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Abstract: Task scheduling in cloud environments is the problem of assigning and executing computational tasks on the 
available cloud resources. Effective task scheduling approaches reduce the task completion time, increase the 
efficiency of resource utilization, and improve the quality of service and the overall performance of the 
system. In this paper, we present a novel task scheduling algorithm for cloud environments based on the 
Heterogeneous Earliest Finish Time (HEFT) algorithm, called experiential HEFT. It considers experiences 
with previous executions of tasks to determine the workload of resources. To realize the experiential HEFT 
algorithm, we propose a novel way of HEFT rank calculation to specify the minimum average execution time 
of previous runs of a task on all relevant resources. Experimental results indicate that the proposed experiential 
HEFT algorithm performs better than HEFT and the popular Critical-Path-on-a-Processor (CPOP) algorithm 
considered in our comparison. 

1 INTRODUCTION 

The Infrastructure-as-a-Service (IaaS) service model 
in cloud computing can be used to adjust the capacity 
of cloud resources depending on changing demands 
of applications. This feature is known as auto-scaling 
(Malawski et al., 2012). 

Task scheduling in cloud infrastructures is the 
problem of assigning tasks to appropriate resources 
(Bailin et al., 2014). Task scheduling can have a 
significant impact on the performance of the system 
and is particularly challenging when the cloud 
resources are heterogeneous in terms of their 
computation, memory, and communication 
characteristics, due to different execution speeds, 
memory capacities, and communication rates 
between processors. 

Typically, the scheduling process in the cloud 
consists of several phases (Choudhary and Peddoju, 
2012): resource discovery and filtering, where a 
broker discovers the resources in the network and 
collects their status information; resource selection, 
where the target resources are selected, based on the 
main parameters of the task and the resources; task 
submission, where tasks are submitted to selected 

resources. Task scheduling algorithms select and 
allocate suitable resources to tasks such that the 
overall execution can be completed to satisfy 
objective functions specified by users or cloud 
providers (Singh and Singh, 2013; Cui and Xiaoqing, 
2018). For example, to improve Quality of Service 
(QoS) for users and maximize profit for cloud 
providers, parameters such as resource utilization, 
throughput, performance, execution times, 
computational cost, bandwidth, energy consumption, 
and Service Level Agreements (SLAs) may be 
considered (Dubey et al., 2018). 

The task scheduling problem can be classified into 
static and dynamic scheduling. In static scheduling, 
all information about tasks such as execution and 
communication costs for each task and the 
relationship with other tasks are known in advance. In 
dynamic scheduling, there is no prior information, 
i.e., decisions are made at runtime (Arabnejad and 
Barbosa, 2014). 

In this paper, we present a novel dynamic task 
scheduling algorithm for cloud environments with 
heterogeneous resources. It extends the 
Heterogeneous Earliest Finishing Time (HEFT) 
algorithm by utilizing past experiences with task 
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executions, hence we call it the experiential HEFT 
(EHEFT) algorithm. It uses an additional parameter 
that calculates the minimum average execution time 
of previous runs of a task on all relevant resources. 
This parameter equips the proposed EHEFT with the 
ability to take the workload and processing power of 
resources into account when assigning a task to a 
processor. It gives priority to a resource that in the 
past has executed the task faster than others. 
Experimental results show that our EHEFT algorithm 
performs better and is more efficient than other than 
the original HEFT and the popular Critical-Path-on-
a-Processor (CPOP) algorithm considered in our 
comparison. 

This paper is organized as follows. Section 2 
describes related work on task scheduling. In Section 
3, the task scheduling problem is formulated. HEFT 
and CPOP are described in Section 4. Our novel 
EHEFT algorithm is introduced in Section 5. 
Experimental results are presented in Section 6. 
Section 7 concludes the paper and outlines areas for 
future work. 

2 RELATED WORK 

Several approaches have been presented in the 
literature to solve the problem of task scheduling. The 
general task scheduling problem is NP-hard (Garey 
and Johnson, 1979). Thus, research in this field 
focuses on finding suitable low-complexity heuristics 
that perform well. 

