
Amniote: A User Space Interface to the Android Runtime

Zachary Yannes a and Gary Tyson
Department of Computer Science, Florida State University, Tallahassee, U.S.A.

Keywords: Android, Zygote, Runtime, Dalvik, Virtual Machine, Preloading, ClassLoader, Library.

Abstract: The Android Runtime (ART) executes apps in a dedicated virtual machine called the Dalvik VM. The Dalvik
VM creates a Zygote instance when the device first boots which is responsible for sharing Android runtime
libraries to new applications.
New apps rely heavily on external libraries in addition to the runtime libraries for everything from graphical
user interfaces to remote databases. We propose an extension to the Zygote, aptly named Amniote, which
exposes the Zygote to the user space. Amniote allows developers to sideload common third-party libraries
to reduce application boot time and memory. Just like the Android runtime libraries, apps would share the
address to the library and generate a local copy only when one app writes to a page.
In this paper, we will address three points. First, we will demonstrate that many third-party libraries are
used across the majority of Android applications. Second, execution of benchmark apps show that most
page accesses are before copy-on-write operations, which indicates that pages from preloaded classes will
infrequently be duplicated. Third, we will provide a solution, the Amniote framework, and detail the benefits
over the traditional Zygote framework.

1 INTRODUCTION

Recent studies have shown that Android devices have
maintained substantially higher market shares com-
pared to iOS, Windows, Blackberry, and other oper-
ating systems (Katariya, 2017). With the increase of
Android devices, application development has also in-
creased. A recent report by AppBrain shows that as of
January 1, 2018, there are roughly 3.5 million appli-
cations in the Google Play Store. The growing trend
of Android development indicates that it is an ideal
candidate for research.

Android applications contain a combination of
Java bytecode, native code, and resource files. Un-
like traditional Java applications, Android apps exe-
cute in a dedicated virtual machine called DalvikVM.
DalvikVM has several unique features tailored to-
wards mobile devices which have less resources than
those of a laptop or desktop computer. For example,
Dalvik VMs utilize a register-based construct rather
the stack-based execution of traditional Java VMs.
This improves execution speed and reduces the com-
plexity of switching between applications.

The primary difference between DalvikVM and
traditional VMs is the Zygote. The zygote process,

a https://orcid.org/0000-0003-3098-0807

which is started after the kernel is loaded, preloads
common runtime classes and resource files from the
Android and javax packages into a read-only boot im-
age. When a new application is ready to launch, zy-
gote forks a new VM and starts the process. The new
app contains a reference to the boot image rather than
a full copy. This allows multiple applications to share
common classes and resource files, reducing memory
utilization.

The Android kernel employs a copy-on-write me-
chanism for the boot image. Whenever an application
writes to an address mapped to the shared boot im-
age, the kernel copies that page to that application’s
address space. This allows each application to main-
tain a local copy of written pages.

Since the initial Android version release in 2009,
Google has released 14 versions, with the newest, Pie,
currently in beta (Wikipedia, 2018). This is a rapid
development cycle for a relatively new operating sys-
tem. To keep up with the rapid changes to the An-
droid API, Google released a dedicated integrated de-
velopment environment (IDE), Android Studio. An-
droid Studio provides support for Maven reposito-
ries, which simplifies the process of linking to exter-
nal libraries. This caused a paradigm shift of rely-
ing on third-party libraries for common Android util-

Yannes, Z. and Tyson, G.
Amniote: A User Space Interface to the Android Runtime.
DOI: 10.5220/0007715400590067
In Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2019), pages 59-67
ISBN: 978-989-758-375-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

59

ities such as graphic user interfaces (GUI) (Android,
2018a; Android, 2018e; Android, 2018f), data stor-
age mechanisms (Google, 2018b; Google, 2018c; An-
droid, 2018c), and code annotations (Android, 2018d;
Google, 2018a; Android, 2018b).

There has been widespread adoption of many
third-party libraries which are utilized by a large num-
ber of Android applications. Not only does this re-
duce coding time but it also provides an opportu-
nity optimization. Just as the Android/javax runtime
classes and resource files are referenced by many ap-
plications, so are the classes and resource files in a
number of third-party libraries.

