
Continuous and Client-centric Trust Monitoring in Multi-cloud Storage

Dimitri Van Landuyt, Luuk Raaijmakers, Ansar Rafique and Wouter Joosen
imec-DistriNet, Dept. of Computer Science, KU Leuven,

B-3001 Heverlee, Belgium

Keywords: Trust Monitoring, Continuous Monitoring, Black-box Monitoring, Multi-cloud Storage, Federated Cloud
Storage.

Abstract: Multi-cloud storage is the practice of composing the data tier of an application with heterogeneous cloud
storage technologies, resources and services. In a federated cloud storage architecture which involves multiple
cloud storage providers, both the complexity and the importance of trust management increases drastically. A
trust relation is established between a data owner and a cloud storage provider when the data owner subscribes
to the service and service level agreements (SLAs) are established. In practice, this trust relation is seldom
revised, only when serious infractions are discovered and made public.
In this paper, we evaluate the potential of continuous and client-centric trust monitoring of cloud storage
services. This approach leverages upon the statistical correlations between black-box performance metrics
and reported white-box metrics, and identifies significant deviations between both. We evaluate in terms of
(a) the effectiveness of correlating black-box and white-box measurements, and (b) the incurred performance
overhead of the approach to continuously monitor for trust.

1 INTRODUCTION

Cloud storage services provide scalable and on-
demand storage facilities. Due to the heterogene-
ity inherent to the underlying database technologies
(NoSQL), many organizations are adopting a feder-
ated, multi-storage strategy (Bermbach et al., 2011),
in which different storage services from different
cloud storage providers (CSP) are combined.

The requirement of a trust relationship between
service consumers and cloud service providers is a
key impediment to cloud adoption (Rong et al., 2013;
Habib et al., 2012). Lack of physical access to the
storage infrastructure, information asymmetry, and
diverging economical interests are at the foundation
of this lack of trust. Indeed, cloud providers have eco-
nomic incentives to be dishonest, e.g. by deliberately
allocating less CPU or memory resources than agreed
upon to maximize economic benefit (Zhang et al.,
2014), or by not disclosing unexpected service dis-
ruptions to their clientele to avoid reputational harm.

Arguably, the issue of trust in cloud storage ser-
vices is even more stringent, as the cloud storage
paradigm involves entrusting third-party CSPs with
data assets that are of crucial value to the data owner.
One common example is a Software-as-a-Service
(SaaS) offering that is built upon existing cloud stor-

age resources to improve their operational efficiency.
To alleviate the information asymmetry, CSPs com-
monly provide access to white-box monitoring ser-
vices, allowing data owners to consult a number of
measurements and performance indicators such as the
delivered uptime and read/write latency. However,
similarly to the scenarios described above, this ap-
proach still requires data owners to have a degree of
trust in the reported values as such measurements are
collected, reported and controlled exclusively by the
CSP. In practice, if there is a discrepancy between
the reported and the delivered service, regardless of
it being deliberate or not, data owners have no sim-
ple way to knowing. CSPs commonly provide mon-
itoring APIs and dashboard to trust between applica-
tion providers/data owners and CSPs. However, since
this is the only source of information, there is from
a client-centric perspective no straightforward way to
verify the correctness of this information.

A number of different approaches have been pro-
posed and investigated to deal with the problem of
limited trust in a cloud computing context. Reputa-
tion and recommender frameworks (Li et al., 2012;
Khan and Hamlen, 2012; Habib et al., 2014; Habib
et al., 2013; Muchahari and Sinha, 2012) collect
positive and negative experiences from many ser-
vice consumers and calculate trust ranks. Broker-

100
Van Landuyt, D., Raaijmakers, L., Rafique, A. and Joosen, W.
Continuous and Client-centric Trust Monitoring in Multi-cloud Storage.
DOI: 10.5220/0007713201000110
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 100-110
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



based approaches (Uikey and Bhilare, 2013) involve
a trusted-third party reseller of cloud services that as-
sume part of the liability or trust or assume an active
rule, such as third-party auditors (Zhang et al., 2014).
Other approaches rely on standardization and certi-
fication (Cloud Security Alliance (CSA), 2018) and
periodic audits (Popa et al., 2011). These approaches
essentially rely extensively on trust in external parties.

In this paper, we evaluate the potential of a com-
plementary approach that focuses on the issue ex-
clusively from the point of a single data owner.
This approach is similar to the continuous monitor-
ing and trust assessment solution of Li et al. (Li
and Du, 2013). This approach involves continuously
monitoring both the reported measurements (through
white-box metrics) and delivered service (through
black-box metrics) and attributing trust scores based
on statistically-relevant discrepancies between both.
This approach is based upon leveraging known (and
thus expected) statistical correlations between white-
box and black-box measurements (Schoonjans et al.,
2015). Continuously checking the accuracy and ve-
racity of the reported white-box measurements as
such enables continuously assessing the trustworthi-
ness of the CSP. We focus on functional validation
of this approach and evaluating the performance cost
of continuous monitoring. The results indicate that
the performance overhead is acceptable in a realistic
multi-cloud scenario. Additional results confirm the
expected statistical correlations between both metric
types.

The remainder of this paper is structured as fol-
lows: Section 2 provides a discussion of the back-
ground of this article. Section 3 discusses a prototype
implementation of continuous black-box monitoring
which is evaluated in Section 4. Section 5 discusses
related work and finally, Section 6 concludes the pa-
per.

