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Abstract: The state-of-the-art semantic segmentation tasks can be achieved by the variants of the fully convolutional
neural networks (FCNs), which consist of the feature encoding and the deconvolution. However, they struggle
with missing or inconsistent labels. To alleviate these problems, we utilize the image-level multi-class encod-
ing as the global contextual information. By incorporating object classification into the objective function, we
can reduce incorrect pixel-level segmentation. Experimental results show that our algorithm can achieve better
performance than other methods on the same level training data volume.

1 INTRODUCTION

Semantic segmentation is one of the key computer vi-
sion tasks with various applications including scene
understanding, autonomous driving, and 3D recon-
struction. It aims at parsing images into several re-
gions and labeling them with their corresponding se-
mantic categories, which can also be viewed as a
pixel-wise classification problem.

Early segmentation methods mainly relied on low-
level hand-crafted vision features combined with ma-
chine learning algorithms to merge image regions or
classify pixels. Typically, CRF (Conditional Random
Field) models are exploited and have plenty of effec-
tive extensions (Krähenbühl and Koltun, 2011).

However, both expensive human labors and expert
knowledge are required in these methods and satisfac-
tory results are still not obtained. In recent years, due
to the powerful hierarchical feature learning ability
of deep convolutional neural networks (CNN), tradi-
tional semantic segmentation methods are almost su-
perseded by deep learning approaches, especially af-
ter fully convolutional neural networks (Long et al.,
2015) (FCNs) were proposed. The FCNs structure
formulated image semantic segmentation task as a
pixel-wise labeling problem and many state-of-the-art
algorithms are extended from it.

Although the state-of-the-art semantic segmenta-
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tion tasks can be achieved by the variants of FCNs,
which consist of the feature encoding and the decon-
volution, they struggle with missing or inconsistent
labels.

First, very large scale objects with complex tex-
ture and illumination conditions can be easily seg-
mented into different categories. This problem may
be caused by the fixed-size receptive field of CNN and
it cannot sense the whole object. We have padded the
large-scale object with zeros and resized the image
to original size to reduce the object size. Then, we
can get appropriate segmentation results using these
preprocessed images. Second, tiny objects were often
ignored and classified as background. We call these
problems ”confusion segmentation”, and some typi-
cal visual segmentation examples of FCNs are shown
in Figure 1.

In this paper, we propose a global context con-
straint network for semantic segmentation in order to
solve the confusion segmentation problem. We uti-
lized the global contextual information and defined
an objective function to learn it explicitly in order to
eliminate the segmentation confusion in the encoded
feature.

The intuition of the proposed network is as fol-
lows. We hypothesize that the joint learning of image-
level class-specific features with baseline semantic
segmentation can improve the semantic segmenta-
tion results while solving the confusion segmenta-
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(a) Inconsistent labels due to complex texture and large object

(b) Inconsistent labels due to complex texture and large object

Figure 1: Confusion segmentation problems of fully convolutional semantic segmentation networks. (Left) original image.
(Center) ground-truth annotation. (Right) segmentation results.

tion problem. We will find that the addition of the
image-level cross-entropy loss layer before deconvo-
lution can give the better segmentation results even
when the pixel-level segmentation information is not
enough. Other recent results (Wang et al., 2016; Hong
et al., 2015) can be interpreted in this perspective.

2 RELATED WORK

The DeepLab models (Chen et al., 2014) enlarged
the receptive field to incorporate larger contextual in-
formation by using dilated convolution and utilize
fully connected CRF (Krähenbühl and Koltun, 2011)
as post-processing to refine the segmentation results.
After FCNs (Long et al., 2015) was proved to be
successful in semantic segmentation, their variants
have been improved the accuracy. The FCNs struc-
ture formulated image semantic segmentation task as
a pixel-wise labeling problem and many state-of-the-
art algorithms are extended from it. The CRFas-
RNN (Zheng et al., 2015) model integrated fully con-
volutional network with CRF algorithm into an end-
to-end deep network that can be trained by the back-
propagation algorithm. It can possess both the prop-
erties of CRF and FCNs and reach impressive seg-
mentation results. The DeconvNet (Noh et al., 2015)