The other option is to extend the functionality of
the zygote process to the user space. The ability to ap-
pend classes and resource files to the zygote process’s
memory space from user space would open up many
avenues for optimization. Therefore, we introduce a
framework called Amniote which provides methods
of managing the zygote’s boot image from the user
space. The Amniote framework also contains utilities
for calculating common classes between a large set of
applications.

The Amniote framework could also benefit mo-
bile device vendors and Android Things developers.
Mobile vendors often fork Android with customized
launchers, stock applications, and power monitoring
(Peters, 2017). The applications in these forked An-
droid versions likely share proprietary code which
would benefit from adding to the boot image. An ad-
ditional benefit would be quicker deployment of new
Android version. Instead of vendors implementing
optimizations on the operating system, “profile” ap-
plications could be written which optimize the zygote
boot image depending on the type of applications the
user will be running. Similarly, Android Things de-
velopers deploy applications with a specific suite of
required libraries.

The remainder of this paper is organized as fol-
lows. In sections 2 and 3 we describe Java’s Class-
Loader and how it can benefit from prefetching in
both traditional Java VMs and in Android’s Dalvik
VMs. In section 4, we further explain the zygote pro-
cess. In section 5, we analyze the commonly used
third-party classes across a large sample of open-
source applications. In Section 6, we evaluate the
executions of applications in the Agave benchmark
suite and stock Android applications. In Section 7,
we describe the Amniote framework. In Section 10,
we conclude our findings and discuss future work on
this topic.

2 THE JAVA ClassLoader

Java VMs rely on a boot classpath which con-
tains paths to all Java class files. This allows Java
to support lazy loading, where classes are loaded
on-demand via a ClassLoader (Liang and Bracha,
1998). ClassLoaders also provide support for mul-
tiple namespaces, which allows a VM to have non-
unique class names which are resolved by unique
package namespaces. For example, the Android SDK
provides the class android.app.Application contain-
ing generic app data that is frequently extended to
contain app-specific data. In this case, the system
ClassLoader will resolve the Android SDK’s Appli-
cation while a second application ClassLoader will
resolve the

As shown in (Liang and Bracha, 1998), Class-
Loaders are typically implemented with a cache of
loaded class data referenced by the class name. For
example, when the application requires a specific
class for the first time, a ClassLoader searches the
classpath for the class file, loads the class file into
memory, and adds an entry into the ClassLoader’s
cache. Each subsequent use of that class then utilizes
the class data found in the ClassLoader’s cache.

3 PREFETCHING

ClassLoaders demonstrate a common cache problem
where compulsory (or cold) misses accumulate since
the cache is initially empty and the first reference of
a class results in a cache miss. To circumvent this
problem, prefetching fills the cache with classes it will
likely access to avoid costly searches and disk I/O op-
erations. Cache prefetching is not a new solution. In
fact, preloading process works for both hardware and
software caches. Yet we limit the scope of this paper
to software caches.

3.1 Java VM Prefetching

An early approach, greedy prefetching, was used in
(Luk and Mowry, 1996) for recursive C program
data structures. This was later extended in (Cahoon
and McKinley, 1999) to Java programs, using intra-
procedural data flow analysis to detect objects to
prefetch. Their approach demonstrates the effective-
ness of greedy prefetching which relies upon inlining
to remove unnecessary method calls. We will use a
similar approach in Amniote to prefetch third-party
library classes.

Zaparanuks et. al present a Markov predictor
for speculative class-preloading (Zaparanuks et al.,

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

60

2007). Using a Markov predictor allows accurate
prediction of which classes should be preloaded and
when is the best time to do so. A similar approach is
taken by (Fulton, 2016). While these are novel and
robust methods, they only preload classes available
in the application. Android apps have the capability
of linking to third-party libraries in external jar files
which would have to be located and extracted first.

