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Abstract: Estimating the range of battery electric vehicles is one of the most challenging topics for the current trend

in the automotive industry, the electrification of vehicles. Range anxiety still limits the adoption of battery
electric vehicles. Since the range estimation is dependent on different influencing factors, complex algorithms
to accurately estimate the vehicles consumption are required. To evaluate the accuracy of data-driven machine
learning algorithms, an exhaustive training and validation procedure is mandatory. In this paper, we propose
a novel methodology for the development and validation of range estimation algorithms based on machine
learning validation approaches. The proposed methodology considers the evaluation of driver-specific and
driver-unspecific performance. In addition, an error measure is introduced to assess the performance of range
estimation algorithms. This approach is demonstrated and evaluated on a set of recorded real-world driving
data. It is shown that our approach helps to analyze the performance of the range estimation algorithm and the

influences of different parameter sets.

1 INTRODUCTION

Range prediction for battery electric vehicles (BEVs)
has, in recent years, been intensively researched. As
range is one of the key factors of customer satis-
faction. The route-based range is principally depen-
dent on the energy stored in the battery and the en-
ergy required to reach a destination following a given
route. Predicting the energy required for a certain
route is not trivial. The driving range is dependent
on different factors, some of which can be easily
modeled with physical relations. Other factors, such
as the influences of driver and traffic behavior, are
non-deterministic. Both of these heavily influence
the driving speed, which is one of the most impor-
tant influencing factors on the vehicle’s consumption
(Wu et al., 2015; Wager et al., 2016). By apply-
ing machine learning (ML) algorithms, these non-
deterministic factors can be included in the range es-
timation.

A lot of the research about range estimation mod-
els focuses on including as many input parameters as
possible, such as the influences of traffic (Grubwin-
kler et al., 2014), route (Yu et al., 2012), weather
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(Fetene et al., 2017), driving style (Bingham et al.,
2012a), auxiliary consumers (Horrein et al., 2017)
and vehicle characteristics (Tannahill et al., 2016). To
validate and verify the model and evaluate its accu-
racy, the feature space should be covered sufficiently.
With most ML algorithms, the size of the training
data set correlates with the number of features, i.e.
if the feature space is large, a large training data set is
needed (Lewis, 1992). For non-ML models, the vali-
dation is still of great importance and having a realis-
tic and representative test set is required. Additionally
a suitable error measure needs to be chosen or formu-
lated.

As a result, the validation becomes complex and
time-consuming, especially when performed with real
test drives. In this paper, a virtual framework for val-
idation and performance evaluation is presented. The
approach is based on real-world driving data to ensure
coverage and realism. This allows a scalable approach
without highly-sophisticated simulation models.

This paper is structured as follows: in Section 2,
the state of the art in Automotive Systems Engineer-
ing (ASE) and validation approaches for ML algo-
rithms are presented. In addition, open challenges
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for the validation of range estimation algorithms are
identified. In Section 3, our proposed validation con-
cept for range estimation algorithms is described and
its prototypical implementation will be discussed. In
Section 4, the approach is demonstrated based on a
small test campaign. Section 5 concludes this paper
and discusses future work based on the results of this

paper.

2 STATE OF THE ART

Due to the increasing complexity of Advanced Driver
Assistant Systems (ADAS), the need for exhaus-
tive test coverage increases (Mazzega et al., 2016).
ISO29119-1 postulates that dynamic testing is essen-
tial for the validation of correct functional behavior
(ISO, 2013). Boehm described a software program as
a mapping from a space of inputs into a space of out-
puts (Boehm, 1976) meaning that covering the com-
plete input space ensures the quality of a system. For
complex and non-deterministic systems like range es-
timation algorithms, covering the complete parameter
space is not feasible for automated test case genera-
tion. Therefore, another approach is to use real-world
data for the evaluation of such systems e.g. in the
domain of computer vision, recorded video data is
a common method to solve this issue (Cordts et al.,
2016).

In the automotive field, features are primarily
tested in the real-world with the help of prototype
vehicles. This ensures the highest possible realism
for testing features in the verification and validation
(V&V) process but fails to scale, since these few se-
lected test drives are primarily tailored for manual in-
depth debugging (Sax, 2008).