approach got coarse feature map through convolution
and pooling layers then recovered the dense predic-
tion through symmetric up-convolution and unpool-
ing operations. This network utilized the pooling mast
with unpooling and the object proposals in order to
solve inconsistent and missing labels problems. How-
ever, DeconvNet contains too many layers, and there-
fore, training and inference consumes too much time
and memory. SegNet (Badrinarayanan et al., 2015)
regarded fully convolutional network as the encoder
network and the corresponding up-convolutional net-
work as the decoder network. In essence, its network
architecture was the same as DeconvNet, but disposed
of several top layers to reduce the number of param-
eters. These approaches all required fixed size input
images which will lose details of object in the images.
ParseNet (Liu et al., 2015) captures the global con-
text feature through global pooling and normalizing
different features before fusion.

Recently, researchers have been tried to ac-
tively use class information to semantic segmenta-
tion tasks. Objectness-aware Semantic Segmenta-
tion (Wang et al., 2016) combined faster R-CNN
to generate object proposals. Surprisingly, the sim-
ple combination of the object detector and seman-
tic segmentation achieve a top performance in PAS-
CAL VOC2012 challenge. It can be evidence that the
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consideration of each object class separately is very
helpful. Also, Hong et. al. (Hong et al., 2015) de-
coupled classification and segmentation to reduce the
search space for segmentation effectively by exploit-
ing class-specific activation maps, contrary to existing
approaches posing semantic segmentation as region-
based classification.

More recently, PSPNet (Zhao et al., 2017) aimed
to enforce global priors using global pooling for scene
parsing. Additionally, in the context of object de-
tection tasks, similar object or instance based meth-
ods have been proposed (Hu et al., 2017)(He et al.,
2017). In contrast to those methods, we proposed a
complementary module to be easily incorporated into
the FCN-based methods.

3 PROPOSED METHOD

In this section, we discuss the architecture of our
Global Semantic Context Constraint network and de-
scribe the overall semantic segmentation algorithm.
In our network, we consider the segmentation as an
encoding-decoding process and the two components
are discussed in detail as follows.

In this section, we propose a global context con-
straint network (GCCNet) for semantic segmentation
in order to solve the confusion segmentation problem.
We consider the semantic segmentation network as a
pairwise encoding-decoding process. We use a modi-
fied fully convolutional network utilizing global con-
text information to encode segmentation features and
take the up-convolution operation to decode the prob-
ability of each category for each pixel. We define an
objective function to explicitly guide the training of
the global contextual information. And then we in-
corporate the global contextual feature into the con-
volutional feature map in order to make the final en-
coding feature. The decoding process is equivalent
to a parameter learnable upsampling procedure. The
whole network is jointly trained with segmentation
loss end to end. It is worth noting that our network
neither needs to resize the input images to the same
scale nor does it need to utilize objects proposals. So,
our method is robust to reach better performance than
previous methods on the same level training data vol-
ume. Furthermore, it consumes less time and mem-
ory during training and inference and contains much
fewer parameters in the network than previous meth-
ods.