Parsa and Entezari-Maleki (2009) have proposed 
a task scheduling algorithm called RASA (Resource 
Aware Scheduling Algorithm) that takes the 
scalability characteristics of resources into account. 
RASA is compared to two traditional scheduling 
algorithms, Max-Min and Min-Min, making use of 
their advantages and avoiding their disadvantages. 
RASA is more efficient in task scheduling and 
achieves better load balancing.  

To achieve better results than RASA, an improved 
version of the Max-Min algorithm has been proposed 
Elzeki et al., (2012). Their improved Max-Min 
algorithm is based on the expected execution time as 
a basis for selecting tasks instead of completion time. 
This approach has resulted in better load balancing 
and smaller makespans than other algorithms used for 
comparison. 

Hu et al., (2009) have proposed a probability 
dependent priority algorithm to determine the 
allocation strategy that requires the smallest number 
of servers to execute tasks.  

Pandey et al., (2010) have proposed a scheduling 
strategy that is based on a Particle Swarm 
Optimization (PSO) algorithm to schedule 
applications to cloud resources. It takes computation 
cost and data transmission into account. The 
algorithm is compared to the existing heuristic 
algorithm ’Best Resource Selection’ (BRS) where 
PSO can achieve three times of cost savings 
compared to BRS, and the best distribution of the 
workload to resources. 

To schedule large-scale workflows with various 
QoS parameters, Chen and Zhang (2009) have 
proposed an Ant Colony Optimization (ACO) 
algorithm. The algorithm intends to find a solution 
that meets all QoS constraints and optimizes the user 
preferred QoS parameters.  

Malawski et al., (2012) have addressed the issue 
of efficient management under budget and deadline 
constraints in IaaS clouds. They propose various 
static and dynamic algorithms for both task 
scheduling and resource provisioning. From the 
results it is evident that an admission procedure based 
on workflow structure and the task’s estimated 
execution time can improve quality and performance. 
Their work considers only a single type of virtual 
machines (VM) and does not take heterogeneity of 
IaaS clouds into account. 

Byun et al., (2011) have proposed an architecture 
for automatically executing large-scale workflow 
applications on dynamically and elastically 
provisioned computing resources. The authors 
describe an algorithm that estimates the optimal 
number of resources to execute a workflow within a 
user specified finish time. The algorithm also 
generates a task to resource mapping and is designed 
to run online. This approach considers the elasticity 
of cloud resources, but does not consider the 
heterogeneity of computing resources.  

Rodriguez and Buyya (2014) have proposed a 
resource provisioning and scheduling strategy for 
scientific workflows in cloud infrastructures. The 
authors model this strategy through Particle Swarm 
Optimization, to optimize the total execution cost 
while meeting deadline constraints. In their model, 
there are some IaaS cloud properties such as 
heterogeneity, elasticity, and dynamicity of 
resources. Moreover, performance variations and VM 
boot time parameters are considered. 

Canon et al., (2008) have analyzed 20 directed 
acyclic graph (DAG) scheduling heuristics by 
investigating how robustness and makespan are 
correlated. The authors address the issue whether 
dynamically changing the order of tasks on their 
processors can improve robustness.  The authors 
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conclude that the HEFT algorithm is one the best 
algorithms in terms of robustness and schedule 
length.  

In contrast to the existing task scheduling 
approaches presented above, we propose a novel 
approach as an extended version of the HEFT 
algorithm that takes the workload of resources 
depending on experiences with previous executions 
of tasks into account. In the following sections, we 
explain task scheduling in general and the CPOP and 
HEFT algorithms in particular to motivate the design 
of our novel algorithm. 

3 TASK SCHEDULING  

To divide an application into tasks with appropriate 
sizes, we use DAGs. Each task of a DAG corresponds 
to the sequence of operations and a directed edge 
represents the dependency between the tasks. 

More precisely, a DAG is represented by the 
graph G = (V, E), where V is the set of v tasks and E 
is the set of e edges between the tasks. Each edge (i, 
j)E represents the dependency such that task ni 
should complete its execution before task nj starts. 