3.2 Dalvik VM Prefetching

In Android’s Dalvik VM, the class files are precom-
piled into bytecode or native code and packaged into
DEX, OAT, APK, or JAR files. This provides the ex-
ecutable resources in a compressed format that saves
space on resource-limited mobile devices.

The Android Runtime (ART) executes Android
apps quite differently from traditional Java applica-
tions. Primarily, ART is typically executing many
apps, via Dalvik VMs, concurrently. Each time an
app references a new class it results in a compulsory
miss, requiring all needed class data to be copied into
the process’s virtual memory.

Unlike the previous implementations the Dalvik
VM contains a naive prefetching mechanism, initiated
by the zygote process, to mitigate these compulsory
misses. A file containing common Android and javax
runtime classes, preloaded-classes is read by the zy-
gote when preloading. The preload-classes text file
is created by running class dependency analysis on a
stock set of applications. These preloadable classes
are contained in a precompiled system boot image,
boot.art. While this suffices for executing stock apps,
it does not fully exploit the frequency of third-party
library classes.

ClassLoaders provide the opportunity to load fr-
om third-party libraries dynamically. Maly et. al uti-
lized ClassLoaders to dynamically load modules in
Android apps (Maly and Kriz, 2015). They posit that
Android apps can contain the main application logic
while business logic, which is often changing, can be
dynamically loaded in a context-aware adaptable en-
vironment. This allows changes to be continuously
deployed on the device without any user interaction,
such as through manually upgrading the application
through the Play Store.

These previous works demonstrate preloading and
dynamic loading of Java libraries via ClassLoaders.
Yet there is an untapped opportunity for optimization
with third-party libraries. This paper is an attempt
to address this issue by employing a novel frame-
work, Amniote, which decreases overall cache com-
pulsory misses by preloading commonly used library
classes. But since the number of overlapping libraries

is constantly changing based on the user’s application
preferences, it is difficult to determine which library
classes should be preloaded. Therefore, Amniote pro-
vides a dynamic preloading mechanism to user space
so developers can exploit app category profiles. Our
profiles are constructed based on app categories such
as games, internet, and navigation, but could be based
on any suite of apps.

4 ANDROID ZYGOTE PROCESS

The Android Runtime (ART) uses Dalvik VMs to
execute application code. When the device finishes
booting, the first process to start is the Zygote process.
The zygote process then starts the preloading mech-
anism discussed in section 3.2. The zygote process
then acts as a server, responding to incoming requests
to launch applications, and forking virtual machines
to fulfill the requests.

When a new process is forked, the boot class-
path contains the app code along with the zygote’s
boot.art. Since applications are stripped of the com-
mon Android runtime libraries, they are instead found
in boot.art when an Android runtime class is refer-
enced.

Android’s Linux kernel is responsible for per-
forming the copy-on-write when an application tries
to write data to the boot.art space. Since the virtual
memory address (VMA) of the boot.art data is marked
as read-only, a write is redirected to an anonymous
VMA owned by the application. Any consecutive
reads would then be performed with the anonymous
VMA instead of the zygote’s boot.art VMA.

Using a copy-on-write mechanism allows the co-
mmon classes to be initially shared by any applica-
tions, at the expense of copying a page when a write
occurs. Initially, this requires a much lower amount
of memory for all the applications to access these
classes. However, as the number of unique page
writes increases, the memory required will increase
since each application maintains its own copies. The
worst case scenario is every application performs a
complete copy of the entire class. Then the read-only
copy managed by the zygote is eventually useless and
still held in memory. Therefore, copy-on-write must
be used carefully to avoid such a scenario.

Amniote: A User Space Interface to the Android Runtime

61

Figure 1: Distributions of Third-Party Classes across App Categories.

5 THIRD-PARTY LIBRARY
ANALYSIS

The Amniote framework operates on the basis that
many third-party libraries are depended on by many
different applications. In order to determine this, we
analyzed a large dataset of open-source apps pulled
from fdroid.org (fdr, 2018). Each app was sorting
into one of the following 16 categories: Connectiv-
ity, Games, Graphics, Internet, Money, Multimedia,
Navigation, Phone & SMS, Reading, Science & Edu-
cation, Security, Sports & Health, System, Theming,
Time, and Writing. Using the AOSP tool, dexdump,
we determined the third-party library classes required
by each app. Each library class was counted over all
apps in each category.