(Bach et al., 2017b) and (Langner et al., 2017)
propose a data-driven development approach that sug-
gests utilizing the steadily growing pool of recorded
real-world driving data for the development of fea-
tures and executing them in a Software-in-the-loop
(SiL) environment. (Bach et al., 2015) introduces the
Reactive-Replay approach, which enables the execu-
tion of a closed-loop feature on system level by uti-
lizing recorded real-world driving data. Thus, feature
maturity can be ensured in early development stages.
Previous recorded data can now be reused for devel-
opment and enables continuous tracking of software
maturity without the need for running new test drives
(Bach et al., 2017a). Reducing redundancy and sim-
ulation time can be achieved by carefully selecting
test cases without loosing test coverage (Bach et al.,
2017¢).

For testing range estimation algorithms, real-
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world test drives are primarily used for validation
(Rolim et al., 2012), (Tannahill et al., 2016). Statis-
tically significant evaluation is achieved by collecting
thousands of kilometers of real-world test drives. Var-
ious situations and scenarios need to be considered,
such as different traffic situations or weather condi-
tions, to achieve a sufficient test coverage. This ap-
proach lacks scalability due to the fact that for each
new soft- ware version new data must be recorded.
However, using simulations can be executed as often
as needed (Yi and Bauer, 2017), (Enthaler and Gau-
terin, 2016). For creating realistic simulations, non-
deterministic factors, such as environmental, traffic
and driver behavior, need to be considered, requiring
complex models (Helmer et al., 2015). Due to the fact
that a lot of effort needs to be invested to create such
models, a hybrid of simulation and real-world data is
preferred. This hybrid allows the benefits of the real-
ism of real-world data to be reused for the simulation
based execution of future software versions.

Although selecting the best data for the validation
of range estimation algorithms is still a challenge, the
methodology for an accurate training and validation
process is a major challenge as well.

It is necessary that data-driven range estimation
algorithms adapt to driving characteristics of an indi-
vidual or changing drivers to further improve the es-
timation of the energy consumption and range (Bing-
ham et al., 2012b). Therefore, for the validation of
such algorithms it is important to assess the driver-
specific and driver-unspecific performance. A driver-
specific performance indicates whether the algorithm
adapts and optimizes its energy consumption estima-
tions of one consistent driver. A driver-unspecific per-
formance indicates whether the algorithm is capable
of adapting to different drivers in an appropriate pe-
riod of time. To validate ML algorithms, data samples
must be split into a set of training data 9 and a set of
test data 7. The classifiers are then trained on D and
the accuracy measured by testing on 7. By testing on
unseen data, an assessment of how the algorithm will
perform in practice is achieved. In (Mitchell, 2012),
several methods are suggested:

Resubstitution
e Holdout

e Leave-one-out
e K-Fold Cross-Validation

Resubstitution uses the whole data set for both train-
ing and testing and will result in an optimistic biased
accuracy estimation. Holdout uses half of the data for
training and the other half for testing. The estima-
tion will be pessimistic biased. Leave-one-out uses
all but one data samples for training the classifier and
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the last data sample for the test. The estimate is unbi-
ased but with large variance. K-fold cross validation
is the middle road between holdout and leave-one-out
as the number of splits is somewhere between 1 and
N with N being the number of samples.

(Bolovinou et al., 2014) uses a 10-fold cross-
validation to evaluate the performance of the initial
range prediction (in km) using support vector regres-
sion (SVR), linear regression (LR) and a conven-
tional, history-based range estimation. Mean absolute
error (MAE) is used as an error measure.

(Fukushima et al., 2018) uses two validation meth-
ods, a leave-one-out cross-validation, where the test
set consists of different BEV trips on the same route,
and a two-fold cross-validation, where BEV trips on
one route are used for training and trips on another
route are used for testing, and vice versa. With these
methods, the performance of ordinary least squares
(OLS) and an own method in predicting energy con-
sumption is measured, and the relative test error is
used as an error measure. (Gebhardt et al., 2015) uses
a leave-one-out cross-validation to test two range es-
timation approaches, where each test set represents a
trip with a BEV. The relative error in the prediction
of each trip’s energy consumption is used as an error
measure.

(Cauwer et al., 2017) splits selected data sets into
80% for training and 20% for testing of a model
that combines a neural network (NN) and a multi-
ple linear regression (MLR), which predict the en-
ergy consumption. The metrics root-mean-squared
error (RMSE) and MAE are used to measure the per-
formance of the initial prediction, and the prediction
for each route segment. (Qi et al., 2018) splits a data
set with real BEV data into 70% for training and 30%
for testing of regression models for the estimation of
the energy consumption, and the symmetric mean ab-
solute percentage error (SMAPE) is used as an error
measure. (Wang et al., 2017) tests only the goodness
of fit of LR models estimating the energy consump-
tion of BEVs. The goodness of fit is measured with
R? and the Akaike information criterion (AIC). From
the article, it can not be determined if the data was
split in training and test sets or whether the goodness
of fit is measured in-sample.

