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Abstract: Deep Neural Networks have been increasingly used in decision support systems, mainly because they are
the state-of-the-art algorithms for solving challenging tasks, such as image recognition and classification.
However, recent studies have shown these learning models are vulnerable to adversarial attacks, i.e. attacks
conducted with images maliciously modified by an algorithm to induce misclassification. Several works have
proposed methods for defending against adversarial images, however these defenses have shown to be ineffi-
cient, since they have facilitated the understanding of their internal operation by attackers. Thus, this paper
proposes a defense called MultiMagNet, which randomly incorporates at runtime multiple defense compo-
nents, in an attempt to introduce an expanded form of non-deterministic behavior so as to hinder evasions by
adversarial attacks. Experiments performed on MNIST and CIFAR-10 datasets prove that MultiMagNet can
protect classification models from adversarial images generated by the main existing attacks algorithms.

1 INTRODUCTION

The advances that Deep Neural Networks have pre-
sented in recent years has been impulsed mainly by
the increasingly necessity to analyse and interpret a
massive and diversified amount of data (Obermeyer
and Emanuel, 2016). Currently, information systems
which make use of intelligent resources to support de-
cisions in safety-critical environments involving com-
puting vision tasks, such as (i) biometric recognition
for users authentication (Derawi et al., 2010) (Bae
et al., 2018), (ii) identification of handwritten dig-
its or characters (Srivastava et al., 2019) (Tolosana
et al., 2018) and (iii) surveillance systems (Ding et al.,
2018), are among the various applications of Deep
Neural Networks.

Nevertheless, recent work have demonstrated that
the performance of Deep Neural Networks, which
can even overcome the human perception (Karpathy,
2014), has significant drop in face of adversarial im-
ages (Szegedy et al., 2013) (Goodfellow et al., 2015)
(Papernot et al., 2016a) (Carlini and Wagner, 2017c).
Adversarial images contain malicious perturbations
generated by an attack algorithm, usually minimal
and imperceptible to human eyes, but can lead learn-
ing algorithms to misclassification. This attack is
known as adversarial attack (Madry et al., 2017). The

facility that attackers have into fooling classifiers can
result in wide-range losses and accidents in real world
scenarios, menacing the use of these learning mod-
els on several security-critical applications (Klarreich,
2016).

In order to minimize the harmful effects of the
adversarial attacks, several defenses have been pro-
posed. Many defense approaches consist of detect-
ing the existence of possible perturbations in im-
ages before they misclassify learning models (Xu
et al., 2018) (Gong et al., 2017) (Metzen et al., 2017)
(Hendrycks and Gimpel, 2017). However, works
such as (Carlini and Wagner, 2017a) and (He et al.,
2017) have demonstrated that these defenses have
limitations in terms of (i) their ability to detect ad-
versarial images generated by diferent attacks algo-
rithms and/or (ii) their utilization of deterministic
approaches, i.e. defenses that, at each execution,
always uses the same procedure, which facilitates
the attacker’s understading of the defense’s modus
operandi.

As a means of reducing the dependence of the de-
fense for specific attack algorithms and hindering the
prediction of its behaviour by the attacker, a recent
work has developed a defense, called MagNet (Meng
and Chen, 2017). MagNet is a non-deterministic de-
fense which randomly chooses at runtime a compo-
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Figure 1: An example of a CNN containing several convolutional layers.1

nent, used to compute a threshold needed to classify
the input images as legitimate or adversarial. After-
wards, the images classified as legitimate are recon-
structed by another component before being sent to
the classifier. Despite presenting some promising re-
sults before various adversarial attacks, (Carlini and
Wagner, 2017b) have shown that, even with the non-
deterministic effect provided by the random selection
of a defense component, MagNet can be evaded by
adversarial images. Thus, this work raises the hypoth-
esis that the selection of multiple defense components
can amplify the non-deterministic effect, reducing the
predictability of the defense method’s behaviour, be-
coming it more robust than MagNet against different
adversarial attacks algorithms.

Therefore, this paper proposes MultiMagNet, an
adversarial image detection method which arranges
ensembles at runtime by randomly choosing multiple
defense components, implemented as autoencoders.
Experiments performed on MNIST (LeCun et al.,
1998) and CIFAR-10 datasets (Krizhevsky and Hin-
ton, 2009) indicate the veracity of the hypothesis by
showing that MultiMagNet has presented better re-
sults than MagNet in the majority of attack scenarios
evaluated.

This paper is structured as follows: Section 2
brings the needed background to understand the work.
Section 3 summarizes the main defense methods
against adversarial images available in literature. Sec-
tion 4 details the proposed defense method. Section
5 describes the experiments performed and discusses
the obtained results. Finally, Section 6 brings the final
considerations, highlights the main contributions of
this work and indicates suggestions for future works.

2 BACKGROUND

2.1 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs), a spe-
cial type of Deep Neural Network, are the state-of-
the-art learning models in image classification and
recognition tasks (He et al., 2016) (Hu et al., 2017)
and, for this reason, they have become the prime tar-
get of adversarial attacks. The CNNs, unlike the con-
ventional neural networks, are able to learn automat-
ically the main features of a image by reducing its
representation space. After the extraction of the most
important features, the fully-connected layer acts in a
way similar to a regular neural network, with the dif-
ference of producing as an output the probabilities of
the input image belonging to each class of the prob-
lem being studied. These probabilities are computed
using the softmax function at the last layer of the neu-
ral network. Figure 1 shows an example of a CNN
architecture. More details about the CNNs can be ob-
tained at (Goodfellow et al., 2016).

