Performance Analysis of an Hyperconverged Infrastructure
using Docker Containers and GlusterF'S

Rodrigo Leite, Priscila Solis and Eduardo Alchieri
Applied Computing Masters Program, Department of Computer Science, University of Brasilia (UnB), Brasilia, Brazil

Keywords:

Abstract:

Hyperconverged Infrastructures, GlusterFS, Containers, DFS, Cassandra, MongoDB, Docker, Cloud, Storage.

The adoption of hyperconverged infrastructures is a trend in datacenters, because it merges different type of

computing and storage resources. Hyperconverged infrastructures use distributed file systems (DFS) to store
and replicate data between multiple servers while using computing resources of the same servers to host virtual
machines or containers. In this work, the distributed file system GlusterFS and the hypervisor VMware ESXi
are used to build an hyperconverged system to host Docker containers, with the goal of evaluate the storage
performance of this system compared to traditional approach where data is stored directly on the server’s
disks. The performance of the container’s persistent storage is evaluated using the benchmark tool Yahoo
Cloud Service Benchmark (YCSB) against the NoSQL databases Cassandra and MongoDB under differents
workloads. The NoSQL database’s performance was compared between the hyperconverged system with
multiples disk configurations and a traditional system with local storage.

1 INTRODUCTION

In the last years, the amount of data generated by dif-
ferent devices and users is growing constantly and ex-
ponentially. This brings a challengue to the traditional
storage solutions that need to cope with massive data
storage and processing. For this, in the last years sev-
eral large-scale Distributed File Systems (DFS) were
developed to overcome these limitations. Some ben-
efits of DFS are scalability, parallelism, the ability
to run on commodity hardware and fault-tolerance.
These systems assemble many nodes across a net-
work and provide a distributed file system with large
storage capacity, where data can be transparently ac-
cessed (Roch et al., 2018). The ability to use com-
modity hardware makes scalability economically vi-
able, allowing the addition of more devices to scale
up the system in an incremental fashion. Because the
file system runs on several commodity hardware com-
ponents, which are highly prone to failure, techniques
such as replication and erasure codes are used to avoid
data loss and increase fault-tolerance in case of hard-
ware failures.

Traditionally, computing and storage resources in
datacenters are separated into different pods. The
computing pod usually uses virtualization technolo-
gies to optimize resources, while the storage pod
is usually based on monolithic hardware. Recently,

Leite, R., Solis, P. and Alchieri, E.

hyperconvergence is an emerging paradigm that has
been gaining popularity, both in academia and indus-
try (Verma et al., 2017). This paradigm allows to
merge computing and storage components with hy-
pervisors and DFS solutions. While traditional stor-
age systems use dedicated hardware to storage and
compute, a hyperconverged system uses a DFS and a
hypervisor to aggregate the storage capacity and com-
puting resources, providing an unique pod of compute
and storage.

In a cloud computing environment, containers can
benefit from a hyperconverged infrastructure. The
traditional container deployment uses local storage
on the node to start and run. Then, the ability to
store container’s persistent data on a hyperconverged
system may improve scalability, elasticity and fault-
tolerance in these environments.

Considering the above, the motivation of this work
is to evaluate storage performance of a proposed hy-
perconverged system, based on GlusterFS as the DFS
and VMware ESXi as the hypervisor. The goal is
to evaluate the performance and potential of con-
tainer’s storage I/O on an hyperconverged system,
by running inside Docker containers two applications
highly dependent on storage capabilities, the NoSQL
databases Cassandra and MongoDB (Abramova and
Bernardino, 2013), under several workloads of the
Yahoo Cloud Service Benchmark (YCSB) (Cooper

339

Performance Analysis of an Hyperconverged Infrastructure using Docker Containers and GlusterFS.

DOI: 10.5220/0007718003390346

In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 339-346

ISBN: 978-989-758-365-0

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

et al., 2010). The results of the proposed hypercon-
verged system are compared with a traditional config-
uration using local storage, with the intention of veri-
fying the viability of its use in place of direct-attached
storage.

This paper is organized as follows: Section 2
presents related works and the literature review; Sec-
tion 3 presents and describes the proposed architec-
ture; Section 4 details the experiments and results and
finally, Section 5 presents the conclusions and future
work of this research.