(Thibault et al., 2018) validates a physical model
for the energy consumption with 35 real BEV trips
and SMAPE is used as an error measure. (Wang
et al., 2015) validates a physical model for the en-
ergy consumption with real BEV trips. However, no
error measure for the performance is calculated, but it
is shown that the measured energy consumption lies
within the maximum and minimum values of the pre-
diction. (Genikomsakis and Mitrentsis, 2017) vali-
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dates a physical model for the energy consumption us-
ing simulated data. Driving cycles are used to specify
the velocity profile. MAE, mean squared error (MSE)
and mean absolute percentage error (MAPE) are used
as error measures.

Only a few validation approaches describe a
driver-specific validation of range estimation algo-
rithms. (Ondrdska and Posner, 2014) uses a data set
with 50 different drivers. A separate model is trained
for each driver, in order to predict the energy con-
sumption of a trip. The models are validated with
different sizes of training sets, but always tested on
the whole data set for each driver, i.e. a variable com-
bination of in- and out-of-sample testing. The relative
error is used to measure the performance of the mod-
els.

(Tseng and Chau, 2017) uses randomly selected
80% of collected BEV data to train a regression
model, and the rest is used to test the performance of
the predicted energy consumption. Since the selection
is done randomly, the validation is not driver-specific.
RMSE and the accumulative error over a whole trip
are used as error measures.

Up to now, there is no general methodology for
data selection and validation of range estimation algo-
rithms for driver-specific and driver-unspecific evalu-
ation. Only one or the other is used for the evaluation
of such algorithms. Even though it is important to
evaluate the performance of a range estimation algo-
rithm in the two different use-cases. There is also a
need for a standardized and non-biased error measure
for the evaluation. In addition, the process of split-
ting data samples into a set of training data and a set
of validation data is done randomly, which could lead
to a possible bad distribution of training and valida-
tion data e.g. training on drives with low velocities
and validation on drives with high velocities. Thus,
a data selection method is needed to ensure balanced
training and validation data sets.

In the following, we present a methodology for
the validation process. Covering the data selection
and the standardized training and validation concept
of data-driven learning range estimation algorithms.
Additionally, a universal error measure is introduced
to assess the performance of such algorithms.

3 CONCEPT FOR TESTING
RANGE ESTIMATION
ALGORITHMS

In the context of evaluating the performance of range
estimation algorithms, considerable attention needs to
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Figure 1: Overview of the training and validation methodology for range estimation algorithms.

be paid to the training and validation phase. Thus,
our goal was to create a methodology which enables
the assessment of driver-specific and driver-unspecific
performance. Figure 1 shows an overview of our pro-
posed methodology covering the data selection, split-
ting the data into training and validation sets for the
driver-specific and driver-unspecific validation and
the statistical analysis of the results based on our in-
troduced error measure. In the following, the indi-
vidual methodology steps shown in the Figure will be
described.

To ensure the highest possible realism for train-
ing and validation, we suggest the usage of recorded
real-world data from different drivers. Since driv-
ing style has a significant impact on a vehicles en-
ergy consumption, its inclusion in the validation will
improve the evaluation of the range estimation. On
that account, the accuracy of the range estimation
with consistent driving style can be measured, as well
as its robustness during changes in driving behavior,
such as driver changes. For the driver-specific eval-
uation, we suggest a k-fold cross-validation where
the data set includes only a single driver. For the
general, driver-unspecific evaluation, we suggest a
leave-one-out cross-validation with a data set includ-
ing more than one driver. Both approaches test the
out-of-sample performance, which is always the case
in real applications. Figure 2 shows the concept for
the driver-specific and driver-unspecific evaluation.

3.1 Driver-specific Validation

To evaluate driver-specific performance of a range es-
timation algorithm, it must be ensured that data from
the same driver is used. Due to the protection of pri-
vacy, the driver for certain trips is usually not known.
Also, the driving behavior of a driver could vary be-

tween trips, which could lead to the false assumption
that this data comes from a different driver. There-
fore, we split each recorded real-world drive into seg-
ments for the k-fold cross-validation to ensure that the
same driver is used for training and validation. Fig-
ure 2a shows the procedure exemplary for one trip.
In this scenario, the data is split into kX = 5 segments
and for each iteration, one segment will be used for
the validation and the rest for training. This enables
the assessment of the driver-specific performance of
the used range estimation algorithm on different seg-
ments.