2 BACKGROUND

Section 2.1 first provides background information on
multi-cloud storage and then Section 2.2 discusses the
notion of trust in this specific context.

2.1 Multi-cloud Storage

Cloud storage allows data owners and service
providers to acquire storage resources on demand and
store their data in the cloud. Apart from providing
flexible data storage, it also alleviates the burden of
maintaining an expensive in-house storage infrastruc-
ture (Rafique et al., 2017). As shown in Table 1, there

is a wide variety of cloud storage providers (CSPs)
and Database-as-a-Service (DBaaS) providers in the
market, each focusing on different SLA guarantees
and with support for different database technologies
(e.g., NoSQL databases) (Rafique et al., 2018).

However, the paradigm of online data hosting and
data access introduces serious concerns about data
security, performance (i.e. latency), availability, and
vendor lock-in. In addition, due to the heterogene-
ity inherent in the underlying database technologies,
limited application requirements can be satisfied by a
single cloud storage provider.

Therefore, a federated or multi-cloud storage ar-
chitecture in which technologically heterogeneous
storage services and database technologies from mul-
tiple cloud storage providers are combined within the
same application, is becoming an increasingly popu-
lar tactic for service providers (Bermbach et al., 2011;
Rafique et al., 2018).

2.2 Trust in Multi-cloud Storage

In the context of cloud storage, data owners have
expectations from CSPs. These are typically codi-
fied and agreed upon in Service Level Agreements
(SLAs). SLAs represent contracts between CSPs
and data owners. In an SLA, guarantees offered by
the CSP are clearly outlined. Next to this, an SLA
also details the expected consequences when these
promises aren’t fulfilled. SLAs are an important com-
ponent in the trust relationship between data own-
ers and CSPs. When the CSP refrains from offering
promised agreements of the SLA, this can seriously
hurt the trust relationship.

Table 1 lists (in columns 3-5) the SLA guaran-
tees offered by 10 representative commercial CSPs.
It shows that these SLAs focus mainly on availabil-
ity, while only two CSPs provide explicit perfor-
mance guarantees (in terms of latency and through-
put). However, although all CSPs guarantee some
form of availability, definitions vary widely and dif-
ferences can be observed regarding the employed cal-
culation method: some CSPs calculate at the basis of
unavailability, others in terms of downtime, and oth-
ers in terms of error rate. Further investigation, how-
ever, indicates that each provider adopts a slightly dif-
ferent interpretation, making SLA promises in gen-
eral rather difficult to compare fairly across providers.

The trust definition introduced in (EMC, 2011)
equates trust to control and visibility. A certain de-
gree of control and internal visibility or transparency
is needed to establish trust. When outsourcing data to
a CSPs, data owners trade in both in terms of visibil-
ity and trust. Information asymmetry (Akerlof, 1970)

Continuous and Client-centric Trust Monitoring in Multi-cloud Storage

101



Table 1: Illustrative overview of 10 different cloud storage providers (CSPs), the nature of the SLAs, and monitoring metrics
they offer.

CSP
(DB technology)

SLA: Availability SLA: Performance Monitoring API

Pct. Based
on

Latency Thr-
oughput

Availability Latency Throughput

InstaClustr (Instaclustr,
2017; Instaclustr, 2018)
(Cassandra)

99,9% /
99,95%

Unavai-
lability

- / 99% - nodeStatus clientRequestRead
clientRequest-
Write

reads
writes

ScaleGrid (ScaleGrid, 2016; Mon-
goDB, 2018b; ScaleGrid, 2012)
(MongoDB, Redis)

99,95% Unavai-
lability

- - events.re-
start

Redis Labs (Redis Labs, 2018; Re-
disLabs, 2018) (Redis)

99,95% /
99,99%

/ - - Read latency
Write latency

Reads/sec
Writes/sec

Datastax Managed Cloud (DataS-
tax, 2018) (Cassandra)

99% /
99,9%

Unavai-
lability

- - nodetool
status

nodetool cfstats nodetool
cfstats

Compose (Compose, 2018b; Com-
pose, 2018a)
(MongoDB, Redis)

99,98% / databa-
ses.status

MongoDB Atlas (MongoDB Atlas,
2018; MongoDB, 2018a) (Mon-
goDB)

99,95% Downtime serverStatus
Uptime

serverStatus
OpLatencies

serverStatus
OpLatencies.ops

Google Cloud Storage (Google
Cloud, 2016; Google Cloud, 2018)

99,9% /
99,95%

Error
Rate

- - uptime checks request latency

Microsoft Azure (Microsoft Azure,
2015; Microsoft Azure, 2018)

99,9% /
99,99%

Error
Rate

status &
request
errors

SuccessServerLa-
tency

Amazon EBS (AWS - Amazon Web
Services, 2018b; AWS - Amazon
Web Services, 2018a; AWS - Ama-
zon Web Services, 2018)

99% /
99,99%

Unavai-
lability

- 99% volume status
check

volumeTotalRead-
Time/
volumeReadOps

volumeReadOps
volumeWriteOps

Oracle Cloud (Oracle Cloud, 2018;
Oracle, 2018)

99,9% Error
Rate

- 90%* gene-
ral.status

performan-
ce.throughput

* 99,9% of the time.

is a key problem: data owners are only provided with
a subset of the available information about the inter-
nal workings of the storage offering, while CSPs have
full control and visibility. Increasing the amount of
control consequently increases the amount of trust.