2 THEORETICAL CONCEPTS
AND RELATED WORK

Permanent storage consists of a named set of objects
that are explicit created, are immune to temporary
failures of the system, and persist until explicitly de-
stroyed. A file system is a refinement that describes
a naming structure, a set of operations on objects de-
scribed by explicit characteristics. DFS allow multi-
ple users who are physically dispersed in a network of
autonomous computers share in the use of a common
file system. Cloud storage is a system that provides
data storage and assembles a large number of different
types of storage devices through the application soft-
ware which are based on the functions of cluster ap-
plications, grid techniques and DFS. Cloud storage is
a cloud computing system with large capacity storage.
An hyperconverged environment combines compute,
storage and networking components into a single sys-
tem or node based on commodity servers, with the
aim to reduce hardware costs when compared to spe-
cialized storage arrays, servers and other equipment,
which appears today as an interesting option to cloud
providers.

In the DFS area, recent studies evaluated the
common problem of how to store and handle large
amounts of data. For example, in (Roch et al., 2018)
there is a comparison between DFS for storing molec-
ular calculations of quantum chemistry. In this study
the DFS GlusterFS and Ceph were tested, using 8
nodes distributed in 8 different combinations. The ex-
periments were performed with 7 different patterns of
reading and writing. The conclusion was that Glus-
terFS outperforms Ceph during large I/O workloads
and that GlusterFS administration is simplified, re-
quiring less maintenance and installation time. The
conclusions about Ceph were that it has greater com-
plexity and needs separate servers for metadata (data
about other data), which increases the complexity of
the solution.

Another DFS study in a similar area investi-

340

gates the problem of how to store and transfer large
amounts of genetic data between two institutions
(Mills et al., 2018). This study shows that the best
way to transfer data between two research institu-
tions is to use a combination of a high-speed com-
munications network and a high-performance file sys-
tem. Finding a balance between these two items en-
ables data to be read from the source at high speed,
transmitted quickly, and then recorded at high speed
at the destination. The DFS analyzed in this study
were BeeGFS, Ceph, GlusterFS and OrangeFS. Ex-
periments were performed with 4 to 8 servers at the
source transmitting data via FTP to another 4 to 8
servers at the destination, with BeeFS getting the best
performance.

In the work of (Kaneko et al., 2016) a guideline
for data allocation in DFS is proposed, recommend-
ing that data stored in multiple nodes with few disks
have a better performance than a few nodes with many
disks. In the experiments, volumes built with disks on
different servers were compared with volumes built
with several disks on the same server. The compari-
son was made analyzing the read and write through-
put while copying files to and from the volumes. In
the results it was verified that the proposed guideline
obtained better performance in larger multiplicities.
The multiplicity is defined by the author as being the
number of clients accessing simultaneously a num-
ber of volumes. For example, multiplicity 24 means
4 clients simultaneously accessing 6 volumes. The
analysis concluded that distributing the volume across
several servers results in improved data throughput
because of the parallelism in data access. This guide-
line can be considered a good practice for building
DFS. Building volumes with few server the advan-
tages of a parallel file system are lost and server re-
sources (processor, disk controller, network card, etc.)
can impact the performance. Spreading a volume
across multiple servers allowed them to be accessed
by different servers, thinning resource consumption
between each server and improving data throughput.

Studies on performance of hyperconvergence en-
vironments are still scarce. The fundamental concept
behind this architecture is based on the Beowulf Sys-
tems, that already been vastly studied by academia.
In a Beowulf system a cluster of commodity-grade
computers are networked to run some software that
can perform parallel computing and storage. A hy-
perconverged system is a recent evolution of this con-
cept, mashing virtualized servers and virtualized stor-
age onto the same clusters with the goal of simplify-
ing the infrastructure.

In one of the first studies specifically about hy-
perconvergence, the General Parallel File System

Performance Analysis of an Hyperconverged Infrastructure using Docker Containers and GlusterFS

(GPES) is presented as a software defined storage so-
lution for hyperconverged systems (Azagury et al.,
2014). In this work, several concepts of hypercon-
vergence and software defined storage are outlined,
and the proposed solution is to use GPFS within a hy-
perconverged architecture using virtual storage appli-
ances (VSA) that manage physical storage resources.
The VSA allow the increase of capacity in a scale-out
model and data protection through the “GPFS native
RAID” (GNR) that makes copies of the data in several
nodes.