3.2 Driver-unspecific Validation

To evaluate the performance of a range estimation al-
gorithm for the more general case of inconsistent driv-
ing behavior, the validation technique needs to be dif-
ferent from the driver-specific evaluation. To repre-
sent a changing driver or another driving behavior, the
training and validation is done on different trips. To
this end, one complete trip is left out for the valida-
tion, and other trips from the data basis are used for
training. In Figure 2b, an example of the procedure
for five trips is shown. In each iteration, one trip will
be selected for the validation and the rest for train-
ing, leading to five results. The order of trips used for
training is randomized.

3.3 Error Measure

For the evaluation of the performance of the range es-
timation algorithm, a suitable error measure needs to
be chosen or formulated. Since the actual measured
energy consumption could be close to zero for some
segments, because of the ability of BEVs to recuper-
ate energy, the percentage error is not an appropriate
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(a) K-fold cross-validation for driver-specific training and
validation.
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(b) Leave-one-out cross-validation for driver-unspecific
training and validation.
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Figure 2: Exemplary visualization for the k-fold cross-validation and leave-one-out cross-validation for splitting the data into

a training and validation set.

error measure, as the error is divided by the actual
value. The RMSE is not as convenient to interpret as
the MAE, and could over-penalize large errors. Thus,
we introduce our non-biased error measure: The ab-
solute error of the prediction of energy consumption
€ is shown in Equation 1.

Eq—F
. |Ea—E]
N

(D

This is calculated by the absolute difference between
the initial energy consumption prediction E4 of a
range estimation algorithm A4 and the actual measured
energy consumption E normalized by the length of
the validation segment s. The initial prediction for
the energy consumption was chosen due to its impor-
tance for the charge planning at the beginning of each
trip. In addition, the initial prediction is the most chal-
lenging, as it has the longest prediction horizon and
therefore the highest amount of uncertainties. For n
training and validation iterations, the weighted sum &
of the absolute error of the prediction of energy con-
sumption is then calculated. This is shown in Equa-
tion 2.

Zz"lzl € xS

’]‘:1 Sj

The weighted mean absolute error (WMAE) is calcu-
lated for the driver-specific (€y) and driver-unspecific
(€p) validation iterations, which describe the perfor-
mance of 4 in each situation. Through weighting
with the length of the validation segment, the error
measure takes longer trips more into account, which
is reasonable due to the higher difficulty for an ac-
curate initial prediction. Since the driving behavior
influences the learned parameters used for the estima-
tion, only those validation segments should be eval-
uated which require those parameters for the estima-
tion. This prevents validation of the initial parame-
ters, which were not trained during the training phase.
As with all recursive algorithms learning with lots of
data, newer data points have more significance than

é:
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older ones. Thus, to deal with this characteristic be-
havior, it may be reasonable to validate with all pos-
sible permutations of the training data.

In summary our methodology addresses the chal-
lenges identified in state of the art evaluation of range
estimation algorithms: a non-biased validation for the
driver-specific and driver-unspecific performance of
range estimation algorithms with a given error mea-
sure, which evaluates the most challenging predic-
tion for such algorithms, the initial prediction. Dif-
ferent trip lengths are also taken into account for a
significant evaluation. In addition, our methodol-
ogy covers the process of selecting suitable (out-of-
sample) algorithms data for the validation phase for
the driver-specific and driver-unspecific performance
evaluation.

4 EVALUATION

To demonstrate the practicability of our validation
methodology, we implemented a framework for the
evaluation of a range estimation algorithm. Our data
basis consists of 21 recorded real-world test drives
from different drivers. The accumulated length of
the data basis is approximately 2088.03 km. Each
recorded data contains logged signals from the Con-
troller Area Network (CAN). Table 1 gives an infor-
mation overview of the used data.

The data basis was also enriched by external
sources for historic traffic information, which was
used for the range estimation algorithm described in
(Sautermeister et al., 2017). For the k-fold cross-
validation of the driver-specific performance a drive
was splitted into k = 3 segments. In Figure 3, a box
plot shows the calculated absolute error for the driver-
specific, driver-unspecific evaluation and its variance.