If a task has no a parent task, this task is defined 
as the entry task of a workflow of tasks. If a task has 
no a child, this task is defined as the exit task of a 
workflow of tasks.  

From the DAG, we derive a matrix W that is a v x 
p computation cost matrix, where v is the number of 
tasks and p is the number of processors; wi,j represents 
the estimated execution time to complete task vi on 
processor vj. The average execution time of task vi is 
defined in Equation (1) (Llavarasan and Thambidurai, 
2007; Arabnejad and Barbarosa, 2014): 
 

,i j
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      (1)

 

Each edge (i, j) E is associated with a non-negative 
weight ci,j which represents the communication cost 
between task vi and vj. The average communication 
cost of an edge (i, j) is defined in Equation (2): 
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L is the average communication startup time, and B
is the average transfer rate among the processors; 
datai,j is the amount of data required to be transmitted 
from task vi to task vj.  In cases when tasks vi and vj 
are scheduled to run on the same processor, the 
communication cost is considered to be zero, because 

the intra-processor communication cost is negligible 
compared to the inter-processor communication cost.  

A task workflow example and a computation cost 
matrix of tasks 1-10 for the resources R1, R2, R3 is 
shown in Figure 1. 

An popular metric in task scheduling is the 
makespan or schedule length, which defines the finish 
time of the last task in the given DAG. The makespan 
is defined in Equation (3): 

 

max{ ( )}exitmakespan AFT n  (3)
 

where AFT(nexit) represents the Actual Finish Time of 
the exit node. 

 

Figure 1: An example of a task graph and a computation 
time matrix of the tasks for each resource. 

Furthermore, the Earliest Start Time EST (ni, pj) 
of a node ni on a processor pj is defined in Equation 
(4): 

 

,
( )

( , ) max{ ( ), max ( ( ) )}
m i

i j avail j m m i
n pred n

EST n p T p AFT n c


  (4)
 

where Tavail is the earliest time at which processor pj 
is ready to execute the task. pred(ni) is the set of 
immediate predecessor tasks of task ni. The inner max 
block in the EST equation denotes the time at which 
all data needed by ni arrive at processor pj. The 
communication cost cm,i is zero if the predecessor 
node nm is assigned to processor pj.  

Finally, EFT(ni,pj) defines the Earliest Finish 
Time of a node ni on a processor pj, which is defined 
in Equation (5): 

 

,( , ) ( , )i j i j i jEFT n p EST n p w        (5)

4 CPOP AND HEFT 

In this section, we describe two popular algorithms 
for task scheduling, namely the Critical-Path-On-a-
Processor (CPOP) and the Heterogeneous-Earliest-
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Finish-Time (HEFT) algorithms (Topcuoglu et al., 
2002; Arabnejad and Barbosa, 2014).  

Canon et al., (2008) have compared 20 scheduling 
algorithms and have concluded that both algorithms 
perform well, but the HEFT algorithm is the best 
algorithm in terms of makespan. Topcuoglu et al. 
(Topcuoglu et al., 2002) also consider the HEFT 
algorithm among the best list-based heuristic 
algorithms, and use the CPOP algorithm, among 
others, for comparison.  

In both algorithms, the tasks are ordered based on 
a scheduling priority defined by a ranking function. 
The rank value for an exit task ni is: 

 

( )i irank n w  (6)
 

For other tasks, the rank values are computed 
recursively based on the Equations (1), (2) and (6), as 
defined in Equation (7): 

 

,
( )

( ) ( ( ))max
j i

i i i j j
n succ n

rank n w c rank n


    
(7)

 

where succ(ni) is the set of immediate successors of 

task ni, ,i jc is the average communication cost of 

edge (i, j), and iw is the average execution time of 

task ni. 

4.1 CPOP 

The CPOP algorithm consists of two phases: task 
prioritization and processor selection.  