Recent studies on containers storage performance
analyze the possible configurations for storage ac-
cess (Tarasov et al., 2017) (Xu et al., 2017a), how
to provide encryption in image manipulation (Gian-
nakopoulos et al., 2017) and performance using solid
state disks (SSD) (Xu et al., 2017b) (Bhimani et al.,
2016). In (Tarasov et al., 2017) and (Xu et al., 2017a),
the mechanisms for containers access storage areas
are described and analyzed, but both are limited to
local storage, as well as in (Giannakopoulos et al.,
2017) (Xu et al., 2017a). In (Xu et al., 2017b) the
authors analyze the use of remote storage for contain-
ers, using non-volatile memory express over fabrics
(NVMF) technology being accessed by a remote di-
rect access memory (RDMA) over a 40 Gbps ethernet
network. This study is closer to our proposal, since
the container’s data will be stored in a DFS.

The amount of data generated by IoT devices
is addressed in another study, in witch the storage
paradigms for store and process data from IoT de-
vices are analyzed. The conclusion points to the hy-
perconverged architecture as one solution because of
its scalability, fault-tolerance and use of COTS hard-
ware (Verma et al., 2017).

3 PROPOSED ARCHITECTURE

The proposed architecture is presented in Figure 1 and
works as follows:

e The server runs a Type I Hypervisor with at least
two disk controllers: one for hypervisor, VSA and
container host @); and one for the hyperconverged
system @).

e On the disks connected to the disk controller man-
aged by the hypervisor on path @ are stored the
hypervisor itself and both VSA and the Container
Host virtual machines, as can be seen on path @.

e Using the “PCI Passthrough” feature on the hy-
pervisor, the second disk controller @) is directly
managed by the VSA virtual machine via path @.

‘ Virtual APP Data

Volume

Server
e APP (| APP | APP | APP
VSA I[Container Host]

1
1
1
1
1
1
1
1
1
1
:
1
Hipervisor H
1
1
1
1
1
1
1
1
1
1
1
1

i(5) 5
e) t
Disk isk
Contlfoller Colr)v;foller [Processor][Memory]

PCl Passthrough

Figure 1: Hyperconverged Server Architecture.

e Each VSA, with its own storage resources, is con-
figured to participate in an existing cluster or start
a new one. The nodes provide their individual re-
sources @@ to create a distributed virtual volume
across the nodes of the cluster, as presented on
Figure 2. Data replication between VSA nodes
is performed over a low-latency, high-bandwidth
Ethernet network.

e After the virtual volume is created, it can be ac-
cessed by the container engine as a scalable and
fault-tolerant data storage unit, as can be seen on
path @.

The use of a disk controller dedicated to the VSA
is a desirable characteristic because it allows direct
control of the disks, dropping an abstraction layer in
the hypervisor. Another desirable requirement is a
high bandwidth and low latency network between the
servers to avoid congestion or any kind of degradation
during storage operations. The use of disks with same
model to build a volume is another important aspect
to get a better performance (Kaneko et al., 2016).

Server1 | Server 2

I Servern
BN I NN
iz == iz

Figure 2: Virtual Volume build by the VSAs.

3.1 Implementation

In the next subsections, we describe the tools that
were integrated to implement the proposed arquitec-

341

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

ture.

3.1.1 GlusterFS

GlusterFS is an open-source DFS that allows to dis-
tribute a large set of data across multiple servers. It
has simple operation, being supported by most Linux
distributions. It does not separate metadata/data and
therefore does not need additional servers for this task
(Fattahi and Azmi, 2017). It has a native mechanism
of redundancy based on the replication of files be-
tween a set of “bricks” (a basic unit of storage) that
form a resilient logical unit (Roch et al., 2018). It al-
lows the use of heterogeneous nodes, enabling nodes
with different configurations on the same distributed
volume. In these cases, it is recommended to group
nodes with the same characteristics for better perfor-
mance (Kaneko et al., 2016).