The figure shows that for the driver-specific evalua-



Table 1: Overview of the used data for the training and val-
idation evaluation

Number of trips 21
Total length 2088.03 km
Shortest trip 13.87 km
Longest trip 219.93 km
Average length 99.42 km
Average trip length on highway 60.82 km
Average positive slope 0.64°
Average negative slope 1.06°
Average absolute curvature 1.62 rad
Average velocity 67.65 km/h

_|

£ in [kWh/100km]

L

driver — specific driver — unspecific

Figure 3: Box plot showing the absolute error for driver-
specific (€¢) and driver-unspecific (¢g) estimation of energy
consumption.

tion, the absolute error for each iteration of the k-
fold cross-validation has a greater variance than the
error for the driver-unspecific leave-one-out evalua-
tion. Less training data for the driver-specific evalu-
ation may be the cause of this result due to splitting
one trip into a training and validation segment. The
mean training length for the driver-specific evaluation
was 66.29 km compared to 2042.21 km for the driver-
unspecific evaluation.

To further utilize the methodology, we examined
7 different parameter sets such as different learning
rates for the range estimation algorithm. For each
parameter set, we obtained an error measure pair, €y
and €. In Figure 4, each pair was plotted in a scatter
plot to visualize the performance of each parameter
set. The blue line represents the Pareto frontier,
which highlights feasible choices for parameter sets
of the used range estimation algorithm. Therefore,
the best parameter set can be chosen based on
different criteria e.g. the best parameter set for the
driver-specific or driver-unspecific performance. Its
up to the developer to choose the parameter set,
which has the desired performance.
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[kWh/100km]

55 in

Eq in [KWh/100km]
Figure 4: Scatter plot showing the weighted mean abso-
lute errors €y and & for the given parameter set evaluation.
Showing the Pareto frontier for the parameter sets with the
lowest error measure.

To further investigate the performance of spe-
cific parameter sets during the driver-specific and
driver-unspecific evaluation, certain features were
factorial analyzed. For the factorial analysis in-
dependent driving patterns where chosen, which
describe a certain dimension of the driving pattern
in regards to the energy consumption during the
trip. (Ericsson, 2001) worked out 16 driving pattern
factors with significant effect on emissions and
fuel-use for internal combustion engine vehicles.
(Braun and Rid, 2018) further investigated the driving
patterns which influence the energy use of BEVs.
Furthermore (Hu et al., 2017) explored the influence
of driving behavior, personal driving style, traffic
conditions and infrastructure design on the energy
consumption of BEV. Therefore we analyzed 15
features which cover personal driving style, route and
traffic characteristics of the training and validation
data during each iteration. Table 2 shows the chosen
features. Then we analyzed the correlation between
the error measure and absolute difference between
the training and validation data of the features
(AF = |Fr — Fy|) in each iteration. This was done for
the driver-specific and drive-unspecific validation. In
Table 3 the Pearson correlation is calculated to show
the relationship between each feature and the error
measure.

Due to the limited number of data most of the
Pearson correlation coefficients are not significant at
the significance level of 0.05. However, the fea-
tures describing the driving style correlate differently
which substantiates our approach to separately eval-
uate the driver-specific and driver-unspecific perfor-
mance of the range estimation algorithm. In gen-
eral, changes in the route and traffic characteristics
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Table 2: The chosen features for the driving style, route and traffic characteristics that were calculated for each training and
validation data set during each iteration.

Feature Denotation
K> Relative positive acceleration RPA
2 Relative negative deceleration RNA
20 Percentage of time when speed < 2 km/h PC_STOPP
= Percentage of time when va is 3 — 6 m? /s> PCva3_6
3 Percentage of time when acceleration exceeds 2.5 m/s* PC_a25
Relative positive slope RPS
Relative negative slope RNS
f‘s’ Relative absolute curvature RAC
] Percentage of highway PC_H
Average speed limit AVG_SPL
Standard derivation speed limit AVG_SPL
Average ratio of Vousine /Viim' AVG_vOL
S‘:: Standard derivation ratio of vujine /Viim STD_vOL
& Percentage of travel distance where vujine /Viim < 0.5 during the trip  PC_vOL_50

Percentage of travel distance where vV,ujine /Viim > 0.9 during the trip  PC_vOL_90

Ly miine describes the measured average velocity of each segment of a route. vy;, describes the
speed limit of each segment of a route.

Table 3: Pearson correlation coefficient and p-value between features and the error measure for the driver-specific and driver-

unspecific validation.