The task prioritization phase assigns the priority 
of each task by computing the rank values for all 
tasks. In CPOP, for a given application the graph uses 
a critical path, where the length of this path is the sum 
of the communication costs of the tasks on the path 
and the communication costs between the tasks along 
the path. The sum of rank values set the priority of 
each task. Initially, the entry task is the selected task 
and marked as a critical path task. An immediate 
successor (of the selected task) that has the highest 
priority value is selected and is marked as a critical 
path. This process is repeated until the exit node is 
reached (Topcuoglu et al., 2002). In the processor 
selection phase, the task that has the highest priority 
is selected for execution. If the selected task is on the 
critical path, it will be scheduled on the critical path 
processor. Otherwise, the task is assigned to a 
processor that minimizes the earliest execution finish 
time. The CPOP algorithm has O (v2 x p) time 
complexity, where v is the number of tasks and p is 
the number of processors (Llavarasan and 
Thambidurai, 2007; Arabnejad and Barbosa, 2014). 

4.2 HEFT 

Similarly, the HEFT algorithm also has the same two 
phases: task prioritization and processor selection 
(Topcuoglu et al., 2002; Arabnejad and Barbosa, 
2014).  

In the task prioritization phase, HEFT assigns the 
priorities of all tasks by computing the rank for each 
task, which is based on mean computation time and 
mean communication cost. The task list is ordered by 
decreasing of their rank values.  

The processor selection phase schedules the tasks 
on the processors that give the Earliest Finish Time 
(EFT) for the task. The algorithm uses an insertion 
policy that tries to insert a task at the earliest idle time 
between two already scheduled tasks on a processor. 
The slot should have enough capacity to 
accommodate the task.  

The HEFT algorithm also has O (v2 x p) time 
complexity, where v is the number of tasks and p is 
the number of processors (Topcuoglu et al., 2002; 
Llavarasan and Thambidurai, 2007; Arabnejad and 
Barbosa, 2014). 

5 EXPERIENTIAL HEFT 

We now present a novel task scheduling algorithm, 
called experiential HEFT (EHEFT), which gives the 
original HEFT algorithm the ability to take the 
workload and computational power of resources into 
account when assigning a task to processor. In the 
EHEFT algorithm, the average execution time of a 
task is calculated by the definition given in Equation 
(1). Furthermore, the calculation of the average 
communication cost is performed according to 
Equation (2). As an extension of Equation (7), we 
have added a parameter that calculates the rank by 
considering the minimum average execution time of 
the task on each relevant resource. This novel rank 
calculation is shown in Equation (8): 
 

,
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( ) ( ( )) minmax

j

j i

n

i j
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i i i j j j R
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
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where R represents the set of processors; j is a 
processor of the set of processors. The execution time 
of the task i on processor j is defined by wi,j, while the 
number of previous executions of the task in 
processor j is defined by nj.  

The proposed EHEFT algorithm is shown in 
Algorithm 1.  
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To prioritize processors that have executed a 
given task in a more efficient manner in the past, a 
sum and a count of previous execution times of tasks 
for each of the resources in the cloud is stored. When 
there is no such data, the EHEFT algorithm performs 
exactly as the HEFT algorithm itself. Therefore, the 
EHEFT algorithm we propose is highly dependent on 
the values of the past execution times of tasks. 

Algorithm 1: Experiential HEFT Algorithm. 

1: Compute the computation cost for each 
task according to Eq.(1) 

2: Compute the communication cost of 
edges according to Eq.(2) 

3: Compute the average execution time of 
previous runs: 
for each task 

 for each machine do 
sum up the time of the task’s 
previous executions in the 
assigned processor  

   end for 
4: Calculate the minimum as the 

proportion of the sum of Step 3 and 
the number of executions of a task 
in the assigned processor 

5: end for 
6: Compute the rank value for each task 

according to Equation (8) 
7: Sort the tasks in a scheduling list by 

decreasing order of task rank values 
8: while there are unscheduled tasks in 

the list 
9:   Select the first task i from the 

list 
 for each processor m do 
    Compute the EFT(i,m) value 
 end for 
Assign task i to processor m that 
minimized EFT of task i. 

10: end while 

Assuming a high heterogeneity between cloud 
resources, variable processing powers, and 
workloads, as well as taking into account that some 
tasks are better suited for a particular processor 
architecture than others, by including the minimum 
average execution time of previous runs of a task in 
the resources of the cloud, the EHEFT algorithm 
gives precedence to a processor that has performed 
better in executing a given task in the past. 

