a traffic burst. TCP handles tail losses using a
technique known as tail loss probe (TLP) (Dukkipati
et al., 2013). MPTCP applies TLP for each subflow
independently in its implementation and takes a con-
servative approach when it comes to loss recovery and
avoids using multiple subflows for recovery probes. A
recent approach in (Yedugundla et al., 2017) reduces
latency by improving the loss recovery in the event
of tail loss using MPTCP, and illustrates benefits in
certain cases using synthetic traffic.

Results achieved with synthetic traffic provide a
trend in an ideal network condition and does not con-
sider the real world adverse affects of network tech-
nologies. In this paper, we evaluate the latency per-
formance of both approaches using real world cloud
based application traffic. We consider a set of traf-
fic scenarios from Google Maps, Google Docs and
Netflix to cover a range of different traffic patterns
in cloud-based applications. Our experiments sug-
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gest that the less conservative approach proposed
in (Yedugundla et al., 2017) can provide a significant
latency reduction in the considered path failure sce-
narios.

The rest of the paper is organized as follows. In
Section 2, we discuss the background to loss recov-
ery in TCP. The related research on improving latency
with loss recovery is available in Section 3. Section 4,
provides a detailed explanation of tail loss handling
in MPTCP. In Section 5, we discuss the MPTCP ex-
periment setup and the traffic scenarios used in the
experiments. Section 6, provides results on the la-
tency performance of the MPTCP TLP variants that
are considered for evaluation. We conclude the paper
in Section 7 with a summary of the results and future
research directions.

2 BACKGROUND

Flow completion time is one of the metrics that deter-
mines the quality of an interactive flow or a latency
sensitive application. Retransmission schemes affect
the flow completion time. TCP recovers lost packets
by retransmitting the same. If an acknowledgement
(ACK) for a sent packet is not received in a certain
amount of time, a retransmission timeout (RTO) oc-
curs and the packet is resent. Fast retransmit uses du-
plicate ACKs to detect packet loss faster and retrans-
mits a previously sent and unacknowledged packet
once a certain number (i.e., three) of duplicate ACKs
have been received. TCP has to rely on an RTO if the
number of duplicate ACKs are insufficient to trigger a
retransmission. On an RTO event, TCP retransmits all
unacknowledged packets. The RTO value is set rather
conservatively, usually several times of the round-trip
time (RTT) and subsequently updated based on the
RTT. Limited Transmit (Allman et al., 2001), SACK-
based fast recovery (Blanton et al., 2012), and Early
Retransmit (Allman et al., 2010) have improved the
retransmission strategies for TCP. These algorithms
help triggering fast retransmit when the congestion
window is small and insufficient to create triple du-
plicate ACKs.

When there is enough data to transmit from the
sender, the packets sent after the lost packet trigger
duplicate ACKs. However, if the loss occurs at the
end of a packet flow, TCP has to wait for an RTO to
retransmit the lost packets. Tail Loss Probe (TLP) is
a loss recovery mechanism proposed in (Flach et al.,
2013), to recover tail losses using a probe mecha-
nism instead of waiting for an RTO event. A probe
is normally the last transmitted packet or an unsent
packet, with a shorter timeout value than the RTO,

called as probe timeout (PTO). The value of PTO is
computed to be more than the RTT and less than the
RTO to avoid spurious retransmissions, which is an
issue with smaller RTO values. Moreover, an RTO re-
duces the congestion window and triggers a slow-start
unlike PTO. TLP provides significant improvement in
tail loss scenarios and is available in the Linux TCP
implementation.

In TCP, the retransmission mechanisms use se-
quence numbers to identify lost packets and handle
retransmissions. MPTCP has two levels of sequence
numbers to support efficient data transfer, namely
data sequence numbers and TCP sequence numbers.
Data sequence numbers are for the end-to-end data
transfer and TCP sequence numbers are for an indi-
vidual flow data sequence. Within a subflow, there
is an association between data sequence numbers and
TCP sequence numbers. A loss occurring in an indi-
vidual TCP flow corresponds to a loss in end-to-end
data. Multipath TCP, as an extension of TCP, uses
the TCP retransmission mechanism. However, the in-
teraction between the two levels makes the problem
of retransmitting more challenging than in TCP. The
dual sequence numbering enables MPTCP to respond
to loss of packets by retransmitting the lost packets
on an alternate path. The Linux implementation of
MPTCP uses a set of retransmission heuristics to han-
dle retransmissions. In addition to the normal TCP re-
transmission on the subflow level, the data outstand-
ing on a timed-out subflow is rescheduled for trans-
mission on a different subflow using timeout as the
indicator. Fast retransmit on a subflow does not trig-
ger retransmission on another subflow.