For this reason, many CSPs currently offer mon-
itoring service interfaces and extensive data control
dashboards, which are accessible to customers. Hav-
ing an internal view of the system, which can for ex-
ample be achieved by monitoring, increases visibil-
ity and in turn can increase the level of trust. Ta-
ble 1 (final column) summarizes the metric types that
can be accessed (programmatically or via these dash-
boards) in 10 investigated commercial cloud storage
offerings. As these metrics are reported by the cloud
providers themselves and are inherently based on the
an internal view of the storage offering, they are in
effect white-box metrics.

Motivation. CSPs retain full control on the infor-
mation they provide. Dishonest CSPs could be delib-
erately selective in the information they provide, tam-
per with or alter the information offered to their cus-
tomers, e.g. to avoid reputational damage in case of
service disruption. Since CSPs are profit-based enti-
ties, they have an economic incentives to be dishonest
because offering data owners less than agreed upon

allows them to support more users and consequently
gain more profit (Zhang et al., 2014).

3 APPROACH AND
IMPLEMENTATION

Many approaches exist to maintain trust in a multi-
cloud context. In this paper, we explore and evalu-
ate a continuous, client-centric monitoring approach.
More specifically, measurements obtained in a client-
centric, black-box fashion are compared to the white-
box measurements reported by the CSPs. By exploit-
ing knowledge on existing (and thus expected) sta-
tistical correlations (Schoonjans et al., 2015) between
values obtained from both perspectives, trust rankings
of CSPs can be created and continuously revised.

The overall architecture is depicted in Figure 1.
As shown, it is comprised of three major subsys-
tems: (i) an abstraction layer for fetching white-
box measurements from a wide range of CSPs and
storage nodes (White-box metrics abstraction
layer), which includes a scheduler to obtain specific
white-box measurements according to an application-
specific monitoring policy (White-box metrics
scheduler), (ii) an instrumentation layer for obtain-
ing black-box measurements (Black-box metrics

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

102



<<component>>
Monitoring framework

<<component>>
White-box metrics
abstraction layer

<<component>>
White-box metrics

Scheduler

<<component>>
DB-as-a-Service

provider
<<component>>
<<database>>
StatsD storage

<<component>>
Application

<<component>>
Black-box metrics
instrumentation

<<component>>
Trust verification engine

<<component>>
Database mapper

<<artifact>>
White-box
scheduling

policy

<<artifact>>
Black-box

scheduling
policy

<<artifact>>
Storage

configuration

native whitebox API
fetchMetrics

trust boundary

Create/read/update/delete

native create/read/update/delete

store

Create/read/update/delete

read

<<use>>

<<use>>

<<use>>

<<use>>

Figure 1: The overall architecture of the monitoring framework (UML component diagram).

instrumentation) through observation on regular
application calls, and (iii) the Trust verification
engine.

We have implemented a prototype implementation
which is available on-line (Raaijmakers, 2018).

The White-box metrics abstraction layer
component provides built-in abstraction support for
in total 18 white-box provided by PostgreSQL, Redis,
MongoDB, and Cassandra.

The Black-box metrics instrumentation
component builds upon a database mapper frame-
work (also called Object-NoSQL Database Mapper
or ONDM (Cabibbo, 2013; Reniers et al., 2017)) to
collect black-box measurements through instrumenta-
tion of regular application calls. Metrics are recorded
for (i) uptime, (ii) number of read requests, (iii) num-
ber or failed requests (yielding an error or time-out),
(iv) average read latency (10-second interval, 1-hour
interval and 24-hour interval), and (v) average write
latency (10-second interval, 1-hour interval and 24-
hour interval).

The Trust verification engine implements a
number of trust ranking algorithms that essential look
at the discrepancies between the reported white-box
measurements and the black-box metrics obtained
from a client perspective. Many trust ranking mod-
els can be adopted to calculate trust scores, ranging
from very straightforward methods such as calculat-
ing the difference between black-box and white-box
measurements, to more advanced models to calculate
and predict trustworthiness based on the obtained in-
puts (for example, using machine learning-based clas-
sifiers). The prototype implementation currently pro-
vides the following trust models, but is extensible in
this regard.

• Percentage deviation. The percentage deviation
method calculates the difference between black-
box and white-box measurements as the percent-
age deviation based on the black-box measure-
ment. A black-box measurement of 210 ms and

a white-box measurement of 200 ms results in
a trust score of 95% using the following calcu-
lation: (210 − 200)/200 = 5%, a 5% deviation
means that this measurement is 100% − 5% =
95% trustworthy.

• Mean Square Error (MSE). The MSE of the two
measurements can also be used as a trust score.
Using the example above yields: (210− 200)2 =
100. The closer the value is to zero, the more
trustworthy the storage node proves to be. This
method results in more extreme values as the de-
viation between the two values increases, due to
the power used in the calculation.

• Threshold. The threshold method treats all devi-
ations equally, regardless of their size, as long as
they are above a certain threshold. This method
can prove to be useful in scenarios where each de-
viation above a certain level has the same severity,
such as mission-critical applications that can not
tolerate any violations.

In the most simple deployment, the monitoring
framework is configured as application middleware.
In this deployment, the framework runs entirely in
the same execution environment as the application.
For more advanced scenarios, the three main com-
ponents can each be deployed on separate nodes: the
black-box and white-box components are not coupled
to each other, but they store their data on the same data
store which is used by the trust ranking component.