Figure 1 shows the resulting probability distri-
butions of third-party library classes being refer-
enced in apps across 16 app categories. While
a third-party class is only used by 17.8% of ap-
ps in each category on average, several classes
are used by the majority of apps in a category.
For example, the android.support.v4.app.Fragment
class is reference by 66% of the apps in the In-
ternet category. This class provides functional-
ity for displaying a portion of an Activity’s user
interface (Android, 2018g). Additionally, the
android.support.v4.view.ViewPager$SavedState class
has a probability of 64% being referenced in Sports

& Health apps.
By splitting the apps into categories, we can create

app category “profiles”. These profiles will contain
a precompiled list of classes with a high-probability
of reference for a given category. Category pro-
files could be used by vendors or developers to cre-
ate app launchers or lock screens that preload com-
mon classes. For example, a user frequently uses
Internet-based applications such as Google Chrome
and Gmail. The user could then switch to an Inter-
net app launcher that preloads the Internet category
profile. The categories do not necessarily have to be
exclusive either. A category could pertain to a specific
user’s morning routine. For example, checking a mes-
saging app, followed by an email app, followed by a
news feed app. Since the app classes are available
before runtime, the preload classes candidates can be
selected ahead-of-time either offline or on the device.

6 APPLICATION EXECUTION
ANALYSIS

The current Dalvik VM utilizes copy-on-writes to du-
plicate modified pages to the app’s virtual address
space before applying changes. While preloading
classes reduces compulsory cache misses, there is a
tradeoff with memory consumption as the ratio of
CoWs to page accesses increases. The greater the ra-

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

62

Figure 2: Ratio of Page Access and CoW Operations Per Benchmark.

tio, the more apps will produce local page copies and
less references will be made to the shared page. In
order to evaluate the CoW-to-page access ratio, we
analyze the execution of apps in the Agave Android
benchmark suite (Brown et al., 2016). The Agave
benchmark suite provides 14 apps across multiple app
categories.

The Agave benchmarks were executed on Android
with a modified Linux kernel 3.14 using a modified
Gem5 simulator (Binkert et al., 2011). The Linux ker-
nel was modified to support gem5 operations and pro-
vide size information for different kernel structures.
The gem5 simulator was modified to monitor for page
access and CoW operations.

The total number of page access and copy-on-
write operations were calculated for each benchmark.
Figure 2 shows the ratio of the page access operations
to CoW operations per Agave benchmark app. The
percentage of CoW operations is consistent in each
benchmark at roughly 10%. This indicates that on av-
erage an app only copies 10% of the memory from the
shared boot classpath. Clearly the remaining 90% of
shared memory accesses can be exploited by preload-
ing the shared memory. The app category profiles dis-
cussed in Section 5 can be used to determine which
classes to preload into shared memory.

7 THE AMNIOTE FRAMEWORK

In this section, we describe the implementation and
capabilities of the Amniote framework.

Amniote is implemented as a userspace layer over

the Zygote1. The Amniote framework is implemented
over the AOSP Android 6.0.1 written primarily in
C++, with the userspace library implemented in Java.

The purpose of the Amniote framework is to man-
age a secondary shared address space that can be ma-
nipulated from userspace, unlike the Zygote shared
address space which is read-only after the Zygote pro-
cess is initialized. From the perspective of the Dalvik
VMs, there will still be a single boot classpath to
find system libraries. Amniote modifies the secondary
address space by communicating with the Zygote’s
socket. When Amniote sends an add image or remove
image command to the Zygote socket, it also sends
the path to the image file. The Zygote process has
been modified to append this image to the secondary
boot classpath. Similarly, when a preload or unload
command is sent, the classSignature is also sent, and
then either preloaded or unloaded, respectively, using
the method currently available for the first boot class-
path.