2.2 Autoencoders

Autoencoders are neural networks trained to recon-
struct an input x, generating as an output an approx-
imation x′, with the smallest reconstruction error as
possible (Goodfellow et al., 2016). Formally, an au-
toencoder ae = d ◦ e comprises two components: (i)
an encoder e : S→H and a decoder d : H→ Ŝ, where
S is the input space, H is the compressed space learnt
by the encoder component and Ŝ represents the input

1Adapted from https://www.mathworks.com/discovery/
convolutional-neural-network.html. Accessed in June 23,
2018.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

308



space reconstructed by the autoencoder. The recon-
struction error ERae(x) is the difference between the
input x and its reconstructed version x′ = ae(x) as de-
fined by Equation 1, where p is the distance metric:

ERae(x) = ||x−ae(x)||p (1)

Autoencoders usually are used for (i) dimension-
ality reduction and (ii) feature learning, once they pre-
serve only the most important features of the data
(Goodfellow et al., 2016).

2.3 Adversarial Images

An adversarial image is a image which contains a
minimal perturbation2, oftentimes imperceptible to
human eyes, generated by a malicious algorithm in
order to induce learning models to misclassification
(see Figure 2). Formally, given a model F trained
using legitimate images, x an input image such that
x ∈Rw×h×c, where w and h are the dimensions of im-
age x and c its quantity of color channels, it is gen-
erated an image xadv, such that xadv = x+ δx, where
δx is the perturbation and, in a succeeded adversarial
attack, F(x) 6= F(x′).

Figure 2: Malicious and usually imperceptible perturba-
tions in a input image can induce trained models to mis-
classification. Adapted from (Klarreich, 2016).

2.4 Adversarial Attacks

Adversarial attacks are malicious optimization algo-
rithms which generate and insert perturbations into
legitimate images in order to lead previously trained
models to misclassification. There are several algo-
rithms available in literature, however, for the exper-
iments performed in this work, it has been used the

2A perturbation is a systematic distortion maliciously
generated in an image by an attack algorithm.

four most used adversarial attacks: (i) FGSM, (ii)
BIM, (iii) DeepFool e (iv) CW. These adversarial at-
tacks are explained in the following.

Fast Gradient Sign Method (FGSM) (Goodfel-
low et al., 2015): FGSM is a non-iterative attack al-
gorithm, whose main characteristic is its linear com-
plexity. The linear complexity of FGSM is compu-
tationally efficient, however it contributes to generate
larger perturbations than the ones generated by itera-
tive algorithms. Given an image x ∈ Rw×h×c, FGSM
generates an adversarial image xadv using Equation 2.

xadv = x− ε · sign(∇xJ(Θ,x,y)) (2)

In Equation 2, Θ represents the network parame-
ters, y the respective class of x, ε the maximum per-
turbation which can be inserted into the image x and
J(Θ,x,y) is the cost function used to train the net-
work.

Basic Iterative Method (BIM) (Kurakin et al.,
2016a): BIM is the iterative version of FGSM. Unlike
FGSM that executes only a step of size ε towards the
gradient descent, BIM executes several smaller steps
α, where the result is upper bounded by ε in order to
prevent the amount of perturbation does not exceed
the quantity desired by the attacker. Formally, BIM
is a recursive method that computes xadv according to
Equation 3:

xadv =

{
xadv

0 = 0
xadv

i = xadv
i−1− clip(α · sign∇xJ(Θ,xadv

i−1,y))
(3)

DeepFool (Moosavi-Dezfooli et al., 2016): The
ideia behind DeepFool consists of finding the closest
decision boundary from a legitimate image x in the
image space. Afterwards, x is subtly perturbated so
as to make it cross the decision boundary and fool the
classifier. Due to the high dimensionality of the im-
age, DeepFool adopts an iterative approach of linear
approximation. In each iteration, DeepFool linearizes
the model around the intermediate xadv and computes
an optimal update direction in the linearized model.
Then, xadv is updated on this direction by a small step
α.

Carlini & Wagner Attack (CW) (Carlini and
Wagner, 2017c): The CW attack is the state-of-the-art
algorithm to generate adversarial images. Formally,
CW is an iterative attack where, given a CNN F with
Z as the penultimate layer, called logits, and an legit-
imate image x belonging to the class t, CW uses the
gradient descent to solve Equation 4:

minimize ||x− xadv||22 + c · `(xadv) (4)

where the cost function `(xadv) is defined in Equation
5.
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`(xadv) = max(max{Z(xadv)i : i 6= t}−Z(xadv)t ,−con f )
(5)

In Equation 5, the hyperparameter con f indicates
the confidence level of the CW attack. Higher val-
ues of con f usually produce adversarial images with
greater ability to fool classifiers, however, these im-
ages will also contain more perturbations within.

2.5 Jensen-Shannon Divergence

The Jensen-Shannon Divergence (JSD) computes the
divergence between two probabilistic distributions P
and Q. In this work, the distributions P and Q are
obtained by the output of softmax layer F of a CNN
where, given two images x and y, P = F(x) and
Q = F(y). P(i) e Q(i) indicate respectively the prob-
abilities of the images x and y belong to the class i.
The value of the JSD metric, given two images x and
y, is computed by Equation 6.