4 EVALUATION

This section evaluates the presented approach in
terms of (i) the effectiveness of correlating black-box
and white-box measurements, and (ii) the additional
performance overhead caused by continuous client-
centric black-box monitoring.

Continuous and Client-centric Trust Monitoring in Multi-cloud Storage

103



4.1 Experiment Setup

The evaluations described in this section are per-
formed on a machine with a 2.6 GHz Intel Core
i7 processor and 16GB 2133 MHz LPDDR3 RAM,
running MacOS 10.13.4. The performance measure-
ments are obtained using the YCSB benchmark sys-
tem1 which supports a number of reusable workloads
out of the box. The tests are executed in a con-
figuration that involves a native Cassandra instance
and each of the presented experiments were executed
again over a Redis database to confirm the findings.
The executed workloads consisted of 1 million in-
sert operations and 1 million read operations, and a
5-second monitoring interval was used to obtain both
white-box and black-box measurements for read and
write latency.

4.2 Verification Accuracy

The approach presented in this paper builds upon the
existence of statistical correlations between white-
box measurements and black-box measurements ob-
tained from a client perspective. These have been
shown in earlier work (Schoonjans et al., 2015). In
this first set of experiments, we evaluate the accu-
racy of the proposed method, by comparing the ob-
tained black-box measurements with the white-box
measurements.

Table 2 displays the average latencies after each
workload. Column 3 shows the reported white-box
latencies, obtained via the Cassandra client API. Col-
umn 4 presents the black-box latency obtained with
the prototype, whereas the fifth column shows the av-
erage latencies as obtained by YCSB, which are also
measured in a black-box fashion and were included to
have a third perspective on the latencies.

In terms of absolute values, there is a large dis-
crepancy between the white-box and black-box mea-
surements. This is indicated by column 6, showing
the ratio of black-box over white-box latencies. For
insert operations in Cassandra, the black-box laten-
cies (measured from an external perspective and thus
including network latency) are almost 26 times higher
than the self-reported white-box latencies. Compar-
ing the obtained black-box measurements with the
YCSB latencies (in the final column), which are also
measured from a black-box perspective, the ratio is
much smaller: between 1.04 and 1.33.

This gives a strong indication that the measured
black-box measures are at least not incorrect: they
follow almost the same ratio as YCSB for each stor-
age technology. As mentioned. the obtained black-

1YCSB: https://github.com/brianfrankcooper/YCSB

box values include more operations, e.g. the ad-
ditional latency towards the client, which are not
counted in the white-box latency measurement which
is obtained nearer to the database node. In this ex-
periment, the discrepancy between both measurement
types in terms of absolute values is specific to the
setup (network latency) and incidental.

Figure 2 shows the detailed write latencies for
Cassandra, during the workload involving 1 million
insert operations, measured every 5 seconds. Despite
the large discrepancy between the two measurements
(factor 26), these graphs illustrate that they both re-
flect the same changes. At times t=13, t=20, t=36
and t=55 small changes in the white-box latency were
observed, which are also reflected in the black-box
latencies. These results confirm that this black-box
metric can be used for verification, even though the
absolute values do not correspond.

In a realistic deployment setting, these measure-
ments will additionally be impacted by natural varia-
tions in the network latency between the storage ser-
vice and the client. This is most relevant in a multi-
cloud configuration that involves multiple CSPs, and
plays a less significant role in a local, on-premise de-
ployment (e.g., in a local data center context) such
as in our evaluations. Trust ranking models that tol-
erate such variations will necessarily involve statisti-
cal prediction models of end-to-end latency (Kim and
Yi, 2010; Yamamoto et al., 2015; Madhyastha et al.,
2006). Integration of such models in the prototype
and further validation of the approach outside of lab
settings are considered part of our future work.

4.3 Performance Overhead of
Black-box Measurements

In this second experiment, identical workloads were
executed on both a native Cassandra instance (the
baseline for comparison) and the prototype imple-
mentation that (i) measures black-box latency and
(ii) stores these measurements in a central database.
The experiment focuses on quantifying the perfor-
mance overhead introduced by instrumenting regular
read and insert requests with support for black-box
monitoring. This is done by systematically comparing
the results of a benchmarking workload of the base-
line with the performance results of the prototype, fo-
cusing on the increase in latency.

For this experiment, we have executed workload
D of YCSB, which is a combined read-write work-
load, with 95% read operations and 5% inserts. Each
workload was executed with N = 1 million opera-
tions, and each experiment was repeated M = 3 times
to ensure fair comparison and remove the influence of

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

104



Table 2: Latency measurements obtained in a black-box and white-box way. The ‘WB’ data series represent white-box
measurements, whereas the ‘BB’ and ‘YCSB’ series represent black-box measurements obtained by respectively the prototype
and YCSB.