Pearson correlation coefficient (r)

Pearson correlation p-values

Feature

driver-specific ~ driver-unspecific  driver-specific  driver-unspecific

9 RPA 0.05 0.02 0.73 0.93

z RNA 0.06 —0.03 0.64 0.91

e PC_STOPP -0.12 0.28 0.34 0.21

=  PCwva3 6 —0.05 —0.34 0.71 0.10

S PC_a25 0.13 0.29 0.32 0.21

RPS 0.18 0.34 0.16 0.13

RNS 0.02 —0.10 0.88 0.66

55’ RAC 0.25 0.28 0.05 0.21

e PC_H —0.04 0.35 0.76 0.12

AVG_SPL -0.27 0.31 0.03 0.17

STD_SPL —0.15 0.49 0.23 0.02

AVG_vOL —-0.24 0.47 0.06 0.03

é STD_vOL —0.26 0.41 0.04 0.06

g PCvOLS50 0.05 0.02 0.72 0.93

PC_vOL_90 —0.08 0.13 0.53 0.58

between training and validation tend to be stronger
correlated with the estimation error. Significant re-
sults for AVG_SPL and STD_SPL have a weak op-
positely correlation for the driver-specific and driver-
unspecific evaluation. The same phenomena can be
observed for the significant correlation for AVG_vOL
and STD_vOL. Traffic has a significant influence on
the velocity prediction of such algorithms, hence also
on the estimated energy consumption. This is reason-
able for learning algorithms which tend to perform
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worse in unknown situations and are therefore sensi-
tive for differences in training and validation data.

S CONCLUSION AND FUTURE
WORK

We introduced this contribution with an analysis of
the current challenge of range prediction for bat-



tery electric vehicles.  Depending on different
factors, range estimation requires novel algorithms to
cope with the complexity. Improving the accuracy of
these algorithms is essential to address range anxiety,
which, in turn, is necessary to increase acceptance
of battery electric vehicles. Thus, being able to
measure the accuracy of range estimation algorithms
is of great importance. We analyzed the current
approaches for the training and validation of ML and
non-ML range estimation algorithms. We identified
the demand for a standardized methodology for
the training and validation process to evaluate the
driver-specific and driver-unspecific performance.

We then introduced our data-driven training and
validation methodology of range estimation algo-
rithms, which allows the evaluation of driver-specific
and driver-unspecific performance. Furthermore, an
error measure for such algorithms was introduced,
which is, in contrast to some publications, non-biased
and can handle segments with zero consumption.
Also the focus of the error measure was put on the
most crucial estimation for such algorithms: the ini-
tial prediction. Through weighting with trip length,
shorter and easier estimations carry less weight than
longer and tougher estimation challenges, which al-
lows a more significant evaluation. We presented our
methodology by analyzing a small set of recorded
real-world data. Reusing already recorded data al-
lows easier and faster evaluation of range estimation
algorithms under development. Additionally, we an-
alyzed the correlation between the error measure and
the feature differences in the training and validation
data sets. These features covered the driving style,
route and traffic characteristics. The results can be
utilized to improve the developed range estimation
algorithm in regards to factors which influence the
energy consumption of BEVs. Different results for
the driver-specific and driver-unspecific correlation
such as for the traffic features have shown that our
methodology to evaluate both the driver-specific and
the driver-unspecific performance of a range estima-
tion algorithm is reasonable.

Future work will focus on to further investigate
influences on estimation errors for range estima-
tion algorithms. In addition, the impact of differ-
ent lengths of the training and validation segments
will be evaluated. The steadily increasing database
of recorded real-world data requires exhaustive eval-
uation. Therefore, concepts for coping with the eval-
uation of a larger data basis need to be addressed. The
recent trend of fog computing, especially in the auto-
motive industry, might offer a scalable and more cen-
tralized computing architecture for computing com-
plex algorithms or their evaluations in the cloud (Xiao
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and Zhu, 2017). Further analysis of the data regarding
test coverage is reasonable, due to planning future test
drives to collect novel data. Thus, features to describe
and categorize these data sets need to be developed.
Data-driven approaches can be used to select drives
for a minimal test set for the validation of range es-
timation algorithms. Execution time for computing
evaluations can be reduced by using these minimal
test sets instead of running evaluations on the whole
data basis. They can also be used in automated pa-
rameter optimization, to further increase the accuracy
of range estimation algorithms.
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