JSD(P ||Q) =
1
2

DKL(P ||M)+
1
2

DKL(Q ||M) (6)

where

M =
1
2
(P+Q), DKL(P ||Q) = ∑

i
P(i) log

P(i)
Q(i)

3 RELATED WORK

The defense of classification models against adversar-
ial attacks is not a trivial task and several strategies
have already been proposed in literature. The most
relevent work in this subject and their respective ap-
proaches to defend against adversarial attacks are next
discussed.

Adversarial Training (Szegedy et al., 2013),
(Goodfellow et al., 2015), (Kurakin et al., 2016b),
(Madry et al., 2017), (Kannan et al., 2018): The ad-
versarial training, also known as robust optimization,
is a proactive defense approach3 based on data aug-
mentation4 to train classifiers in a dataset containing
legitimate and adversarial images, thus forcing the
classification model to produce correct outputs to the
malicious images. This strategy has two important
limitations: (i) it is computationally expansive and (ii)

3Defenses against adversarial images are divided into (i)
proactive defenses, which aim to make models more ro-
bust in classifying adversarial images and (ii) reactive de-
fenses, which act as detectors of adversarial images, pre-
venting them from reaching the classifier.

4Procedure performed in a dataset in order to increase
the amount of samples used to train classification models.

it is deterministic, once it creates dependencies be-
tween the detection method and the attack algorithms
used in the adversarial training process.

Defensive Distillation (Papernot et al., 2016b): is
a proactive and deterministic defense which trains a
model F in a dataset X containing legitimate samples
and labels Y , generating as output the probabilities
set F(X). Afterwards, the original labels set Y are
then replaced by the F(X) probabilistic set, and a new
model Fd with the same architecture of F is created
and trained with dataset X yet using the probabilis-
tic labels F(X). After training, the obtained model
Fd , called distilled model, produces the probabilis-
tic distilled outputs Fd . Classifiers using defensive
distillation are based on gradient masking: an effect
that hides the classifier’s gradient in order to hinder
the generation of adversarial images by the attacker
(Papernot et al., 2017). Defenses based on gradient
masking can be easily bypassed since the attacker can
create his own classifier, generate adversarial images
using this classifier and a more elaborated attack al-
gorithm, and finally transfer these recently generated
images to the distilled classifier (Carlini and Wagner,
2017c).

Feature Squeezing (Xu et al., 2018): reactive de-
fense which is based on the hypothesis that the high
dimensional image spaces facilitates attackers into
generating stronger perturbations. Therefore, the au-
thors basically have used two methods for reducing
the dimensionality of the images, in order to remove
possible perturbations that may be present in them:
(i) color bit depth reduction and (ii) spatial smooth-
ing. Using a classifier and a predefined threshold,
a comparison is performed among the prediction of
the original image x with the predictions of its ver-
sions x′, reduced by the method (i), and x′′, reduced
by the method (ii), respectivelly. If one of these
comparisons is above the threshold, x is labeled as
adversarial and disposed before reaching the classi-
fier. Despite presenting good results before CW at-
tack, (He et al., 2017) has shown it is possible to
evade it, mainly because its deterministic architecture,
which always chooses the same dimensionality reduc-
tion techniques at each execution.

MagNet (Meng and Chen, 2017): MagNet is a
reactive and non-deterministic method that is formed
by two defense layers: (i) the detection layer which
rejects, using a predefined threshold, the images far
from the decision boundary, once they contain more
perturbations, and (ii) a reformer layer that receives
the images coming from the detection layer and re-
constructs them in order to remove any undetected
perturbations. After the reconstruction, the image is
sent to the classifier. MagNet chooses randomly two
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Figure 3: Schematic flowchart of the Calibration Stage.

autoencoders from a repository: one for the detection
layer and the other one for the reformer layer. De-
spite the use of randomness for choosing both autoen-
coders, (Carlini and Wagner, 2017b) has shown that
MagNet can be evaded by adversarial images.

4 PROPOSED DEFENSE

The defense method proposed in this paper, called
MultiMagNet, is an extension of MagNet. The Multi-
MagNet’s operation basically comprises two stages:
(i) the Calibration Stage and (ii) the Deployment
Stage. All the processes which compose the Calibra-
tion Stage are going to be explained first. Later, the
processes related to the Deployment Stage will also be
discussed.

4.1 The Calibration Stage

In the Calibration Stage (see Figure 3), all the Multi-
MagNet’s desired combinations of hyperparameters,
predefined by the user as inputs in a file C, are once
evaluated using the validation set V and the applica-
tion classifier F . At the end of the Calibration Stage,
the best combination of hyperparameters cb ∈ C and
the thresholds set Tb (computed using the hyperpa-
rameters cb) are then saved in a file called Cbest . The
file Cbest , once defined, will prompty provide the best
tuple of hyperparameters cb and the thresholds Tb
for the Deployment Stage, avoiding unnecessary and
repetitive computation. All the processes related to
the Calibration Stage will be next described in details.