Database read /
insert

WB
(ms)

BB
(ms)

YCSB
(ms)

ratio
BB/WB

ratio
BB/YCSB

Cassandra insert 0.034 0.874 0.657 25.70 1.33
read 0.079 0.780 0.593 9.87 1.31

Redis insert 0.113 0.409 0.359 3.62 1.14
read 0.012 0.174 0.168 14.5 1.04

80
0

10
00

12
00

14
00

Cassandra black-box insert latency

32
33

34
35

36 Cassandra white-box insert latency

La
te

n
cy

 (
µ

s)

0 10 20 30 40 50 60

20
25

30
35

40 Ratio black-box over white-box

Time (t)

R
a
ti

o
La

te
n
cy

 (
µ

s)

Figure 2: Cassandra insert latencies measured in a white-box and black-box way. Horizontal lines at t=13, 20, 36 and 55
indicate changes that are reflected in both black-box and white-box measurements.

accidental outliers.
The second row of Table 3 shows the results of

the experiments for Cassandra: compared to the base-
line variant, we observe an increased latency of on av-
erage 141 µs for read operations (corresponding to a
63% increase) and of on average 139 µs for the insert
operations (corresponding to a 44% increase).

To confirm these findings, the experiment was re-
peated for the Redis database. The third row of Ta-
ble 3 presents a summary overview of these results. It
confirms that (a) the relative differences between la-
tencies using the native APIs compared to the moni-
toring framework are substantial (40% to even 100%)
and (b) no substantial differences can be observed
across databases.

To pinpoint the specific cause of the extra over-

head, additional experiments were conducted to as-
sess the impact of storing the obtained measurements
to the database. These experiments showed that the
overhead increase is caused by storing the black-box
measurements, which in effect introduces extra I/O
operations for each request, regardless of it being a
read- or insert-request. Figure 5 shows the results of
a variant of the prototype that obtains the black-box
measurements, but does not actually persists them to
disk (the ‘without storing’ data series in Figure 5).

As shown, not actually storing the measurements
has lead to a significant improvement in performance,
more precisely latencies that are almost the same as
for the native API. Having as such effectively pin-
pointed the main bottleneck allows to formulate a
number of possible optimizations, such as a batch-

Continuous and Client-centric Trust Monitoring in Multi-cloud Storage

105



Cassandra reads

Latency (µs)

F
re

qu
en

cy

0 100 200 300 400 500 600

0
10

00
00

30
00

00
50

00
00

native
LuMon

Cassandra inserts

Latency (µs)
F

re
qu

en
cy

0 100 200 300 400 500 600

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

native
LuMon

Figure 3: Cassandra read/insert latencies.

Redis reads

Latency (µs)

F
re

qu
en

cy

0 50 100 150

0
20

00
00

40
00

00
60

00
00

80
00

00

native
LuMon

Redis inserts

Latency (µs)

F
re

qu
en

cy

0 50 100 150 200 250 300

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

native
LuMon

Figure 4: Redis read/insert latencies.

driven strategy for persisting the black-box measure-
ments.

Furthermore, it is important to put these results in
perspective: these experiments were performed on a
local, single-node setup and thus does not take into
account network latency and additional performance
costs incurred in larger database clusters or complex
inter-CSP federations. In comparison to the laten-
cies of storage operations in more realistic cluster se-
tups (Reniers et al., 2017), the absolute latency in-
creases of 70-140 µs are not altogether that substan-
tial.

5 DISCUSSION AND RELATED
WORK

In a cloud context, the most common approach to trust
involves trusted third parties (T3P) and trust broker-
age. For example, the approach of Zhang et al. (Zhang
et al., 2014) features T3P that audits cloud service
providers in terms of memory usage. Muchahari et
al. (Muchahari and Sinha, 2012) have presented a dy-
namic trust monitor that performs continuous calcula-
tion based on SLA and QoS and reports it to a central
registry (Muchahari and Sinha, 2012). Analogously,
recommender (Li et al., 2012), marketplace (Habib

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

106



Table 3: Summary of average latencies.

Database ops P (µs) native (µs) abs diff % diff
Cassandra read 364 223 141 63

insert 453 314 139 44
Redis read 90 45 45 100

insert 190 118 72 61

Cassandra reads

Latency (µs)

Fr
eq

ue
nc

y

0 100 200 300 400 500 600

0
10

00
00

30
00

00
50

00
00

native
Mon
Mon (without storing)

Cassandra inserts

Latency (µs)

Fr
eq

ue
nc

y

0 200 400 600 800

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

native
Mon
Mon (without storing)

Figure 5: Cassandra read/insert overhead.

et al., 2013; Habib et al., 2014) and reputation sys-
tems (Khan and Hamlen, 2012) rely on a centralized
trusted entity that collects and shares experiences be-
tween data owners and CSPs and facilitates match-
making and service brokerage.

The solution discussed in this article is comple-
mentary, in the sense that it assumes the point of view
of a single data owner and does not build upon the
precondition of a trusted third party.

The industry survey of Lins et al. (Lins et al.,
2016) stresses the necessity of continuous auditing. In
terms of the architectural styles explored in this sur-
vey, the approach presented in this paper is an exam-
ple of the ‘Monitoring and Control Layer’-type sys-
tem, but then from an externalized perspective. Key
arguments against systematic benchmarking of cloud
services (Li et al., 2010) are that these activities com-
monly introduce (i) additional cost, and (ii) may have
side-effects, for example benchmark systems intro-
duce artificial data which may hinder a production
system. In our approach, the impact on a produc-
tion system is reduced by instrumenting regular ap-
plication operations with the acquisition of black-box
measurements. Similar approaches have been imple-
mented to continuously audit the privacy-preservation
and data security aspects of a CSP, leveraging tech-
niques of trusted computing (Kai et al., 2013). In such

protocols, trust guarantees w.r.t. the correctness of the
reported service levels are constructed by means of
cryptographic proofs. Yang et al. (Yang et al., 2013)
have proposed an architecture that supports these pro-
tocols in a multi-cloud storage architecture.