3.1 Network Analysis

The overall architecture is shown in Figure 2, we
consider the semantic segmentation network as an
encoding-decoding process. In our network, we re-
gard forward convolutional operations as the process
of encoding features from the original images and re-
gard up-convolutional operations as the decoding pro-
cess to predict the probability of each category for
each pixel. In the encoding component, we make
use of the modified version (Liu et al., 2016) of the
VGG16 network (Simonyan and Zisserman, 2014) as
the initialization convolutional network. The network
adjusts the fully connected layers into fully convolu-
tional layers in the same ways as FCNs (Long et al.,
2015) and adds dilation (Yu and Koltun, 2015) oper-
ations for the top three convolutional layers in order
to enlarge the receptive field. Due to the existence
of dropout in the VGG16 network, we eliminated a
portion of parameters in the adjusted convolutional
layers so as to reduce the number of parameters sig-
nificantly. This basic network is pre-trained on Ima-
geNet dataset (Russakovsky et al., 2015). We used
the up-convolution operations as the decoding pro-
cess. Compared with DeconvNet (Noh et al., 2015)
and SegNet (Badrinarayanan et al., 2015) which use
tens of up-convolution layers, we used only one up-
convolution layer in order to reduce the number of
parameters and to speed up the training. We regard
this model as our baseline network.

Our baseline network is the FCN. By compar-
ing results of state-of-the-art FCNs segmentation net-
works qualitatively, we concluded that almost all
of them have inconsistent-labels and missing-labels
problems. We assumed that the limitation comes from
the lack of the global context information. Incorpo-
rating the global context into semantic segmentation
facilitates better feature encoding, and it will lead to
better feature encoding will lead to better and easier
encoding. The global context is known to be very
useful for detection and segmentation tasks in deep
learning and has been explored in several works (Liu
et al., 2015) (Mottaghi et al., 2014) (Szegedy et al.,
2014). In order to merge global context information,
we applied global average pooling to get the contex-
tual embedding from the last convolutional layer and
use element-wise sum operation to combine it with
the final encoded features. Since different level fea-
tures have different level numerical scales, we add a
normalizing layer (Liu et al., 2015) before feature
combination, which is a learnable scaling transforma-
tion in essence. However, because of the limitation
of the data or ability of back-propagation (BP) algo-
rithm, the global context branch may be not able to
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Figure 2: The architecture of Global Context Constraint Network. In the encoding process, the cross-entropy loss is employed
to guide the global context features extraction and merge with fully convolutional features to obtain encoded features. And in
the decoding process, up-convolution operation is utilized to decode the merged features to get segmentation results.

learn proper contextual information, so we added a
constraint for the global context information to ex-
plicitly guide what the contextual information is to
learn and this method leads to a huge improvement
in the segmentation performance compared with the
baseline network.

3.2 Global Semantic Context
Constraint Encoding

Herein, we discuss how to constrain the global con-
text and merge it into the encoded features. In order
to solve the previous problems, we demand the net-
work to encode the categories in a scene. So we de-
fine a multi-label classification loss which is a kind of
cross-entropy loss to predict the possible categories
in a scene and merge the predicted score of each cat-
egory into the encoded features. The predicted scores
denote the image contextual information. The objec-
tive loss function can be described as follows:

L1 =
−1
N

N

∑
i=1

C

∑
k=1

ui,k log p̂i,k

s.t. p̂i,k =
1

1+ e−gi,k
, gi = t1(W1, Ii),

(1)

where N and C are the batch size and the number
of classes, respectively. gi,k denotes the global con-
textual score of image Ii for class k ∈ Ω (where Ω

is a collection of all categories). And p̂i,k denotes
the probability of category k for image Ii in image

level. We define ui,k = 1i,k be the indicator func-
tion of Ωi (all categories assigned to image Ii ), then

ui,k =

{
1 i f k ∈Ωi

0 otherwise
. t1 denotes the transformation

of a neural network from the image Ii to global con-
text constraint features and W1 contains parameters
in this transformation. We denote the fully convolu-
tional features as follows:

hi = t2(W2, Ii) (2)

where t2 denotes the transformation of a neural net-
work from the image Ii to fully convolutional features
and W2 designates parameters in this transformation.
We resized the global context scores to the same size
as the fully convolutional features and use element-
wise sum to get the final encoded features Fe.