4.1.1 Compute Thresholds

The first process, Compute Thresholds, receives as in-
put a file C, defined beforehand by the user, which
contains his desired set of values to be evaluated for
the following MultiMagNet’s hyperparameters: (i)
the false positive rate set Tf p, such that t f pa ∈ Tf p
and 0 < t f pa < 1, (ii) the temperature set K, where

ka ∈ K,ka ≥ 1, (iii) the metric set M, which mea ∈M
can be the Reconstruction Error (RE), defined by
Equation 1, or the Jensen-Shannon Divergence (JSD),
defined by Equation 6 (formally, mea ∈ {RE,JSD}),
and (iv) the threshold approach set T , where T =
{minTA,MTA}, δa ∈ T . These hyperparameters are
going to be explained in Section 4.1.3. Besides the
file C, this process also receives as inputs the vali-
dation subset Vleg containing only legitimate images,
the respository S containing m autoencoders5 and the
application classifier F . This process gives as output
the set T , which contains m× c computed thresholds,
where m is the number of autoencoders in repository
S and c is the number of possible combinations of
user-predefined values in the file C to be evaluated for
the hyperparameter sets Tf p, K, M and T , such that
c = |Tf p|× |K|× |M|× |T | and a≤ c.

To compute all the m× c thresholds of T , the le-
gitimate images from the validation set Vleg were ini-
tially reconstructed for each autoencoder si ∈ S, i≤m,
forming the VLi set, where VLi = {vli|vli = si(vl),vl ∈
Vleg}, and si(vl) represents the image vl reconstructed
by the autoencoder si. Next, the classification thresh-
olds are defined by RE or JSD metrics, according to
the current hyperparameter δa.

Regarding the metric RE, it has been used Equa-
tion 1 to compute the reconstruction errors of each
legitimate image vl and its reconstructed version vli
(where, in Equation 1, x = vl , ae(x) = vli and p = 1),
thus forming the REi array. After computing all the
reconstruction errors in Vleg set using the autoencoder
si, the values in REi array are then sorted in de-
scending order and the hyperparameter t f pa ∈ Tf p is
applied6, giving as result the threshold τi = REi[t],
where t is the corresponding index, such that t =
t f pa ×|Vleg|.

On the other hand, for the metric JSD, it has been

5All of the m autoencoders in S are previously trained
in the training dataset Tr, which contains only legitimate
images.

6The false positive rate t f pa represents the percentage of
legitimate images which can be misclassified as adversarial.
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necessary to obtain the probabilistic softmax outputs
from the last layer of the application classifier (rep-
resented by a CNN) for each legitimate image from
Vleg and its respective reconstruted version. It is worth
mentioning that the softmax outputs are related to the
classes of the original classification problem. The
Equation 7 describes the softmax function used.

F(li) =
exp(li/ka)

∑
n
j=1 exp(l j/ka)

(7)

In Equation 7, F represents the softmax layer of
the application classifier, l, also known as logits, rep-
resents the output from the penultimate layer of the
application classifier, i represents the corresponding
index of the class with respect to the original clas-
sification problem and n means the total number of
classes relating to the original classification problem.
The hyperparameter ka ∈ K (where ka ≥ 1) is used
to normalize the values of li e l j, in order to prevent
saturation (Meng and Chen, 2017). After computing
the softmax outputs corresponding to the legitimate
images from Vleg subset and their reconstructed ver-
sions VLi , it is calculated the Jensen-Shannon Diver-
gence (JSD) from Equation 6, where P = F(vl), Q =
F(vli). According to (Meng and Chen, 2017), the uti-
lization of the JSD metric is based on the hypoth-
esis that the divergence of the softmax outputs be-
tween an legitimate image xleg and its reconstruct
version xrleg is usually smaller than the divergence
between the softmax outputs of an adversarial im-
age xadv and its reconstructed version xradv, such that
JSD(F(xleg),F(xrleg)) < JSD(F(xadv),F(xradv)). In
a way similar to the RE metric, all the divergences
computed using the legitimate validation set Vleg and
an autoencoder si are kept in an array JSDi, which
is also sorted in descending order and t f pa ∈ Tf p is
applied, giving as result the threshold τi = JSDi[t],
where t = t f pa ×|Vleg|.

Thus, by using the hyperparameters ka ∈K, mea ∈
{RE,JSD} and t f pa ∈ Tf p, all predefined by the user
in file C, it is produced as output the T set containing
m× c thresholds.

4.1.2 Mount Ensemble

The Mount Ensemble process receives as inputs the
repository S containing m different autoencoders, the
T set containing m×c thresholds and the current com-
bination ca to be tested in V set, where ca ∈ C and
ca = (t f pa ,ka,mea,δa), a ≤ c. It gives as output an
ensemble Ra, which is formed as described as fol-
lows: n autoencoders are randomly chosen from S,
where n < m and n mod 2 = 1 (to ensure no ties in
the vote count). After choosing the n autoencoders,

their respective thresholds are also loaded from T set,
according to the current combination ca, thus forming
the Ra set. Formally, Ra = {r1a,r2a, · · · ,rna}, where
ria is the pairwise (ri,τia), such that ri ∈ S, i ≤ n and
τia ∈ T , a≤ c.

4.1.3 Evaluate Performance

The Evaluate Performance process receives two in-
puts: (i) the ensemble Ra and (ii) the validation set
V = Vleg ∪Vatk. Vatk is formed by 2,000 adversar-
ial images generated from the 2,000 legitimate im-
ages in Vleg set using an attack algorithm atk, where
atk ∈ {FGSM,BIM,DeepFool,CW}.