Increasing trust between data-owners and CSPs
can be done in several ways. Since trust is based on
lack of sufficient information, the solution is to in-
crease the visibility of the system, by gathering and
sharing information. In (Zhang et al., 2014) this
approach is taken. While these approaches increase
the trustworthiness of CSPs, they essentially shift the
trust problem to the T3P.

Quantifying and ranking trust has been an ac-
tive topic of research in reputation systems (Kam-
var et al., 2003). The Cloud Security Alliance
(CSA) (Cloud Security Alliance (CSA), 2018) pro-
posed the CAIQ (Consensus Assessments Initiative
Questionnaire), at the basis of which rankings and
trust information scores can be calculated. This scor-
ing scheme has been used extensively in the context
of trust-based systems, for example in the work of
Habib et al. (Habib et al., 2014; Habib et al., 2013).
Cloud-trust, the security assessment model of Gon-
zalez et al. (Gonzales et al., 2017) involves defining
a reference model for multi-tenant IaaS services that
explicitly offers security controls and trust zones, and

Continuous and Client-centric Trust Monitoring in Multi-cloud Storage

107



derives trust scores from lower-level security-related
metrics. Although we have only worked with initial
and simplistic trust ranking schemes, in future work,
we will investigate more sophisticated trust ranking
models that deal with problems such as hysteresis be-
tween metrics or other causal or temporal relations
that may hamper the accuracy of the proposed trust
models.

Client-centric approaches to benchmark or as-
sess distributed systems have been successfully ap-
plied in the context of system properties for which
a global view is hard to construct, such as consis-
tency (Golab et al., 2014; Bermbach et al., 2014).
Similar approaches have been successfully adopted to
benchmark Infrastructure-as-a-Service (IaaS) cloud
services from an externalized perspective (Folkerts
et al., 2012; Xiong et al., 2013). Wood et al. (Wood
et al., 2007) discuss the efficacy of unobtrusive black-
box performance profiling in comparison to gray-
boy performance profiling for the purposes of dy-
namic migration of virtual machines. The frame-
work of Sakr et al. (Sakr and Liu, 2012) implements
client-centric monitoring of cloud-hosted databases
for the purpose of adaptive SLA-based provision-
ing and cost management. This framework demon-
strates how adopting a client-centric monitoring per-
spective can improve flexibility and trust. Schoon-
jans et al. (Schoonjans et al., 2015) have shown the
statistical correlations between some black-box and
white-box metrics, showing that these metrics can in-
deed be indicative of actual service delivered. Re-
lated approaches employ black-box metrics predictive
for finding faults, anomalies, and deviations in perfor-
mance (Nguyen et al., 2013).

The approach evaluated in this paper exploits
these correlations to find and monitor for significant
deviations between delivered and observed measure-
ments, and attribute a level of trust. The main ben-
efit of adopting a client-centric, black-box approach
is that we effectively measure the end-to-end service
delivered to the customer, including external factors
such as network latency which are not reported in
whitebox measurements.

6 CONCLUSION

In this paper, we have evaluated an approach of con-
tinuous trust monitoring that leverages upon the ex-
isting statistical correlations between black-box met-
rics obtained from a client perspective, and white-
box metrics which are reported by cloud storage
providers. By continuously comparing the delivered
service in terms of key performance and availability

metrics (latency, throughput, uptime), trust rankings
are created and continuously maintained or revised,
allowing data owners to react to service disruptions
or SLA violations in a timely manner.

We have shown the validity and feasibility of the
proposed approach in a prototype which we in turn
evaluated in terms of the incurred performance over-
head.

ACKNOWLEDGEMENTS

This research is partially funded by the Research
Fund KU Leuven (project GOA/14/003 - ADDIS) and
the DeCoMAdS SBO project.

REFERENCES
Akerlof, G. A. (1970). The market for “lemons”: Quality

uncertainty and the market mechanism. The Quarterly
Journal of Economics, 84(3):488–500.

AWS - Amazon Web Services (2018a). Amazon compute
service level agreement. https://aws.amazon.com/ec2/
sla/[Online; accessed March 26, 2018].

AWS - Amazon Web Services (2018b). Amazon
ebs product details. https://aws.amazon.com/ebs/
details/[Online; accessed March 26, 2018].

AWS - Amazon Web Services (2018). Monitoring the
status of your volumes. https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/monitoring-volume-
status.html. [Online; Accessed April 22, 2018].

Bermbach, D., Klems, M., Tai, S., and Menzel, M. (2011).
Metastorage: A federated cloud storage system to
manage consistency-latency tradeoffs. In Cloud Com-
puting (CLOUD), 2011 IEEE International Confer-
ence on, pages 452–459. IEEE.

Bermbach, D., Zhao, L., and Sakr, S. (2014). Towards
comprehensive measurement of consistency guaran-
tees for cloud-hosted data storage services. In Nam-
biar, R. and Poess, M., editors, Performance Char-
acterization and Benchmarking, pages 32–47, Cham.
Springer International Publishing.

Cabibbo, L. (2013). Ondm: an object-nosql datastore map-
per. Faculty of Engineering, Roma Tre University. Re-
trieved June 15th.