3.3 Semantic Decoding

During the decoding process, we only use one up-
convolution layer to decode the segmentation feature
and use softmax loss to train the segmentation task.
The objective loss function is defined as follows:

L2 =− 1
MN

N

∑
i=1

M

∑
j=1

C

∑
k=1

1
{

yi j = k
}

log(p̂′i j,k)

s.t. p̂′i j,k =
exp(S′i j,k)

C
∑

l=1
exp(S′i j,l)

, S′ = t3(W3,Fe),

(3)

where M is the number of pixel in the image. p̂′i j,k
stands for the probability to assign category k for
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Table 1: Evaluation results on PASCAL VOC 2012 test set.

Method bkg areo bike bird boat bottle bus car cat chair cow
FCN-8s (Long et al., 2015) 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5
ParseNet (Liu et al., 2015) 92.4 84.1 37.0 77.0 62.8 64.0 85.8 79.7 83.7 27.7 74.8
DeepLab-CRF (Chen et al., 2014) 92.6 83.5 36.6 82.5 62.3 66.5 85.4 78.5 83.7 30.4 72.9
DeconvNet-CRF (Noh et al., 2015) 92.9 87.8 41.9 80.6 63.9 67.3 88.1 78.4 81.3 25.9 73.7
CRFasRNN (Zheng et al., 2015) 92.5 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2
GCCNet 93.2 85.5 38.6 81.4 69.6 77.4 84.8 83.6 87.5 40.9 78.0

table dog horse mbk person plant sheep sofa train tv mean
46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
57.6 77.7 78.3 81.0 78.2 52.6 80.4 49.9 75.7 65.0 69.8
60.4 78.5 75.5 82.1 79.7 58.2 82.0 48.8 73.7 63.3 70.3
61.2 72.0 77.0 79.9 78.7 59.5 78.3 55.0 75.2 61.5 70.5
60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0
49.8 80.2 78.7 78.6 83.5 53.0 81.9 47.9 80.5 70.9 72.6

pixel j of image Ii in pixel level. S′i j stands for the
decoded feature vector of pixel j in image Ii, which
is provided by the last up-convolutional layer. S′i j,k is
the value in its kth channel. Let yi j be the true label
of pixel j in image Ii, we define 1

{
yi j = k

}
as the in-

dicator function to judge whether the true label is k.
t3 denotes the decoding process from encoded feature
Fe to final score map and W3 contains parameters in
this process.

Finally, we combine the two loss terms together,
then the final loss function is given as L = L1 + L2.
We can use the stochastic gradient descent algorithm
to train our neural networks jointly.

Note that, from the perspective of the network
structure, the proposed network is different from
multi-task learning. We add the cross-entropy loss
layer before the classification task. It can encode
class-specific features before the pixel-level semantic
classification.

4 EXPERIMENTS

In this section, we first describe our implementation
details and experiments setup. Then, we analyze and
evaluate the proposed network and make comparison
with other methods.

4.1 Implementation Details

4.1.1 Dataset

We employed PASCAL VOC 2012 segmentation
dataset (Everingham et al., 2010) for training and
testing the proposed semantic segmentation network
performance. Meanwhile, following (Long et al.,

2015) (Chen et al., 2014), we employed the extra seg-
mentation annotations from (Hariharan et al., 2011).
Then, there are 10,582 training images and 1,449
testing images in our experiment. We employ im-
ages in original scale to maintain more details of ob-
jects, and images that are not compatible with (es-
pecially smaller than) the network’s input sizes are
resized, of which smallest dimension is less than
224 to 224 with a fixed ratio. The only data aug-
mentation is to do randomly horizontal or vertical
flip for images. Note that our experiment only uses
PASCAL VOC 2012 augmented datasets for training
and modified VGG16 as basic initialization network,
whereas many state-of-the-art approaches also em-
ploy Microsoft COCO (Lin et al., 2014) which con-
tains more than 80K images and deep residual net-
works (He et al., 2016) which more than hundreds of
layers to improve performance.