Bricks are the basic storage unit in GlusterFS, rep-
resented by an export directory on a server. A collec-
tion of blocks forms a “Volume” in which GlusterFS
operations take place. GlusterFS allows you to group
Bricks to form five different types of volumes:

e Distributed Volume: Distribute files between
bricks. The final volume capacity is the sum of
bricks’ capacity. It has no redundancy. Failure on
a brick corrupts the volume. Recommended for
cases where availability is not important or is pro-
vided by another mechanism.

e Replicated Volume: The files are replicated be-
tween the volume bricks. Recommended for
cases where high availability and reliability are re-
quired.

e Distributed Replicated Volume: Distributes files
between replicated subvolumes. Recommended
for cases where scalability, high availability and
good reading performance are required.

e Dispersed Volume: They are based on erasure
codes and provide efficient protection against disk
or server failures. A coded fragment of the orig-
inal file is stored in each brick, so that from a set
of fragments it is possible to retrieve the original
file.

e Distributed Dispersed Volume: Distributes files
between dispersed subvolumes. It has the advan-
tages of a distributed volume, but using dispersed
storage within the subvolume.

3.1.2 ESXi

VMware ESXi is a hypervisor that runs directly on
the host hardware, i.e., it is a virtual machine monitor

342

(VMM) type I (bare metal). It takes minimal mem-
ory from the physical server and provides a robust,
high-performance virtualization layer that abstracts
the server’s hardware resources and enables the shar-
ing of these resources across multiple virtual servers.

3.1.3 Docker

Docker is a application that performs operating-
system-level virtualization also known as container-
ization. It uses the resource isolation features of
kernel to allow independent containers to run within
a single host, avoiding the overhead of starting
and maintaining virtual machines (VMs) (Xu et al.,
2017a). Containers and virtual machines have similar
resource isolation and allocation benefits but different
architectural approaches, which allows containers to
be more portable and efficient compared to bare metal
and virtual machines (Bhimani et al., 2016).

3.1.4 Virtual Storage Appliance

The core component of our proposed architecture is
the Virtual Storage Appliance (VSA), a virtual ma-
chine that runs a minimal version of the Linux op-
erating system and the GlusterFS software. Glus-
terFS is configured to manage the physical storage re-
sources presented to the VSA and use these to build
a DFS. The choice of GlusterFS for the DFES is due
to the fact that data and metadata are stored together
in the nodes, without a specific node to handle meta-
data (Fattahi and Azmi, 2017). This feature makes
GlusterFS ideal for use in a hyperconverged archi-
tecture since the nodes are independent and can run
without external dependencies, simplifyng the archi-
tecture and allowing the deployment of just one VSA
per hypervisor and nothing else. The VSA nodes,
each with its own storage resources, allow the cre-
ation of DFS volumes that span across many server
and can be used by hypervisor and container engine
to store data with scalability and fault-tolerance.

4 EXPERIMENTAL ANALYSIS

4.1 Testbed

In our experiments we built a hyperconverged system
using three IBM HS23 servers with dual Intel Xeon
CPU E5-2670 2.60GHz CPUs, 96GB of RAM, one
16GB SSD (to host ESXi, VSA and Docker Host),
two 1TB HDD (to the hyperconverged system), hy-
pervisor ESXi version 6.5 and network connection via

Performance Analysis of an Hyperconverged Infrastructure using Docker Containers and GlusterFS

two gigabit Ethernet ports. The VSA on each hyper-
visor has 4 vCPU, 8 GB of RAM, runs CentOS Linux
release 7.5.1804, GlusterES version 3.12.15 and XFS
as the file system for disks managed by Gluster. The
Container Host has 12 vCPUs, 80 GB of RAM, runs
CentOS Linux release 7.5.1804 and Docker 18.09.
The connection between the Docker Host and the vir-
tual volume built by the VSAs is made through Glus-
ter Native Client. To evaluate the storage I/O per-
formance of the hyperconverged system we choose
the NoSQL databases Cassandra (version 3.11.3) and
MongoDB (version 4.0.3) running in Docker contain-
ers and storing persistent data on the hyperconverged
virtual volume.

To compare results from the hyperconverged sys-
tem we built a traditional system where storage re-
sources are provided by local disks on the server. For
this system we used another IBM HS23 server with
same configuration as the hyperconverged servers,
but the persistent storage for the containized NoSQL
databases were provided by the hypervisor using the
local server’s disk.

Since the objective is to analyze storage perfor-
mance, the memory cache feature on both NoSQL
databases were disabled, meaning that all database
operations had to hit the storage volume and conse-
quently the underlying disks.