Cloud Security Alliance (CSA) (2018). The cloudtrust pro-
tocol (ctp). https://cloudsecurityalliance.org/group/
cloudtrust-protocol/# overview.

Compose (2018a). Compose scalegrid monitoring.
https://help.compose.com/docs/essentials-compose-
monitoring. [Online; Accessed April 22, 2018].

Compose (2018b). Enhanced sla - compose. https:
//help.compose.com/docs/enhanced-sla[Online; ac-
cessed March 26, 2018].

DataStax (2018). Datastax managed cloud service level
agreement. https://www.datastax.com/dmc-service-
level-agreement[Online; accessed March 26, 2018].

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

108



EMC (2011). Proof, not promises: creating the
trusted cloud. http://www.emc.com/collateral/emc-
perspective/11319-tvision-wp-0211-ep.pdf [Online;
accessed December 28, 2017].

Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl,
V., and Tosun, C. (2012). Benchmarking in the cloud:
What it should, can, and cannot be. In Technology
Conference on Performance Evaluation and Bench-
marking, pages 173–188. Springer.

Golab, W., Rahman, M. R., AuYoung, A., Keeton, K.,
and Gupta, I. (2014). Client-centric benchmarking
of eventual consistency for cloud storage systems. In
Distributed Computing Systems (ICDCS), 2014 IEEE
34th International Conference on, pages 493–502.
IEEE.

Gonzales, D., Kaplan, J. M., Saltzman, E., Winkelman, Z.,
and Woods, D. (2017). Cloud-trust—a security as-
sessment model for infrastructure as a service (iaas)
clouds. IEEE Transactions on Cloud Computing,
5(3):523–536.

Google Cloud (2016). Google cloud storage sla.
https://cloud.google.com/storage/sla[Online; ac-
cessed March 26, 2018].

Google Cloud (2018). Stackdriver monitoring. https:
//cloud.google.com/monitoring/. [Online; Accessed
April 22, 2018].

Habib, S. M., Hauke, S., Ries, S., and Mühlhäuser, M.
(2012). Trust as a facilitator in cloud computing: a
survey. Journal of Cloud Computing: Advances, Sys-
tems and Applications, 1(1):19.

Habib, S. M., Ries, S., Mühlhäuser, M., and Varikkattu,
P. (2014). Towards a trust management system for
cloud computing marketplaces: using caiq as a trust
information source. Security and Communication Net-
works, 7(11):2185–2200.

Habib, S. M., Varadharajan, V., and Mühlhäuser, M. (2013).
A framework for evaluating trust of service providers
in cloud marketplaces. In Proceedings of the 28th An-
nual ACM Symposium on Applied Computing, pages
1963–1965. ACM.

Instaclustr (2017). Service level agreements - cassan-
dra services. https://www.instaclustr.com/company/
policies/service-level-agreements/[Online; accessed
March 26,2018].

Instaclustr (2018). Instaclustr - monitoring
api. https://www.instaclustr.com/support/api-
integrations/api-reference/monitoring-api/. [Online;
Accessed April 22, 2018].

Kai, H., Chuanhe, H., Jinhai, W., Hao, Z., Xi, C., Yilong,
L., Lianzhen, Z., and Bin, W. (2013). An efficient pub-
lic batch auditing protocol for data security in multi-
cloud storage. In ChinaGrid Annual Conference (Chi-
naGrid), 2013 8th, pages 51–56. IEEE.

Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H.
(2003). The eigentrust algorithm for reputation man-
agement in p2p networks. In Proceedings of the 12th
International Conference on World Wide Web, WWW
’03, pages 640–651, New York, NY, USA. ACM.

Khan, S. M. and Hamlen, K. W. (2012). Hatman: Intra-
cloud trust management for hadoop. In Cloud Com-

puting (CLOUD), 2012 IEEE 5th International Con-
ference on, pages 494–501. IEEE.

Kim, J. and Yi, J. (2010). A pattern-based prediction: An
empirical approach to predict end-to-end network la-
tency. Journal of Systems and Software, 83(11):2317
– 2321. Interplay between Usability Evaluation and
Software Development.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
cmp: Comparing public cloud providers. In Proceed-
ings of the 10th ACM SIGCOMM Conference on In-
ternet Measurement, IMC ’10, pages 1–14, New York,
NY, USA. ACM.

Li, W., Ping, L., Qiu, Q., and Zhang, Q. (2012). Research on
trust management strategies in cloud computing envi-
ronment. Journal of Computational Information Sys-
tems, 8(4):1757–1763.

Li, X. and Du, J. (2013). Adaptive and attribute-based trust
model for service-level agreement guarantee in cloud
computing. IET Information Security, 7(1):39–50.

Lins, S., Schneider, S., and Sunyaev, A. (2016). Trust is
good, control is better: Creating secure clouds by con-
tinuous auditing. IEEE Transactions on Cloud Com-
puting.

Madhyastha, H. V., Anderson, T., Krishnamurthy, A.,
Spring, N., and Venkataramani, A. (2006). A struc-
tural approach to latency prediction. In Proceedings of
the 6th ACM SIGCOMM conference on Internet mea-
surement, pages 99–104. ACM.

Microsoft Azure (2015). Sla for storage - azure.
https://azure.microsoft.com/en-us/support/legal/
sla/storage/v1 0/[Online; accessed March 26, 2018].