6 EXPERIMENTAL RESULTS 

We now present experimental results of our proposed 
EHEFT algorithm compared to the existing HEFT 
and CPOP algorithms. The tests were conducted on 
an Intel Core i7-6500U CPU with a 2.50 GHz × 4 
speed, 16 GB of RAM, on Ubuntu 16.04 LTS. 

To evaluate the performance of the EHEFT 
algorithm, task graphs that were generated randomly 
are considered. We have implemented and simulated 
the three algorithms using the Python programming 
language. Our simulator has five input parameters: 
the number of resources (i.e., processors) in the cloud, 
the number of DAG nodes (i.e., tasks), connections 
between tasks, resource heterogeneity, and previous 
run statistics for each task. For simplicity, constant 
values are set for the average computational and 
communication costs. The simulator defines a set of 
virtual resources with heterogeneous processing 
powers, as well as current computational workloads 
and communication costs for the given input DAG. 
Resource heterogeneity is achieved by setting the 
Beta parameter in the simulator. Its value defines the 
ratio of the differences of processing powers between 
resources in the cloud. 

The simulator is fed with different input values to 
test the variance of the algorithm in terms of 
makespan and runtime under different conditions. 
During our tests, the following parameters were used: 

Beta = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 
Number of DAG Tasks = {5, 10, 15, 20, 25} 
Connectivity = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,   
0.9, 1.0} 
Number of Processors = {2, 3, 4, 5, 6} 

Our experiments are run for each of the tasks in each 
of the processors. Such test runs were performed to 
collect statistics for the execution times that were then 
used to calculate the minimum average execution 
time for past runs of a given task on all cloud 
resources. To avoid that this additional parameter 
biases the ranking function, a scaling parameter is 
used. This scaling parameter determines the weight of 
the minimum average execution time for past runs in 
the overall calculation of the rank. For all compared 
algorithms, the simulation conditions were the same. 
We use the following performance metrics for our 
evaluation of the proposed approach. 

6.1 Scheduling Length Ratio (SLR) 

To evaluate a schedule for a single DAG, the most 
commonly used metric is the makespan. The 
makespan represents the finish time of the last task in 
the scheduled DAG, as shown in Equation (3). 
Considering that a large set of task graphs with 
different properties is used, the schedule length 
should be normalized to a lower bound, which is 
known as the Schedule Length Ratio (SLR), defined 
in Equation (9). 
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The denominator in the SLR metric is the minimum 
computation cost of the critical path tasks, 
represented as CPMIN.  

Figures 2-5 show the makespan of the three 
algorithms calculated by the example task graph and 
computation time matrix of the tasks in each 
processor of Figure 1. 

The calculation of the makespan is performed for 
(a) Number of Tasks (Figure 2), (b) Connectivity 
(Figure 3), (c) Number of Processors (Figure 4), and 
(d) Processor Range (Figure 5).  

In Figure 2, the simulations are run for five 
different DAG nodes, with an increasing number of 
nodes. As expected, the makespan increases with the 
number of nodes for each of the algorithms we 
evaluated. EHEFT performs better than the other 
algorithms, because it considers the heterogeneity of 
resources when calculating the rank for a task. It 
assigns the execution of a task to a resource that not 
only has the best present conditions to achieve the 
earliest finish time, but that has also shown to do so 
in the past. 

 

Figure 2: Makespan for Number of Tasks. 

Figure 3 shows that increasing the connectivity 
between nodes of the input DAG also increases the 
makespan of the algorithms linearly. The higher the 
number of dependent tasks on the graph, the more 
time it takes for the algorithm to assign and execute 
the tasks. 

Therefore, it is important to assign tasks that are 
part of critical paths to resources that can execute 
them in the fastest manner. In our simulations, we 
have put more load on the tasks in the critical path. 
Thus, the results indicate the ability of EHEFT to 
assign such tasks to resources with the highest 
processing power. 