4.2 Workload

To evaluate our proposal we used the Yahoo Cloud
Serving Benchmark (YCSB) framework (Cooper
etal., 2010), a tool built do load, run and measure per-
formance of different NoSQL databases. After load-
ing data on the desired database, there are six core
workloads that can be run to evaluate database’s per-
formance. These core workloads are named A, B, C,
D, E and F, each with different I/O patterns. Besides
those, YCSB also allows using custom workloads,
which we used to test three more workloads: two
from Microsoft’s datacenters (Huang et al., 2017) and
one developed by us, called “Heavy Update”, with a
heavy write load. The 9 different workloads used to
evaluate our propose is summarized in Table 1.

Table 1: Application workloads used for evaluation.

Workload 1/0 Pattern

YCSB-A 50% read, 50% update

YCSB-B 95% read, 5% update

YCSB-C 100% read

YCSB-D 95% read, 5% insert

YCSB-E 95% scan, 5% insert

YCSB-F 50% read, 50% read-modify-write

Microsoft Cloud Storage | 26.2% read, 73.8% update
Microsoft Web Search 83% read, 17% update
Heavy Update 100% update

4.3 Maetrics, Validation and Factors

The metric evaluated during the execution of the ex-
periments is the operations per second (ops/sec), i.e.,
how many read, update or insert operations can be
submitted to the NoSQL database every second.

The validation of the results is performed evaluat-
ing the results from the proposed hyperconverged sys-
tem in comparison with the results from a traditional
system where data is stored on the local server’s disks.
For our experiments, the factors we chose to analyze
were: type of GlusterFS volumes; type of NoSQL
database; and number of threads.

4.4 Evaluation Scenarios

In the hyperconverged system built for this study,
GlusterFS can be configured to create five types of
volumes: Distributed, Replicated, Distributed Repli-
cated, Dispersed and Distributed Dispersed. Since
the Distributed volume does not offer fault-tolerance
and the Replicated volume does not scale, we did not
used these two types of disk configurations. The other
three types of volume offer equal fault-tolerance pro-
tection, but different types of performance. So we
tested all those three types of volumes with all work-
loads.

To evaluate the hyperconverged storage I/O per-
formance we used the NoSQL databases Cassandra
and MongoDB, each one submitted to the same work-
loads and storing persistent data on the same types of
volumes. The choice for these two is due to the fact
that databases are applications that depend on the stor-
age performance where data is stored and retrieved,
with Cassantra and MongoDB being popular among
recent studies in both academia and industry.

Both NoSQL databases were loaded with
1.000.000 records of 1KB using the YSCB tool.
Then the databases were submitted to the workloads
with different threads numbers (ranging from 1 to
100, in steps of 10). In each thread test, 100.000
transactions were made. The mean resulted of the
amount of transactions made in each second were
calculated with a 95% confidence interval.

4.5 Experiments

e Experiment 1 - YCSB Core Workloads. This
experiment was conducted using the six core
workloads available in the YCSB framework
against Cassandra e MongoDB containerized in-
stances. The results can be seen on Figure 3.

e Experiment 2 - Microsoft Workloads. This ex-
periment was conducted using two Microsoft’s

343

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

YCSB-A

5000

IS
o
=]
o

3000

N
o
o
o

Throughput (ops/sec)

1000

1 10 20 30 40 50 60 70 80 90 100

Threads

YCSB-C

5000

4000

ops/sec)

= 3000

Throughput
N
=1
S
o

1000

0

1 10 20 30 40 50 60 70 80 90 100
Threads
YCSB-E
5000
54000
[0}
@
(%]
Q
<3000
5
Qo
=
(2]
3 2000
=
[
1000
,‘O.M.m-ow,n-ou.w.-.-omw.-ronxm WA AR ATO RN AT
0

1 10 20 30 40 50 60 70 80 90 100

Threads

—o—Cassandra Local

—=—MongoDB Local - MongoDB Distributed Replicated

ops/sec)

—=3000

Throughput

Throughput (ops/sec)

Throughput (ops/sec)

-<-- Cassandra Distributed Replicated --a--Cassandra Dispersed

--a--MongoDB Dispersed

YCSB-B

5000

4000

2000

1000

1 10 20 30 40 50 60 70 80 90 100
Threads

YCSB-D

5000

N
o
o
o

w
o
o
o

N
o
o
o

1000

1 10 20 30 40 50 60 70 80 90 100
Threads

YCSB-F

5000

4000

3000 T Y

N
o
o
o

1000

1 10 20 30

40 50 60 70 80 90 100
Threads

-o-Cassandra Distributed Dispersed
-e-MongoDB Distributed Dispersed

Figure 3: YCSB Workloads Results.

datacenters workloads. The results can be seen
on Figure 4.

e Experiment 3 - Heavy Update Workload. To
analyze the performance of write I/O storage op-
eration, we this experiment with only updates on
the database. The results can be seen on Figure 5.