3 RELATED WORK

Prior research on MPTCP retransmission techniques
can be classified as conservative or redundant. Use
cases of MPTCP, such as simultaneous use of WLAN
and 4G, in general involve a degree of asymmetry,
leading to subflows with different delay character-
istics. Experimental studies such as (Yedugundla
et al., 2016) investigate the latency performance of
MPTCP using various traffic types and path asym-
metry. In cases with significant delay differences
between paths, opportunistic retransmission (Raiciu
et al., 2012) improves the latency by using the fastest
path to retransmit the data originally sent on another
path. Authors of (Chen et al., 2016), provide a mech-
anism that exploits the path diversity by quickly re-
transmitting on the fastest paths. Such quick re-
transmission comes with a cost of redundant pack-
ets as each individual TCP flow should retransmit al-
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ways as well to follow TCP semantics. Lower la-
tency can be achieved with full redundancy on all
MPTCP paths (Frommgen et al., 2016) at a cost of
network overhead to support interactive applications.
For bursty traffic, scheduling packets based on loss
and delay can improve latency (Dong et al., 2017).
The MPTCP standard (Ford et al., 2013) suggests a
more conservative approach, that retransmits the lost
packets on another path only in the case of an RTO.
Authors in (Shin et al., 2016) argue that the calcula-
tion of RTO for MPTCP flows should include the in-
terface characteristics to improve loss recovery time.
A rapid retransmission scheme that uses the mono-
tone increasing packet sequence to detect lost packets
was proposed in (Wang et al., 2016). This method was
experimentally proven to reduce the packet loss re-
covery time to less than 2 RTTs for short flows. A less
conservative approach for MPTCP based on the TLP
mechanism is provided in (Yedugundla et al., 2017)
that reduces flow completion time by retransmitting
loss probes on alternate subflows in the case of PTO.
Results presented in (Yedugundla et al., 2017) are
based on synthetic traffic to mimic tail loss at specific
position in a flow to evaluate the advantage of TLP
over RTO in case of tail losses. The performance of
TLP in real world traffic scenarios is not explored.

In this paper, we evaluate the latency performance
of TLP in MPTCP with the implementation provided
in (Yedugundla et al., 2017). This paper provides a
comprehensive evaluation of flow completion times
based on real world traffic scenarios using testbed ex-
periments. The experimentation mimics traffic simi-
lar to cloud applications when accessed from a mul-
tihomed mobile device that supports MPTCP. A short
discussion on handling tail losses in MPTCP along
with TLP implementation details are provided in the
next Section.

4 HANDLING TAIL LOSSES IN
MPTCP

The aim of Tail Loss Probe (TLP) (Dukkipati et al.,
2013) is to reduce latency of short flows in tail drop
scenarios. Tail drops are in general one or more
packet losses at the end of a flow. TLP reduces latency
by converting retransmission timeouts (RTOs) occur-
ring due to tail losses into fast recovery. If TCP does
not receive any ACKs within two RTTs, TLP trans-
mits one packet. The transmitted packet, also called
as loss probe, can be a new packet or a retransmis-
sion. When there is tail loss, a retransmission timeout
is avoided with the ACK from the loss probe trigger-
ing FACK/early-retransmit based fast recovery. A sin-
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Figure 1: Experimental testbed.

gle packet loss is also a tail loss with length of tail as
one. This is a special case in the TLP specification
that adds 200 ms to the PTO accommodating the case
of delayed ACKs. Accordingly, the TLP implementa-
tion in Linux accounts for the delayed ACK and waits
200 ms before sending a probe. If the computed PTO
is larger than RTO due to the added 200 ms, then the
minimum of PTO and RTO is considered for the PTO.
This can be avoided by tuning the ACKs as discussed
in (Rajiullah et al., 2015).

The current MPTCP implementation in Linux
uses the TCP TLP per flow. Thus, the probe is sent
on the same subflow as the last transmitted packet.
This approach, denoted as TLP-STD throughout this
paper, is more conservative as it does not use the avail-
able other subflows to assist in loss recovery. There is
a less conservative approach proposed in (Yedugundla
et al., 2017), that sends probe packets on multiple
MPTCP subflows. This approach, denoted as TLP-
MP throughout this paper, was proven beneficial in
certain cases through emulations. In this paper, we in-
vestigate this approach further using cloud-based ap-
plication traffic in a real network scenario. We aim
to verify the benefits of using this greedy approach
to loss recovery for tail losses. In the next section,
we discuss the experiment setup and characteristics
of traffic used for the experiments.