Each one of the 4,000 images in V is therefore
reconstructed by all the autoencoders in Ra set, form-
ing the set V Ra. Afterwards, it is used Equation 1
or 6, according to the current metric mea, to com-
pute the metric value set MVa . If mea = RE, it is ap-
plied the Equation 1, where x = vi, ae(x) = vri and
p = 1, such that vi ∈ V , vri ∈ V Ra. If mea = JSD,
it is applied the Equation 6, where P = F(vi) and
Q = F(vri),vi ∈V,vri ∈V Ra.

Finally, each metric value mi ∈ MVa is compared
to the threshold τa, which is computed based on the
current value approach of δa, which can be: (i) min-
imum threshold (minTA) or (ii) multiple threshold
(MTA). When the minTA approach is selected, it is
considered the smallest threshold among all the as-
sociated thresholds for the n autoencoders in Ra, i.e.
τa = min{τ1a,τ2a, · · · ,τna}. On the other hand, when
is selected the MTA approach, it is considered each
associated threshold for all the autoencoders in Ra,
i.e. τa ∈ {τ1a,τ2a, · · · ,τna}. When mi ≤ τa, a vari-
able qleg (which represents the votes of vi being legit-
imate) counts a vote, otherwise qadv counts a vote. By
majority vote, the image is classified as legitimate if
qleg > qatk, otherwise is classified as adversarial. At
the end of the vote count for each image vi, it is pro-
duced a confusion matrix Ma as defined in Equation
8.

Ma =

[
T N FN
FP T P

]
(8)

In Equation 8, the elements T N,FN,FP and T P
in matrix Ma define respectively the amount of (i)
adversarial images voted as adversarial, (ii) adversar-
ial images voted as legitimate, (iii) legitimate images
voted as adversarial and (iv) legitimate images voted
as legitimate. After computing the c confusion ma-
trices, it is finally produced as output by the Evaluate
Performance process the P set, formed by c tuples,
where each tuple contains the following three met-
rics: (i) accuracy (ACC), (ii) positive predictive value
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Figure 4: Schematic flowchart of the Deployment Stage.

(PPV) and (iii) negative predictive value (NPV). All
these metrics are formally defined in Equation 9.

ACC = T N+T P/T N+FN+FP+T P

PPV = T N/T N+FN

NPV = T P/T P+FP

(9)

4.1.4 Select Best Performance

The Select Best Performance process receives as in-
put the P set containing c performance tuples. It
is produced as output the file Cbest which contains
(i) the combination of hyperparameters cb that leads
to the MultiMagNet’s highest accuracy, where cb =
(t f pb ,kb,meb,δb) and (ii) the Tb set. The Tb set, such
that Tb ⊂ T , contains the n thresholds computed by
using the cb combination of hyperparameters, such
that cb ∈C. The highest accuracy metric on V set has
been chosen to elect the best set of hyperparameters
cb, since it can describe a more general performance
scenario.

4.2 Deployment Stage

Once calibrated, MultiMagNet is ready to receive in-
put images in the Deployment Stage. After forming
an ensemble R and loading its best set of hyperpa-
rameters cb and the respective thresholds Tb from file
Cbest , MultiMagNet’s ensemble R can return a verdict
whether an input image x is legitimate or not. The
classification made by MultiMagNet is performed by
majority vote, where all the n votes, representing each
autoencoder in R, are counted. In case of being clas-
sified as legitimate, the image x is reconstructed by
an autoencoder randomly selected from R, in order to
remove any undetected perturbations, and afterwards
x is finally sent to the application classifier F . If x
is classified as adversarial, MultiMagNet simply dis-
cards it before reaching F . Figure 4 illustrates the five
processes belonging to the Deployment Stage, and
each of them will be explained in the following.

4.2.1 Mount Ensemble

This process receives two inputs: (i) the repository S
containing m autoencoders and (ii) the input image x
to be evaluated by MultiMagNet. It gives as output
the ensemble R containing n autoencoders chosen at
random, where n≤ m,n mod 2 = 1.

4.2.2 Reconstruct Image

The Reconstruct Image process receives two inputs:
(i) the input image x and (ii) the ensemble R. It gives
as outputs the image x itself and the XR set, which is
formed by the reconstructed versions xri of the image
x made by each autoencoder ri ∈ R.

4.2.3 Compute Metric

The Compute Metric process receives three inputs: (i)
the input image x, (ii) the XR set containing the n re-
constructed versions of x, such that xri ∈ XR, and the
file Cbest , which contains the tuple cb of hyperparam-
eters that has led to the best accuracy in Calibration
Stage. In a way similar to the procedures explained
in Sections 4.1.1 and 4.1.3 for computing the metric
values, this process returns the XM set, which contains
the metric values among x and its reconstructed ver-
sions in XR set, which can be computed from Equa-
tion 6 if meb = JSD, where P = F(x) e Q = F(xri), or
from Equation 1, where ae(x) = xri and p = 1.