Microsoft Azure (2018). Overview of metrics in Mi-
crosoft Azure. https://docs.microsoft.com/en-
us/azure/monitoring-and-diagnostics/monitoring-
overview-metrics. [Online; Accessed April 22, 2018].

MongoDB (2018a). Monitoring a cluster. https://docs.atlas.
mongodb.com/monitor-cluster-metrics/. [Online; Ac-
cessed April 22, 2018].

MongoDB (2018b). Using the MMS console. http://
api.mongodb.com/mms/0.8/usage.html. [Online; Ac-
cessed April 22, 2018].

MongoDB Atlas (2018). Sla for mongodb atlas.
https://www.mongodb.com/cloud/atlas/availability-
sla[Online; accessed March 26, 2018].

Muchahari, M. K. and Sinha, S. K. (2012). A new trust
management architecture for cloud computing envi-
ronment. In 2012 International Symposium on Cloud
and Services Computing, pages 136–140.

Nguyen, H., Shen, Z., Tan, Y., and Gu, X. (2013). Fchain:
Toward black-box online fault localization for cloud
systems. In Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on, pages
21–30. IEEE.

Oracle (2018). Monitoring and tuning the database.
https://docs.oracle.com/cd/B19306 01/server.102/
b14196/montune.htm#ADMQS010. [Online; Ac-
cessed April 22, 2018].

Oracle Cloud (2018). Oracle cloud infrastructure service
level agreement. https://cloud.oracle.com/en US/iaas/
sla[Online; accessed March 26, 2018].

Continuous and Client-centric Trust Monitoring in Multi-cloud Storage

109



Popa, R. A., Lorch, J. R., Molnar, D., Wang, H. J., and
Zhuang, L. (2011). Enabling security in cloud storage
slas with cloudproof. In USENIX Annual Technical
Conference, volume 242, pages 355–368.

Raaijmakers, L. e. a. (2018). Monitoring platform: proto-
type implementation.

Rafique, A., Van Landuyt, D., and Joosen, W. (2018). Per-
sist: Policy-based data management middleware for
multi-tenant saas leveraging federated cloud storage.
Journal of Grid Computing.

Rafique, A., Van Landuyt, D., Reniers, V., and Joosen, W.
(2017). Towards an adaptive middleware for efficient
multi-cloud data storage. In Crosscloud’17 Proceed-
ings of the 4th Workshop on CrossCloud Infrastruc-
tures & Platforms.

Redis Labs (2018). What is the redis labs service
level agreement? https://redislabs.com/faqs/what-is-
the-redislabs-service-level-agreement-2/[Online; ac-
cessed March 26, 2018].

RedisLabs (2018). Redis enterprise software - operations
and administration guide. https://redislabs.com/redis-
enterprise-documentation/administering/monitoring-
metrics/definitions/. [Online; Accessed April 22,
2018].

Reniers, V., Rafique, A., Van Landuyt, D., and Joosen, W.
(2017). Object-nosql database mappers: a benchmark
study on the performance overhead. Journal of Inter-
net Services and Applications.

Rong, C., Nguyen, S. T., and Jaatun, M. G. (2013). Be-
yond lightning: A survey on security challenges in
cloud computing. Computers & Electrical Engineer-
ing, 39(1):47–54.

Sakr, S. and Liu, A. (2012). Sla-based and consumer-centric
dynamic provisioning for cloud databases. In 2012
IEEE Fifth International Conference on Cloud Com-
puting, pages 360–367.

ScaleGrid (2012). Monitoring mongodb instances us-
ing mongodb monitoring service (MMS). https:
//scalegrid.io/blog/monitoring-mongodb-instances-
using-10gen-mongo-monitoring-service-mms/.
[Online; Accessed April 22, 2018].

ScaleGrid (2016). Master services agreement. https:
//scalegrid.io/msa.html[Online; accessed March 26,
2018].

Schoonjans, A., Van Landuyt, D., Lagaisse, B., and Joosen,
W. (2015). On the suitability of black-box perfor-
mance monitoring for sla-driven cloud provisioning
scenarios. In The 14th Workshop on Adaptive and Re-
flective Middleware. ACM.

Uikey, C. and Bhilare, D. (2013). A broker based trust
model for cloud computing environment. Interna-
tional Journal of Emerging Technology and Advanced
Engineering, 3(11):247–252.

Wood, T., Shenoy, P. J., Venkataramani, A., Yousif, M. S.,
et al. (2007). Black-box and gray-box strategies for
virtual machine migration. In NSDI, volume 7, pages
17–17.

Xiong, P., Pu, C., Zhu, X., and Griffith, R. (2013). vperf-
guard: an automated model-driven framework for ap-
plication performance diagnosis in consolidated cloud

environments. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineer-
ing, pages 271–282. ACM.

Yamamoto, H., Ano, S., and Yamazaki, K. (2015).
Modeling of dynamic latency variations using auto-
regressive model and markov regime switching for
mobile network access on trains. Journal of Informa-
tion Processing, 23:420–429.

Yang, K., Jia, X., et al. (2013). An efficient and se-
cure dynamic auditing protocol for data storage in
cloud computing. IEEE Trans. Parallel Distrib. Syst.,
24(9):1717–1726.

Zhang, H., Ye, L., Shi, J., Du, X., and Guizani, M. (2014).
Verifying cloud service-level agreement by a third-
party auditor. Security and Communication Networks,
7(3):492–502.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

110