5 EXPERIMENT SETUP

The experiment uses traffic from a cloud to mobile
end user session for various cloud-based applications.
The selected applications are Netflix, Google Maps
and Google Docs applications due to their difference
in the traffic types. Netflix traffic is mainly flows with
large bursts that can fill the congestion window of
the first MPTCP subflow allowing the sender to use
two paths in MPTCP. Google Docs traffic has very
short bursts mostly consisting of one packet. Google
Maps traffic has intermediate sized bursts consisting
of more than one packet, but not enough to fill the
congestion window enough to utilize the second sub-
flow in the MPTCP connection. Traffic is captured
using the respective applications for each traffic type.
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Table 1: Experiment details.

Traffic Google Maps, Google Docs, Netflix
Scenario Path failure to create tail loss

Links WLAN, 4G in realworld specification
Added delay 10 ms on WLAN

In our experiments, we use traffic data from (Grin-
nemo and Brunstrom, 2015), which provides a com-
prehensive information on the cloud application traf-
fic characteristics. Briefly, Netflix traffic has ON-OFF
cycles with burst sizes between 500 KB and 1.5 MB.
Google Maps and Google Docs traffic have burst sizes
of around 100 KB and 400 Bytes, respectively. All the
traces used in the experiments are of length 180 secs
and 30 traces are considered for each traffic type.

We use a testbed with a client connected to the In-
ternet via two interfaces: 4G and WLAN, and a server
connected to the Internet using Ethernet as depicted
in Figure 1. The Linux kernel implementation is the
most complete MPTCP implementation available, so
this experiment setup also allowed us to use the most
feature complete version of MPTCP. The server and
client run Ubuntu 16.04 with Multipath TCP version
0.89.3. The respective patches are applied and com-
piled in to the Linux kernel for different implemen-
tations of TLP. The WLAN provider and the server
are connected to the same Internet service provider.
The WLAN link has a round-trip time of 3 ms that is
very low to test short flows due to their low burst com-
pletion time. Most cloud servers have a little higher
delay than 3 ms. In order to make the setup close to a
cloud environment, WLAN has an added delay of 10
ms in our experiment setup as mentioned in Table 1.
The resulting observed round-trip times are 10-15 ms
for WLAN and 70-100 ms for 4G at various times of
measurements. WLAN is provided by a router sup-
porting 150 Mbps downlink speed.

The server and client systems run programs that
send and receive traffic to mimic the replay of cloud
application traffic. As mentioned in (Dukkipati et al.,
2013), it is important to localize the burst affected of
the loss and measure the flow completion time for
that burst. In testbed experiments of this scale, it
is difficult to drop a packet deterministically in the
same burst. Tail drop on a link is created by creat-
ing link failure. We let the server and client estab-
lish a MPTCP session and wait until both flows are
active. After 80 sec in to the connection, we discon-
nect the WLAN. This procedure allows us to achieve
the same behavior as real world MPTCP handover in
WLAN disconnect. Without MPTCP this handover
from WLAN to 4G takes nearly 3 sec due to the pro-
cedure involving disconnection on one network and
reconnecting to the other (Lescuyer and Lucidarme,
2008). This paper evaluates the scenario of path fail-

ure where a path fails during the multipath connection
to analyze the retransmission behavior using the TLP-
STD implementation and the TLP-MP implementa-
tion from (Yedugundla et al., 2017). Each experiment
is repeated 30 times to achieve confidence intervals
with 95%.

6 PERFORMANCE EVALUATION
OF TLP VARIANTS

The performance expectations vary with traffic char-
acteristics. To classify traffic broadly, Google Docs
and Google Maps traffic can be viewed as low-rate
traffic or traffic consisting of short bursts and Netflix
traffic as high-rate traffic or traffic consisting of large
bursts. Low-rate flows with short bursts do not fill
the congestion window, thus utilize a single path until
packet loss. On the other hand, high-rate flows have
enough data to send to utilize both paths before packet
loss.

In our experiments, WLAN disconnection hap-
pens at a constant time of 80 secs in to the connec-
tion time to create path loss. As the train of bursts
in each traffic flow has different sizes, the location
at which the loss happens for each traffic is differ-
ent. In Google Docs traffic, bursts are of one packet
length, thus when a loss occurs, it is always in be-
tween bursts. This is a scenario of one packet tail
drop as discussed in Section 4. For Google Maps traf-
fic the position varies, although significant losses ap-
peared in between bursts as shown in Figure 2. For
simplicity, losses in between bursts are counted as to
have occurred at the end of a burst. Loss position in
Figure 2 illustrates the tail losses occurred with few
outstanding packets. In the Netflix traffic case, the
bursts are of several packets and loss often occurs af-
ter a few packets in to a burst, as shown in Figure 3.
The loss position is observed to be in the first 10%
of the burst size. With large number of packets within
each burst and insufficient time to complete more than
two bursts before path failure, the distribution of loss
position is skewed towards front of the burst. Loss
position is also an indicator of data that is re-injected
on the network when an alternate path is used instead
of the path used for initial transfer. This re-injection
of data is an overhead with MPTCP in general in the
case of an RTO.