4.2.4 Count Votes

The Count Votes process also works in a very similar
way when compared to the vote count performed by
Evaluate Performance process in Calibration Stage
(see Section 4.1.3). It receives as inputs the XM set
and the Tb set provided by Cbest file. Tb contains
the n thresholds that have been defined in Calibra-
tion Stage. It returns qleg and qadv, which respectively
represent the count of votes for x being legitimate or
adversarial. If qleg < qadv, the input image x is dis-
carted, otherwise x is sent to the last process, Reform
Image.
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Table 1: Hyperparameters defined for each attack algorithm.

Attack Datasets and Parameters

FGSM MNIST: ε = 0.2
CIFAR-10: ε = 0.025

BIM MNIST: ε = 0.15; α = 0.07; 50 iterations
CIFAR-10: ε = 0.025; α = 0.01; 1,000 iterations

DeepFool MNIST: overshoot = 0.02; max iter = 50
CIFAR-10: overshoot = 0.02; max iter = 50

CW MNIST: con f = 0.0; binary searches = 1; lrate = 0.2; initial const = 10, max iter = 100
CIFAR-10: con f = 0.0; binary searches = 1; lrate = 0.5; initial const = 1, max iter = 100

4.2.5 Reform Image

The Reform Image process receives as inputs: (i) the
image x classified as legitimate by the ensemble of
autoencoders R and (ii) the ensemble R itself. After
receiving the image x, it is chosen randomly from R an
autoencoder ri which reconstructs the image x as an
attempt to remove any remaining perturbations from
it, thus producing an resulting image x′, such that x′ =
ri(x). Afterwards, the reconstructed image x′ is finally
sent to be classified by F .

5 EXPERIMENTAL SETUP AND
RESULTS

5.1 Datasets

In order to perform the experiments, it was cho-
sen MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky and Hinton, 2009) datasets, since they
are widely used by several related works (Xu et al.,
2018), (Meng and Chen, 2017), (Zantedeschi et al.,
2017), (Carlini and Wagner, 2017c). The MNIST
dataset contains 60,000 greyscale images of handwrit-
ten digits distributed in 10 different classes, with di-
mensions of 28× 28× 1, which respectively repre-
sent 28 pixels of width, 28 pixels of height and 1
color channel. The CIFAR-10 dataset, on the other
hand, contains 60,000 colorful images, with dimen-
sions 32× 32× 3, distributed in 10 different classes.
In the experiments performed on each dataset, their
respective images have been partitioned as follows:
the first 45,000 images have formed the Tr set, in or-
der to train the m autoencoders in repository S and the
application classifier F . The following 5,000 images
have formed the legitimate validation set Vleg, and the
remaining 10,000 images have formed the Te set, des-
tinated to test and evaluate the autoencoders, the ap-
plication classifier, the MagNet (simulated when it is
chosen only one autoencoder to form the ensemble R)

and the MultiMagNet. All the images have been nor-
malized to have their pixels’ intensity values in the in-
terval [0,1], instead of the original interval of [0,255].

To generate adversarial images, it has been used
four different attack algorithms: FGSM, BIM, Deep-
Fool and CW. However, due to the high computa-
tional cost to generate adversarial images, it has been
necessary to define a smaller test set called D, ac-
cording to the following criterion: from the 10,000
legitimate images in Te, it has been randomly se-
lected 2,000 images. These selected images have been
labeled as legitimate and kept in Dleg. Next, each
one of the four attack algorithms have been applied
to the images in Dleg, and the resulting images kept
in DFGSM , DBIM , DDeepFool and DCW , respectively7.
Table 1 shows the hyperparameters empirically de-
fined in Calibration Stage for each attack algorithm.
At last, the D set has been formed by the union of
the sets Dleg and Datk, i.e. D = Dleg ∪Datk, where
atk ∈ {FGSM,BIM,DeepFool,CW}.

5.2 Autoencoders and Classifiers

After training, the application classifier F adopted for
MNIST dataset has presented an accuracy of 99.40%
on Te set. Likewise, the application classifier adopted
for CIFAR-10 (a CNN with architecture All Convolu-
tional Net (Springenberg et al., 2014)) has presented
an accuracy of 89.76%. Both results are good ap-
proximations of the state-of-the-art. The repository
S of MultiMagNet has been set with 10 autoencoders
formed by different architectures and parameters, pre-
viously trained on Tr set. After training, all the au-
toencoders have presented reconstruction errors on Tr
set below 10−3.

7In order to generate adversarial images, it has been
used the framework Adversarial Robustness Toolbox (ART)
(Nicolae et al., 2018), which contains the implementations
for all the four aforementioned attack algorithms.
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Table 2: MagNet and MultiMagNet’s performance on MNIST dataset for 40 experiments.

Defense Attack ACC (µ - σ) PPV (µ - σ) NPV (µ - σ)

MagNet

FGSM 99.90% - 0.37% 99.81% - 0.70% 100.00% - 0.00%
BIM 99.90% - 0.30% 99.81% - 0.58% 100.00% - 0.00%

DeepFool 96.43% - 2.20% 92.83% - 4.30% 100.00% - 0.00%
CW 56.00% - 5.17% 94.84% - 2.99% 27.54% - 7.85%

MultiMagNet

FGSM 99.92% - 0.26% 99.85% - 0.51% 100.00% - 0.00%
BIM 99.92% - 0.26% 99.85% - 0.54% 100.00% - 0.00%

DeepFool 96.47% - 1.48% 92.90% - 3.08% 100.00% - 0.00%
CW 61.10% - 5.74% 45.99% - 22.23% 75.24% - 15.25%

Table 3: MagNet and MultiMagNet’s performance on CIFAR-10 dataset for 40 experiments.