Amniote is initialized as the system server is
started by the Zygote. Upon creation, a secondary
shared address space is created and added to the de-
fault bootpath. Figure 3 shows the basic Amniote
framework fields and methods. From user space,
apps can get an instance of Amniote by executing
Amniote.getInstance(). Then an app can add or re-
move a DEX, JAR, APK, or OAT image to Amniote’s
classpath with addImage(..) or removeImage(...), re-
spectively. Adding an image checks that the image

1The Amniote framework is named after the biological
term amniotic sac which contains the embryo after the zy-
gote implants in the uterus.

Amniote: A User Space Interface to the Android Runtime

63

Figure 3: Amniote Framework.

file exists before appending to the classpath. Next,
preload(...) or unload(...) can be called to preload or
unload a specific class, respectively. Once a class is
preloaded, a reference from any app will find the class
in the shared address space as if it were preloaded by
the zygote process. If an application makes a write to
a page in the shared address space, it will perform a
copy into the apps’s address space through the Linux
copy-on-write mechanism.

Figure 4: Example of the Amniote Framework.

Figure 4 shows an example usage of the Amniote
framework. In step 1, the device boots up, starting
the zygote process. The zygote process initializes the
bootclasspath and preloads the default classes. In step
2, two different apps are launched, each containing
their own classpaths, but also sharing the bootclass-
path. In step 3, App 1 adds a local apk to the shared

bootclasspath. Next, the Fragment class is preloaded.
In step 4, a third app is launched. Three running
apps can reference any of the preloaded classes in the
shared bootclasspath, including the Fragment class
preloaded by App 1. Additionally, each app can still
access their private classpaths. Finally, in step 5, App
1 removes the Fragment class the local apk. Note that
App 1 adds and removes the local image file because
the image is in a private directory. However, if the im-
age is in a directory readable by any process, such as
on the sdcard, then any app could add or remove the
image to the bootclasspath.

One side effect of using Amniote is that APKs
do not need to include external libraries. Com-
mon libraries such as com.android.support.* and
com.google.android.material.* which are frequently
utilized in applications need only be stored on the de-
vice once. This greatly reduces APK code size and
disk utilization on the device. Furthermore, it solves
the common method count limit when targeting older
APIs. In order to support this, libraries are stripped
out from the APK via Proguard during packaging and
deployed through the mechanisms discussed in Sec-
tion 9.

8 AMNIOTE ANALYSIS

The benefits of the Amniote Framework are most
prevalent when multiple apps are running that utilize
the same classes. Amniote can preload the overlap-
ping classes to reduce memory usage.

In order to test the effectiveness of the Amniote
Framework, we evaluated the third-party library us-
age across 9 apps which were hand-classified into
three different categories (TeamAmaze, 2019; fed-
ericoiosue, 2019; k9mail, 2019; byoutline, 2018;
TeamNewPipe, 2019; nickbutcher, 2019; Antenna-
Pod, 2019; esoxjem, 2018; videolan, 2019). Ta-

Table 1: A suite of benchmarks classified into categories.
Category Benchmark Description

Phone & SMS
AmazeFileManager Show files and directories

in root directory of sdcard.

Omni Notes Create and save new
checklist with a single item.

K9 Mail Attempt to login with
sample username and password.

Internet
Kickstarter Display list of sample

kickstarter campaigns.

NewPipe Fetch and display list
of recent Youtube videos.

Plaid Fetch and display recent
blog posts about material design.

Multimedia
AntennaPod Fetch and display list of available

podcasts and select an item.

MovieGuide Fetch and display list of recent
movies and select an item.

VLC Play sample 5 second video.

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

64

Table 2: The total and overlapping library class count for
each category and the total size of the duplicated classes in
bytes.