344

4.6 Analysis of Results

The experimental results shown on Figures 3, 4 and 5
indicates that MongoDB performed better than Cas-
sandra in all experiments. MongoDB running on
the hyperconverged system presented a performance
equivalent to that of a traditional system, independent

Performance Analysis of an Hyperconverged Infrastructure using Docker Containers and GlusterFS

Microsoft Cloud Storage

Microsoft Web Search

5000

4000

w
o
o
o

N
o
o
o

Throughput (ops/sec)

~©---0---0---0----0---0

1000

1 10 20 30 40 50 60 70 80 90 100
Threads

Figure 4: Microsoft Workloads Results.

5000
54000
D
@
123
Q
<3000
=]
Q
=]
[=2]
3 2000
=
=
1000 9,
A’/
0
1 10 20 30 40 50 60 70 80 90 100
Threads
100% updates
5000
54000 Py focng @
o} e o]
@
2
23000
5
Q.
=)
2 ey Q
Je:2000 //D_:z:z._ﬁﬂ e
" /’/9’
1000 ¢

1 10 20 30 40 50 60 70 80 90 100
Threads

Figure 5: Heavy Update Workloads Results.

of the number of threads. In some specific cases we
archived a 7% better performance on the hypercon-
verged system than on local storage. We consider this
a good result because, even with the abstractions in
storage layer imposed by the hyperconverged system,
the performance was similar to the traditional system
where data is saved in a direct-attached storage.

Cassandra performance on the hyperconverged
system was below the expectations on almost all
workloads. The only workload where our proposal
performed better than direct-attached storage was in
Heavy Update workload above 70 concurrent threads,
where the hyperconverged system had 56% better per-
formance than on local storage.

The difference in performance results between
Cassandra and MongoDB can be explained by the
way these NoSQL databases store their data in the
file system. MongoDB stores data in large files, while
Cassandra does it in several small files. Storage per-
formance differences between using large and small
files is already known in the literature due to overhead
imposed by the DFS (Roch et al., 2018).

We also note that the performance of Cassandra
is changed by the disk configuration used in Glus-
terFS. Significant differences in throughput value for
the same workload and number of threads can been
observed in the results obtained with the YCSB-B, C
and D workloads on Figure 3. This behavior indicates
that workloads operating with small files in GlusterFS
have different performance depending on the volume
disk configuration used.

It should be mentioned that during the experi-
ments no network congestion, high CPU usage or
high memory usage were observed, meaning that
these parameters did not interfered on the experi-
ment’s results.

S CONCLUSIONS AND FUTURE
WORK

This paper presented a storage performance analysis
on a hyperconverged infrastructure that uses an open-
source DFS to store and replicate data between multi-
ple servers while using the computing resources of the
same servers to host containers and store its persistent
data. The proposal was evaluated under several differ-
ent scenarios, using 2 NoSQL databases, 9 workloads,
3 disk configurations and 11 different number of con-
current sessions (threads), compared to a traditional
direct-attached storage infrastructure.

The results show that applications working with
large files in the hyperconverged system performs
similarly to traditional local storage. But a hypercon-
verged system adds desired features for cloud com-
puting systems when compared to conventional stor-
age, like scalability, elasticity and fault-tolerance. A
hyperconverged system can grow easily by adding
more servers, which may have different computing

345

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

and storage configurations. Meanwhile in a tradi-
tional architecture, new stand-alone servers can be
added to the infrastructure, but computing and storage
resources are confined to each server. Besides that, a
small hyperconverged system can easily bypass the
resources of a traditional local storage-based system.

We believe that the use of our proposal of hyper-
converged infrastructure is feasible for cloud service
providers in the provision of IaaS services (e.g. vi-
tual machines and containers) and PaaS services (e.g.
containerised databases). An user’s application that
requires more storage resources than a single server
can provide, has challenges for scaling in a non-
convergent system but would have the resources al-
located easily in a hyperconverged architecture. This
type of feature is desired by datacenters from cloud
providers because it optimizes infrastructure by al-
lowing two resource pods (computing and storage) to
collapse into one, increasing efficiency.