 

 

Figure 3: Makespan for Connectivity. 

Figure 4 shows that increasing the number of 
processors and a constant node number for the input 
DAG decreases the makespan. The improvement in 
performance of the EHEFT algorithm is due to the 
variance in the calculation of the rank that the 
statistics of previous runs provide. 

 

Figure 4: Makespan for Number of Processors. 

The main advantage of EHEFT over HEFT and 
CPOP is the processor range parameter Beta, as 
shown in Figure 5. EHEFT considers the processing 
efficiency of a resource for a task, given its previous 
run statistics. The performance of EHEFT improves 
with the increase of the processor range, because it is 
the factor that makes the highest difference with 
respect to the average past execution time parameter. 

 

 

Figure 5: Makespan for Processor Range. 
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In Figure 6, we present the SLR value for each of 
algorithms calculated from the number of nodes. The 
graph shows that the SLR value for EHEFT is lower 
than for the HEFT and CPOP algorithms. 

6.2 Runtime 

The runtime metric represents the execution time to 
obtain the output of a schedule for a given task graph.  

 

Figure 6: Scheduling Length Ratio. 

The results for the runtimes of our performed 
experiments are shown in the graphs below. 

Figures 7-10 show the runtimes of each of the 
algorithms calculated for the parameters (a) Number 
of Tasks (Figure 7), (b) Connectivity (Figure 8), (c) 
Number of Processors (Figure 9), and (d) Processor 
Range (Figure 10). 

Figure 7 shows that for small numbers of DAG 
nodes the difference in runtime between EHEFT and 
HEFT is small. The improvement in performance that 
the minimum average execution time of the task for 
each resource gives is only apparent when the number 
of nodes in the input DAG increases. 

 

 

Figure 7: Runtime for Number of Tasks. 

Figure 8 shows that increasing the connectivity 
between the nodes in the graph results in an increased 
runtime for the algorithms. The small difference in 
performance between EHEFT and HEFT is due to the 

difference in the handling of critical path tasks in the 
overall runtime. The CPOP algorithm takes more 
time to execute due to its two phase rank calculation. 

As shown in Figure 9, task assignment and 
execution are performed in a faster manner with an 
increasing number of simulated virtual resources, as 
indicated by the decrease in the runtimes of the 
algorithms. The EHEFT algorithm gains an edge in 
performance due to its ability to assign the heavy 
loaded tasks and the ones in the critical path to better 
performing resources.  

 

Figure 8: Runtime for Connectivity. 

 

Figure 9: Runtime for Number of Processors. 

Figure 10 shows that increasing the processor 
range improves the performance of all the algorithms 
that we evaluated. Since the CPOP algorithm assigns 
only tasks on the critical path to critical path 
processors, the EHEFT and HEFT algorithms show 
better results due to the fact that not only critical path 
tasks may be assigned to high performance resources. 
Tasks that take more time to process and that are not 
on the critical path of the graph are better assigned to 
resources through the HEFT and EHEFT algorithms. 
The difference in performance between the EHEFT 
and HEFT algorithm lies in the fact that EHEFT 
assigns tasks to resources that were better suited to 
execute such tasks in the past. 
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Figure 10: Runtime for Processor Range. 

7 CONCLUSION 

In this paper, we have presented a novel task 
scheduling algorithm for cloud environments, called 
Experiential Heterogeneous Earliest Finish Time 
(EHEFT) algorithm. In EHEFT, we have modified 
the rank calculation of the original HEFT algorithm 
by adding a parameter that specifies the minimum 
average execution time of a task on each relevant 
resource. The EHEFT algorithm performs better than 
the original HEFT and CPOP algorithms in terms of 
scheduling length ratio and runtime. 

There are several areas for future research. First, 
we will investigate and experimentally evaluate other 
heuristic algorithms for task scheduling that consider 
the priority of tasks. Second, for more efficient task 
scheduling, other factors such as availability and 
scalability should be considered. Finally, it would be 
interesting to investigate multi-criteria and other 
workflow-aware strategies in cloud environments, 
including multiple virtual machine types and cloud 
deployment models. 
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