Category Total Library
Class Count

Overlapping Library
Class Count

Size of Duplicated
Classes (in B)

Productivity 2318 27 126054
Social 5014 97 3388
Media 2451 205 6986

ble 1 shows the benchmark apps in each category
and provides a description of each benchmark. The
benchmarks were selected based on releasing versions
within the last year and utilizing third-party libraries.
Additionally, we only chose apps for a category that
provide unique functionality and would likely be run
sequentially by the user. For example, consider the
Productivity category consisting of AmazeFileMan-
ager, Omni Notes, and K9 Mail. A user might cre-
ate a todo list with Omni Notes, and then open a file
in AmazeFileManager, and finally share that file over
email via K9 Mail. When a user sequentially runs
apps, the Android Runtime maintains the virtual ma-
chine running each app unless the user explicitly exits
the app or the device runs out of resources required to
run the app. Therefore, it is probable to have multiple
running apps in the same category.

Since the effectiveness of Amniote is determined
by the number of accesses to overlapping third-party
libraries, we modified the Android OS to log every
access to a library class.

Each benchmark app was executed on the modi-
fied Android OS using the Android Emulator. Then,
for each category, the total set of third-party library
classes and the union set of third-party library classes
were determined. Table 2 shows the total third-party
library class count and the overlapping third-party li-
brary class count for each category. The table shows
between 1.9% and 8.3% of third-party classes are du-
plicated across each category. The more interesting
result is the amount of memory consumed by dupli-
cate classes. For example, in the Productivity cate-
gory, the 27 classes that overlap result in 123 KB of
unnecessary memory consumption that would be pre-
vented by Amniote.

While the results of our experiment demonstrate
a benefit for employing the Amniote Framework, our
benchmarks were designed to perform a single task.
Real-world users are likely to use an app to do more
than one task. In fact, as a user runs more concur-
rent apps, the Amniote Framework could potentially
reduce total memory usage even further.

9 DISCUSSION

In section 2, we discussed how Java ClassLoaders can
load non-unique classes as long as they are contained
in different package namespaces. This produces a
unique ClassLoader entry for each class in each pack-
age namespace. However, since third-party libraries
are compiled directly into Android apps, the apps on
a device may depend on conflicting library versions.
Since each Dalvik VM uses an local app ClassLoader
to resolve these library classes, there are currently no
issues. But when the library classes are linked via the
system ClassLoader instead of the app ClassLoader,
non-unique classes will produce a conflict.

The current Amniote implementation has no ver-
sion control for libraries. In other words, it is assumed
that the libraries shared amongst applications are all
using the exact same version. Yet this is rarely the
case. We present three possible solutions to the ver-
sioning problem, each putting the responsibility on a
different party with different levels of practicality.

The first possibility is for the Play Store to per-
form library dependency analysis and to hold or lock
new app versions until all the apps using a specific li-
brary use the same version. This puts the onus of ver-
sion control on the Google Play Store. For example,
App A and App B rely on a library. App A releases a
new version that depends on library version 2.0, while
App B depends on library version 1.0. The Play Store
would hold App A until App B releases a new version
depending on library version 2.0. Clearly this would
cause many problems. If the developers for App B
never released a new version, App A would never be
released. It is simply too impractical to rely on the
continuous deployment cycles of apps.

The second possibility is for Amniote to perform
the library dependency analysis to find the great-
est overlapping version numbers of each library and
only include those library versions when prefetching.
While this solves the problem of library compatibility
and eliminates any responsibility from app and library
developers, it significantly decreases the effective-
ness and greatly increases the complexity of Amniote.
Every image that is added to Amniote requires re-
running dependency analysis, adding additional run-
time and memory requirements. Furthermore, many
potential libraries could be excluded due to a version
mismatch. In extreme cases, an image may contain all
version mismatches and be completely incompatible.

The final and most practical solution is to provide
library support in the Google Play Store. Having the
Play Store support libraries would share the responsi-
bility between the library and Google Play Store de-
velopers, instead of the app developer. As long as the

Amniote: A User Space Interface to the Android Runtime

65

library has backwards compatibility, new versions can
be deployed on the Play Store and automatically up-
dated via the Play Store update protocol. The Google
Play Store could also provide support for live updates
by simply having Amniote reload any classes imple-
mented by the new library, which would be immedi-
ately reflected in individual apps. Linking libraries
through the Google Play Store has the added bene-
fit of security. Since all applications now utilize the
same library version, it is easier to ensure the library
is directly from the vendor and has not been tampered.