Defense Attack ACC (µ - σ) PPV (µ - σ) NPV (µ - σ)

MagNet

FGSM 58.43% - 5.56% 90.15% - 4.07% 26.35% - 8.51%
BIM 77.72% - 3.91% 88.98% - 3.50% 69.75% - 6.42%

DeepFool 71.88% - 21.18% 93.03% - 2.73% 49.93% - 42.93%
CW 66.55% - 6.53% 98.43% - 4.40% 45.20% - 10.95%

MultiMagNet

FGSM 65.88% - 4.48% 67.13% - 12.64% 65.06% - 13.22%
BIM 79.38% - 6.13% 66.57% - 15.42% 89.11% - 6.95%

DeepFool 90.25% - 4.66% 80.67% - 9.22% 99.86% - 0.69%
CW 68.95% - 4.45% 48.82% - 8.80% 84.31% - 5.96%

5.3 Prototype

The MultiMagNet prototype has been developed in
Python, by using the following frameworks: (i) Ten-
sorflow, (ii) Keras, (iii) SciKit-Learn, (iv) NumPy and
(v) Scipy. All the source code, including the archi-
tectures and parameters defined for the autoencoders
and applications classifiers are available for consulta-
tion and/or download 8. The adversarial images used
in the experiments are also available for download 9.
All the experiments have been conducted on a sin-
gle machine with the following setup: CPU i7 3770,
16GB RAM and a GPU GTX 1060 with 1280 CUDA
cores.

5.4 Results

It has been performed 40 experiments on the respec-
tive D sets of MNIST and CIFAR-10 datasets. For ev-
ery 100 input images (once D set has a total of 4,000
images), a new ensemble R containing n different au-
toencoders has been formed, where n∈ {3,5,7,9} for
MultiMagNet and n = 1 for MagNet. It is worth re-
membering that n must be an odd number to avoid
ties. Tables 2 and 3 show the results of the mean µ and
standard deviation σ obtained by MagNet and Multi-
MagNet (based on 40 experiments) using the metrics
defined by Equation 9.

8https://github.com/gabrielrmachado/MultiMagNet
9https://drive.google.com/open?id=

1l5KHwpbWLLgcv34AGUF3Fq3z3fuXV22z

When analyzing the results of MagNet and Mul-
tiMagNet included in Tables 2 and 3, it becomes
clearer that MultiMagNet has presented better per-
formance on the metric NPV than MagNet for all
attack algorithms on both datasets. The good per-
formance presented by MultiMagNet on NPV met-
ric indicates its better ability to detect adversarial im-
ages, which is priority in most security-critical appli-
cations. However, by analyzing Table 4, it can be
noticed that the adoption of the minimum threshold
approach (minTA) in most of attack scenarios may
explain the increase of the NPV metric, mainly be-
cause the minTA metric assigns the smallest com-
puted threshold for all the n chosen autoencoders. In
addition to the minimum threshold approach, the false
positive rate hyperparameter t f p may have also influ-
enced in the fall of PPV metric, since smaller values
of t f p than the ones in Table 4 have produced an in-
crease in the PPV metric to the detriment of the NPV
metric. Nevertheless, the fall presented by MultiMag-
Net in the PPV metric is justifiable, due to the fact that
it has obtained greater accuracy than MagNet on both
datasets, before all the four evaluated attacks, reach-
ing differences up to 18.37 percentage points. Such
comparison points to the validation of the hypothesis
defended by this work.

Regarding the Table 6, which shows how strong
each attack was on leading F to misclassification, it
is worth mentioning that, although the CW attack is
the state-of-the-art in generating adversarial images,
on MNIST dataset it has not been the attack algo-
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Table 4: MultiMagNet’s hyperparameters defined for each attack algorithm.

Dataset Attack Drop Rate Threshold Approach Metric K

MNIST
FGSM - BIM 0.001 MTA RE -

DeepFool 0.07 MTA JSD 1
CW 0.05 minMTA RE -

CIFAR-10
FGSM - BIM 0.1 minMTA JSD 15

DeepFool 0.07 minMTA JSD 1
CW 0.07 minMTA JSD 5

Table 5: Accuracies obtained by the application classifier F on D set when evaluated in five different scenarios.

Dataset Attack No defense
(µ - σ) (%)

MagNet only
(µ - σ) (%)

MultiMagNet only
(µ - σ) (%)

MagNet
and Reformer

(µ - σ) (%)

MultiMagNet
and Reformer

(µ - σ) (%)

MNIST

FGSM 79.53 - 4.52 99.37 - 1.11 99.46 - 1.06 98.98 - 1.75 99.17 - 1.41
BIM 81.45 - 3.29 99.40 - 1.03 99.49 - 1.20 99.16 - 1.18 99.19 - 1.61

DeepFool 50.00 - 5.38 99.95 - 0.31 99.95 - 0.31 99.90 - 0.46 99.95 - 0.31
CW 81.60 - 4.33 92.92 - 3.21 98.71 - 1.72 96.19 - 2.20 98.89 - 1.36