The burst completion times for Google Docs traf-
fic scenario is depicted in Figure 4. Each bar in the
figure depicts the burst completion time for a trace.
Google Docs traffic consists of short bursts, often one
packet in length, i.e., packet loss should be seen as
loss with tail length of one. In this case, TLP-MP
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Figure 2: Google Maps loss position in burst.

Figure 3: Netflix loss position in burst.

provides a theoretical advantage of 200 ms over re-
transmission timeout recovery. There is up to 50 per-
cent latency improvement observed for certain traffic
traces including the minimum latency gain of 200 ms.
Each trace has a different traffic pattern and the gain

varies for some traces than others due to the variabil-
ity in the traffic pattern. However, it is evident from
results that TLP-MP outperforms TLP-STD. The loss
recovery behavior can be seen in the timing diagram
of flows with short bursts in Figure 5. With length
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Figure 4: Google Docs traffic.
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Figure 5: Timing diagram in a flow with short bursts.
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Figure 7: Netflix traffic.

of burst as one packet, in the case of path failure the
whole burst is lost. To retransmit the lost burst, the
server should wait for an RTO to get loss indication
as per original MPTCP implementation (TLP-STD),
and retransmit on both subflows incurring more delay
as shown in Figure 5a. In the modified MPTCP im-
plementation (TLP-MP), the last transmitted packet
is sent as a probe on both subflows and successful re-
transmission occurs before an RTO as shown in Fig-
ure 5b.

Google Maps results in Figure 6 show similar la-
tency performance to that of Google Docs traffic with
reduction in flow completion times with TLP-MP.
Google Maps traffic consists of bursts of few pack-
ets and often loss occurs at the end of the burst or in
between bursts in case of path failure as shown in Fig-
ure 2. The TLP-STD implementation would retrans-
mit lost packets on both paths after a retransmission
timeout. The less conservative TLP-MP implemen-
tation would use probe packet on the other path and
retransmit other packets faster than original TLP. To
ensure TCP flow semantics, MPTCP should always
retransmit lost packets on their original path until the
time to live (TTL) time of the packet though it is re-
dundant, in this case on a failed path. Network over-
head with TLP-MP is same as TLP-STD and minimal
with few packets dropped in both scenarios.

Netflix traffic results shown in Figure 7 also indi-
cate improvement over the standard MPTCP imple-
mentation. The retransmission behavior of the two
implementations for flows with large bursts is shown
in Figure 8. The difference between flows with large
bursts and flows with short bursts in retransmission
behavior is that the former have an active second sub-
flow as there is sufficient data to send. With an RTO,
there is a wait for the scheduler to learn about path
failure and send the remaining unacknowledged or

unsent packets on the other subflow to correct out
of order delivery of data at the receiver. In TLP-
MP, upon a PTO the last transmitted packet is already
sent on the second subflow as probe and the scheduler
starts to send new packets on the second subflow.

7 CONCLUSIONS

This paper provides an analysis of tail loss handling
with two MPTCP TLP approaches for tail loss and
using various cloud application traffic. It provides
possible retransmission behavior at packet level on a
path failure scenario to understand the perceived gain
with a less conservative TLP implementation that trig-
gers a retransmission also on an alternate path in the
event of tail loss probe timeout. In the conservative
approach, similar behavior is seen only with an RTO.
Our testbed experiments using a modified Linux im-
plementation, show that the TLP with less conserva-
tive approach in fact improves the burst completion
time in all evaluated scenarios and by up to 50 per-
cent. For the path failure scenario, where the TLP re-
transmission on the primary path never succeeds, this
gain comes without any additional overhead. How-
ever, in the general loss case TLP-MP may cause ad-
ditional network traffic from the retransmitted pack-
ets. However, this additional traffic is small and sub-
ject to normal congestion control.

This study is limited to a path loss scenario that
serves the purpose of testing the approach in a specific
important scenario. Further, we plan to investigate
other loss events that occur in the middle of a packet
flow. All the loss recovery optimizations mentioned in
this paper use packet counting with DUPACK thresh-
old for loss indication. A recent approach known as
Recent Acknowledgment (RACK) (Cheng and Card-
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Figure 8: Timing diagram in a flow with large bursts.

well, 2018) uses time-based loss detection algorithm
for loss recovery in TCP. We plan to investigate the
implications of RACK in MPTCP traffic.
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