10 CONCLUSION AND FUTURE
WORK

In this paper we discussed the growing dependency
of third-party libraries in Android apps. We demon-
strated that many third-party library classes are ref-
erenced by the majority of apps in their specific app
category. We then showed that the probability distri-
bution of third-party classes can be used to construct
an app category profile which statistically informs our
decision to preload a given class.

Next we evaluated the execution of apps in the
Agave benchmark suite on a modified gem5 simu-
lator. The simulations demonstrated that only a rel-
atively small proportion of operations are copy-on-
writes compared to page accesses.

Finally we introduced the Amniote framework, a
user-space interface to the Dalvik VM. Amniote pro-
vides a simple interface for dynamically adding and
removing a variety of image files to the shared boot
classpath, as well as preloading or unloading spe-
cific classes. This framework provides developers and
vendors greater opportunity for fine-tuning a device
based on user preferences.

In the future we plan to extend the Amniote frame-
work with several additional features.

First, we will define a file format for the app cate-
gory profiles and provide direct support for these files.
Then the preloading would be performed automati-
cally by providing the image file and the profile file.

Second, we plan to provide support for resource
files in addition to classes. The naive preloader in the
Dalvik zygote process preloads classes and resource
files, which Amniote can easily extend.

Third, our evaluations used a large, but static
dataset of benchmark apps for selecting preloading
class candidates. In reality, a user may have more
variability in the apps executed such that the user may
run apps across multiple categories in a single session.
In order to target this use case, machine learning could
be utilized to dynamically build the category profiles.

Finally, we plan to develop the Library Play Store
discussed in Section 9. One benefit of Amniote is that
app developers no longer need to focus on third-party
libraries. Library version updates and library version
interdependencies are no longer a concern since the
libraries are stripped from the APK and installed in-
dependently.

The Library Play Store would provide a single
repository for libraries which would additionally add
security and a possibility for live updates. This would
move Android development one step closer to liquid
software deployment, a conceptual goal of continuous
deployment proposed by Gallidabino et. al (Gallid-
abino et al., 2017). Each entity involved in the final
product, the app developers and the library develop-
ers, could independently deploy updates without con-
cerning themselves with the updates of dependencies.

REFERENCES

(2018). F-droid. https://f-droid.org/en/. Online; accessed
30-April-2018.

Android (2018a). Android AppCompat Library V7.
https://mvnrepository.com/artifact/com.android.
support/appcompat-v7. Accessed: 2018-11-26.

Android (2018b). Android Room Compiler.
https://mvnrepository.com/artifact/android.arch.
persistence.room/compiler. Accessed: 2018-11-26.

Android (2018c). Android Room Runtime.
https://mvnrepository.com/artifact/androidx.room/
room-runtime. Accessed: 2018-11-26.

Android (2018d). Android Support Library Annotations.
https://mvnrepository.com/artifact/com.android.
support/support-annotations. Accessed: 2018-11-26.

Android (2018e). Android Support Library V4.
https://mvnrepository.com/artifact/com.android.
support/support-v4. Accessed: 2018-11-26.

Android (2018f). Android Support RecyclerView
V7. https://mvnrepository.com/artifact/com.android.
support/recyclerview-v7. Accessed: 2018-11-26.

Android (2018g). Fragments — Android Developers.
https://developer.android.com/guide/components/
fragments. [Online; accessed 2018-11-26].

AntennaPod (2019). AntennaPod. https://github.com/
AntennaPod/AntennaPod. [Online; accessed 20-Feb-
2019].

Binkert, N., Beckmann, B., Black, G., Reinhardt, S., Saidi,
A., Basu, A., Hestness, J., Hower, D., Krishna, T., Sar-
dashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N.,
Hill, M., and Wood, D. (2011). The gem5 simula-
tor. ACM SIGARCH Computer Architecture News,
39(2):1–7.