CIFAR-10

FGSM 64.83 - 2.94 67.27 - 1.01 72.81 - 3.59 70.08 - 2.49 72.91 - 2.75
BIM 69.30 - 1.85 89.12 - 2.92 89.94 - 1.42 92.58 - 2.41 96.75 - 3.54

DeepFool 65.97 - 2.03 79.12 - 10.05 92.52 - 1.67 87.15 - 4.48 92.91 - 2.88
CW 47.03 - 1.29 59.14 - 3.29 71.86 - 5.74 60.08 - 3.27 72.36 - 5.22

rithm which fooled at most the application classifier F
(when compared to DeepFool attack). This is mainly
due to two reasons: (i) CW is the attack which con-
tains the largest number of hyperparameters (see Ta-
ble 1); (ii) the MNIST images contain much less in-
formation on them (when compared to the CIFAR-10
images), what have proved to be more computation-
ally expansive to find a set of hyperparameters for the
CW attack which could produce more harmful images
to F without increasing their amount of perturbation.
Nonetheless, according to Table 2, the adversarial im-
ages produced by CW attack on MNIST dataset have
been the most difficult ones to be detected.

Table 6: Accuracies obtained by the application classifier F
on Datk set, without any previous defense.

Dataset Attack Accuracy Datk set
(no defense)

MNIST

FGSM 59.65%
BIM 63.50%

DeepFool 0.60%
CW 63.80%

CIFAR

FGSM 40.60%
BIM 49.55%

DeepFool 42.70%
CW 5.00%

Finally, in addition to the scenario depicted by
Table 6, the application classifier F has been evalu-
ated in more five scenarios: (i) performance on D set
without any defense, (ii) performance on D set with
MagNet, (iii) performance on D set with MultiMag-

Net, (iv) performance on D set with MagNet and Re-
former10 and (v) performance on D set with Multi-
MagNet and Reformer. It is important to highlight
that it has been also computed the mean µ and stan-
dard deviation σ of F’s accuracy in 40 experiments11

for each scenario. The accuracies obtained by F for
all these scenarios are present in Table 5.

Although the presence of MagNet has provided
some sort of protection to F (when compared to the
results belonging to Scenario (i)), it becomes noto-
rious, by comparing the results in Table 5 related to
Scenarios (ii) and (iii), that MultiMagNet has also
overcome MagNet when the performance of F is
taken into account, thus providing to F a better pro-
tection than MagNet. It is also worth mentioning that
the Reformer step has had significant importance on
improving even more the performance of F , as it can
be seen by the results related to Scenario (v). This
may be related to the fact that, even with the adoption
of an ensemble for detecting perturbations, few adver-
sarial images still might have been able to bypass the
MultiMagNet’s detection step and fool F . So, the Re-
formed step has behaved as an additional protection
to the application classifier. Therefore, the results in
Tables 2, 3 and 5 emphasise that MultiMagNet has
been more effective than MagNet in detecting adver-

10The word ”Reformer” refers to the Reform Image pro-
cess, as illustrated by Figure 4 and explained in Section
4.2.5.

11It has been formed a new ensemble R for every 100
input images belonging to D set, in a way similar to the
experiments which produce the results in Tables 2 and 3.
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sarial images and protecting the application classifier,
thus providing further significant evidences that the
hypothesis raised by this work is true.

6 FINAL CONSIDERATIONS

In recent years, several work have demonstrated that
Deep Neural Networks are susceptible to be intention-
ally induced to misclassification by adversarial im-
ages (i.e. images which contain perturbations, usu-
ally imperceptible to human eyes), fact that which
precludes the application of these learning algorithms
in several security-critical decision support systems
(Klarreich, 2016). Although various defenses have
been proposed against adversarial images, most of
them have already been bypassed by allowing the
attacker to easily map their inner behaviour. As a
means of reducing the behaviour predictability, a re-
search has aimed to create a non-deterministic detec-
tion method called MagNet (Meng and Chen, 2017).
However, recent studies reveal MagNet can also be
bypassed by adversarial images (Carlini and Wagner,
2017b).

Before this alarming scenario, the present work
has raised the hypothesis the insertion of multiple de-
fense components, randomly selected, in the detection
method can amplify the non-deterministic effect and
thus making the defense more robust than MagNet be-
fore different attack algorithms. Therefore, this work
has introduced MultiMagNet, a method for detect-
ing adversarial images which makes use of multiple
defense components (implemented as autoencoders),
selected at random and arranged in ensembles for de-
cision making. The experimental results performed
on images from MNIST and CIFAR-10 dataset point
to the veracity of the raised hypothesis, showing that
MultiMagNet has overcome MagNet (the MultiMag-
Net’s version which randomly chooses only one au-
toencoder) in most of the evaluated scenarios. In sum-
mary, the following main contributions of this work
are:

• The development of MultiMagNet, a non-
deterministic defense based of ensembles for de-
tecting adversarial images in decision support sys-
tems;

• The accomplishment of the first12 comparative
study with MagNet, in order to validate the hy-
pothesis raised by this work;

• The online availability of all the implementation
and needed resources for reproducing the experi-
ments.

12Regarding the best of the authors’ knowledge.

For future work, it can be highlighted: (i) the
research of novel non-deterministic architectures for
detecting and classifying adversarial images, (ii) the
implementation of novel techiniques to automatically
define classification thresholds, (iii) the adoption of
different techniques for preprocessing images.
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