4.1.2 Optimization

We implemented the proposed network based on
Caffe (Jia et al., 2014) framework and utilize the op-
timization strategy mentioned in (Liu et al., 2015).
We employ the stochastic gradient descent with mo-
mentum strategy and “poly” learning rate policy for
optimization, where initial learning rate, momentum,
power and weight decay are set to 1e−8, 0.9, 0.9 and
0.0005, respectively. We initialized the weights in the
basic convolutional network by using a modified ver-
sion of VGG16 network (Liu et al., 2016) pre-trained
on the ILSVRC (Russakovsky et al., 2015) dataset.
We employed Xavier initialization (Glorot and Ben-
gio, 2010) method for other convolutional layers and
bilinear initialization for the up-convolutional layer.
We used gradient accumulation method to update the
weights every 8 iterations.
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Figure 3: Example of semantic segmentation results on PASCAL VOC 2012 validation images. Note that the proposed
method alleviates the confusion segmentation problem to some extent and have similar effect as CRFasRNN.

Table 2: Evaluation results on PASCAL VOC 2012 valida-
tion set for various network structure.

Method mean IOU
Baseline 0.55

Baseline+context 0.664
GCCnet 0.721

GCCnet+Compactness 0.729

4.1.3 Inference and Refinement

During inference, we also used the original scale im-
ages but resize images whose smallest dimension is
less than 224 to 224 with a fixed ratio. We get
the final score maps from our network and employ
ArgMax for each pixel to get final segmentation re-
sults. According to many other kinds of literature,
we tried the fully connected conditional random field
algorithm (Krähenbühl and Koltun, 2011) as post-
processing to refine and smooth the segmentation re-
sult. We used a grid search to adjust the hyper-
parameters of CRF. Interestingly, we obtained similar
accuracy segmentation results before and after post-
processing. The result supports the fact that the global
context constraints network possesses the ability of
region smoothness. We further compare our segmen-
tation result with some state-of-the-art methods qual-
itatively as illustrated in Figure 3, experimental re-
sults show that our algorithm can achieve better per-
formance than other methods.

4.2 Evaluation

We evaluate our network on PASCAL VOC2012
segmentation benchmark (Everingham et al., 2010),
which contains 1449 validation images and involves
20 object categories. We adopt the comp6 evaluation
protocol to measure performance by using Intersec-
tion over Union (IoU) method between ground truth
and predicted segmentation. The quantitative compar-
ison of the result between the proposed algorithm and
the competitors is shown in Table 1. The performance
of GCCNet is competitive to the state-of-the-art meth-
ods using PASCAL VOC dataset. We also compare
the performance of GCCNet with our baseline net-
works trained on the same condition. As demon-
strated in the Table 2, we can see that using contextual
information leads to 11% improvement on mean IoU
compared with the baseline network. And when we
constrain the global context with cross-entropy loss,
the performance reaches another 5.7% improvement.
By using Compactness post-processing, the best per-
formance can reach 72.9% mean IoU. Both of the
quantitative and qualitative comparisons demonstrate
that constrained global context information are able
to lead better results than the baseline.

Further analysis showed that the addition of cross-
entropy loss can reduce the miss-classification be-
cause the global class information can estimate the
class information without considering the segmenta-
tion boundaries. Therefore, the global class informa-
tion is computed more robustly than the pixel-wise
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location information. Moreover, we believe that by
adding global context constraint to other FCN exten-
sion networks, better result can be achieved.

5 CONCLUSIONS

In this work, we propose the global context constraint
network, which allows the direct inclusion of global
semantic context constraint for the task of seman-
tic segmentation. We have explicitly demonstrated
that relying on constrained global context features can
largely improve the segmentation result and eliminate
semantic segmentation confusion because global con-
text constraint loss explicitly predicts the global con-
text information that merged into the final encoded
feature. The result presented on PASCAL VOC 2012
dataset shows that our approach can also reach the
state-of-the-art performance at the same training con-
ditions and its simplicity and robustness of learning
makes it more advantageous.
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