The network requirements for the servers of a hy-
perconverged infrastructure must be properly sized to
minimize the possibility of congestion. The through-
put between the server and its disks should occur
without limitations imposed by throughput of the net-
work. As the scale of the hyperconverged system built
for the experiments was small, the network infrastruc-
ture did not interfere with the results. However if the
experiment’s testbed scale were larger, then network
resources would need to be increased.

In further research, we intend to evaluate our pro-
posal with bigger clusters, other hypervisor solutions,
different type of disks (e.g., SSD), server configura-
tions and workloads.

REFERENCES

Abramova, V. and Bernardino, J. (2013). Nosql databases:
Mongodb vs cassandra. In Proceedings of the inter-
national C* conference on computer science and soft-
ware engineering, pages 14-22. ACM.

Azagury, A. C., Haas, R., Hildebrand, D., Hunter, S. W,
Neville, T., Oehme, S., and Shaikh, A. (2014). Gpfs-
based implementation of a hyperconverged system for
software defined infrastructure. IBM Journal of Re-
search and Development, 58(2/3):6-1.

Bhimani, J., Yang, J., Yang, Z., Mi, N., Xu, Q., Awasthi, M.,
Pandurangan, R., and Balakrishnan, V. (2016). Under-
standing performance of i/o intensive containerized
applications for nvme ssds. In Performance Comput-
ing and Communications Conference (IPCCC), 2016
IEEE 35th International, pages 1-8. IEEE.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan,
R., and Sears, R. (2010). Benchmarking cloud serv-
ing systems with ycsb. In Proceedings of the Ist

346

ACM symposium on Cloud computing, pages 143—
154. ACM.

Fattahi, T. and Azmi, R. (2017). A new approach for di-
rectory management in glusterfs. In Information and
Knowledge Technology (IKT), 2017 9th International
Conference on, pages 166—174. IEEE.

Giannakopoulos, 1., Papazafeiropoulos, K., Doka, K., and
Koziris, N. (2017). Isolation in docker through
layer encryption. In Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference
on, pages 2529-2532. IEEE.

Huang, J., Badam, A., Caulfield, L., Nath, S., Sengupta,
S., Sharma, B., and Qureshi, M. K. (2017). Flash-
blox: Achieving both performance isolation and uni-
form lifetime for virtualized ssds. In FAST, pages
375-390.

Kaneko, S., Nakamura, T., Kamei, H., and Muraoka, H.
(2016). A guideline for data placement in heteroge-
neous distributed storage systems. In Advanced Ap-
plied Informatics (IIAI-AAI), 2016 5th 1IAI Interna-
tional Congress on, pages 942-945. IEEE.

Mills, N., Feltus, F. A., and Ligon III, W. B. (2018). Max-
imizing the performance of scientific data transfer by
optimizing the interface between parallel file systems
and advanced research networks. Future Generation
Computer Systems, 79:190-198.

Roch, L. M., Aleksiev, T., Murri, R., and Baldridge, K. K.
(2018). Performance analysis of open-source dis-
tributed file systems for practical large-scale molec-
ular ab initio, density functional theory, and gw+
bse calculations. International Journal of Quantum
Chemistry, 118(1).

Tarasov, V., Rupprecht, L., Skourtis, D., Warke, A., Hilde-
brand, D., Mohamed, M., Mandagere, N., Li, W.,
Rangaswami, R., and Zhao, M. (2017). In search
of the ideal storage configuration for docker contain-
ers. In Foundations and Applications of Self* Systems
(FAS* W), 2017 IEEE 2nd International Workshops
on, pages 199-206. IEEE.

Verma, S., Kawamoto, Y., Fadlullah, Z. M., Nishiyama, H.,
and Kato, N. (2017). A survey on network method-
ologies for real-time analytics of massive iot data and
open research issues. IEEE Communications Surveys
& Tutorials, 19(3):1457-1477.

Xu, Q., Awasthi, M., Malladi, K. T., Bhimani, J., Yang, J.,
and Annavaram, M. (2017a). Docker characterization
on high performance ssds. In Performance Analysis
of Systems and Software (ISPASS), 2017 IEEE Inter-
national Symposium on, pages 133—134. IEEE.

Xu, Q., Awasthi, M., Malladi, K. T., Bhimani, J., Yang, J.,
and Annavaram, M. (2017b). Performance analysis of
containerized applications on local and remote stor-
age. In Proc. of MSST.