Brown, M., Yannes, Z., Lustig, M., Sanati, M., McKee,
S., Tyson, G., and Reinhardt, S. (2016). Agave: A
benchmark suite for exploring the complexities of the
android software stack. In Performance Analysis of

ENASE 2019 - 14th International Conference on Evaluation of Novel Approaches to Software Engineering

66

Systems and Software (ISPASS), 2016 IEEE Interna-
tional Symposium on, pages 157–158. IEEE.

byoutline (2018). Kickmaterial. https://github.com/
byoutline/kickmaterial. [Online; accessed 20-Feb-
2019].

Cahoon, B. and McKinley, K. S. (1999). Tolerating latency
by prefetching java objects. In Workshop on Hard-
ware Support for Objects and Microarchitectures for
Java. Citeseer.

esoxjem (2018). MovieGuide. https://github.com/
esoxjem/MovieGuide. [Online; accessed 20-Feb-
2019].

federicoiosue (2019). Omni-Notes. https://github.com/
federicoiosue/Omni-Notes. [Online; accessed 20-Feb-
2019].

Fulton, M. S. (2016). Conservative class preloading for real
time java execution. US Patent 9,477,495.

Gallidabino, A., Pautasso, C., Mikkonen, T., Systä, K.,
Voutilainen, J.-P., and Taivalsaari, A. (2017). Archi-
tecting liquid software. J. Web Eng., 16(5&6):433–
470.

Google (2018a). Dagger. https://mvnrepository.com/
artifact/com.google.dagger/dagger. Accessed: 2018-
11-26.

Google (2018b). Firebase Database.
https://mvnrepository.com/artifact/com.google.
firebase/firebase-database. Accessed: 2018-11-26.

Google (2018c). Firebase Firestore.
https://mvnrepository.com/artifact/com.google.
firebase/firebase-firestore. Accessed: 2018-11-26.

k9mail (2019). K-9. https://github.com/k9mail/k-9. [On-
line; accessed 20-Feb-2019].

Katariya, J. (2017). Apple Vs. Android.
https://android.jlelse.eu/apple-vs-android-a-
comparative-study-2017-c5799a0a1683. [Online;
accessed 1-August-2018].

Liang, S. and Bracha, G. (1998). Dynamic class loading
in the java virtual machine. Acm sigplan notices,
33(10):36–44.

Luk, C.-K. and Mowry, T. C. (1996). Compiler-based
prefetching for recursive data structures. In ACM
SIGOPS Operating Systems Review, volume 30,
pages 222–233. ACM.

Maly, F. and Kriz, P. (2015). Techniques for dynamic de-
ployment of modules in context-aware android appli-
cations. In Computational Intelligence and Informat-
ics (CINTI), 2015 16th IEEE International Sympo-
sium on, pages 107–111. IEEE.

nickbutcher (2019). Plaid.
https://github.com/nickbutcher/plaid. [Online;
accessed 20-Feb-2019].

Peters, A. (2017). How Android Differs De-
pending on the Hardware Manufacturer.
https://www.makeuseof.com/tag/android-differs-
hardware-manufacturer/. Accessed: 2018-11-26.

TeamAmaze (2019). AmazeFileMan-
ager. https://github.com/TeamAmaze/
AmazeFileManager. [Online; accessed 20-Feb-
2019].

TeamNewPipe (2019). NewPipe. https://github.com/
TeamNewPipe/NewPipe. [Online; accessed 20-Feb-
2019].

videolan (2019). VLC. https://github.com/videolan/vlc.
[Online; accessed 20-Feb-2019].

Wikipedia (2018). Android version history.
https://en.wikipedia.org/wiki/Android version history.
[Online; accessed 2-April-2018].

Zaparanuks, D., Jovic, M., and Hauswirth, M. (2007). The
potential of speculative class-loading. In Proceed-
ings of the 5th international symposium on Principles
and practice of programming in Java, pages 209–214.
ACM.

Amniote: A User Space Interface to the Android Runtime

67

