
Predicting Fault Proneness of Programs with CNN

Kazuhiko Ogawa and Takako Nakatani
The Open University of Japan, 2-11, Wakaba, Mihama-ku, 261-8586, Chiba, Japan

Keywords: Deep Learning, Convolutional Neural Network, Program Quality, Fault Prone.

Abstract: There has been a lot of research aimed at improving the quality of software systems. Conventional methods do
have the ability to evaluate the quality of software systems with regard to software metrics. (i.e. complexity,
usability, modifiability, etc.) In this paper, we apply one of the deep learning techniques, CNN (Convolutional
Neural Network), in order to infer the fault proneness of a program. The CNN approach consists of three
steps: training, verification of the learning quality, and application. In the first step, in order to make training
data, we transformed 27 program source codes into 1490 images with colored elements, so that the features of
the images remain. In the second step, we set the goal of the accuracy of machine learning and trained with the
training data. In the third step, we forced the trained system to infer the fault proneness of 692 images, which
were transformed through 5 programs. This paper presents the effectiveness of our approach for improving
the quality of software systems.

1 INTRODUCTION

Software systems have become deeply involved in
our lives as social systems. As a result, systems are
required to satisfy and excel better usability for di-
versified end users, safety, and security for our so-
cial life. Furthermore, architectural design for quick
and flexible updating has become a common require-
ment. Flexible updating and/or responding means that
the development period becomes shortened. Business
owners also require that the developments be cost-
effective. It is mandatory for developers to improve
the productivity and efficiency of their developments,
along with the quality of their products with regard to
the tradeoff between the increasing requirements and
the cost-effectiveness in time for delivery.

Researchers and developers developed various
technologies to cope with human errors in analy-
sis, design, and implementation. Finding and fix-
ing these errors in the early stage of development
is one of the important goals. In order to reduce
the complexity of a given software, various system
construction methodologies are also proposed. The
most famous and influential one is the object-oriented
software construction methodology (Mayer, 2000).
Multi-agent systems also contribute to the ease of
large scale software construction (Shehory and Sturm,
2016). Kambayashi and Takimoto (Kambayashi and
Takimoto, 2005) demonstrated that multiple agents

have introduced modularity, reconfigurability and ex-
tensibility to control systems, and simplified the de-
velopment of such software systems. Even though the
ongoing proposal of new methodologies are effective,
the essential part of reliable software construction is
in finding defects within the software. After all, soft-
ware construction is reliant on human ability.

Practically, we know that we cannot fix all errors
and defects through testing, and furthermore, some
unknown defects sometimes cause fatal faults. We ap-
ply a CNN (Convolutional Neural Network) model to
improve the quality of software. We call this system
as a CNN based bug inference system (the CNN-BI
system for short).

The purpose of this paper is to present the ef-
fectiveness of the CNN approach to predict the fault
proneness of programs. CNN is one of the mecha-
nisms of deep learning, has been successful in the
field of image recognition, or inference as based on
images. We expect the CNN-BI system to extract fea-
tures of fault proneness of programs throughout the
training, as the features of fault proneness of a pro-
gram must be presented in the images. Furthermore,
we expect the following effectiveness of the CNN ap-
proach.

• The source codes that cause fault must have pecu-
liar features.
The CNN approach may be able to find the fea-
tures in the colored program images rather than in

Ogawa, K. and Nakatani, T.
Predicting Fault Proneness of Programs with CNN.
DOI: 10.5220/0007704303210328
In Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART 2019), pages 321-328
ISBN: 978-989-758-350-6
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

321



monochrome images.

• If the CNN model can infer the fault proneness of
a program, we will be able to review and fix the
program faults regardless of its completion.

Thus, we utilize source code images to train a CNN
model in order to infer the fault proneness of pro-
grams.

The research questions of this paper are as fol-
lows:

• RQ1: Can a CNN extract features of fault prone-
ness from images of programs?

• RQ2: If the CNN cannot infer fault proneness,
what kinds of defects are missing?

• RQ3: Is the accuracy of the inference acceptable?
How can accuracy be improved?

In order to get the answers to these research questions,
we need to categorize elements of program source
codes and transform programs into images that the
CNN-BI system reads, which was carried out as fol-
lows. We transformed program source codes into im-
ages with colored elements to train the CNN-BI sys-
tem. Since we did not have an acceptable number
of training data sets, transfer learning (Weiss et al.,
2016) was applied. Before the evaluation of the CNN,
we train the CNN with images of fault prone and cor-
rect programs. Supervised learning was selected as
the CNN’s learning style, since the goal of inference
was to conclude whether the program is fault prone
or not. After the training, the CNN-BI system was
evaluated as to whether the system could predict fault
proneness of a program.

The remainder of this article is structured as fol-
lows. Section 2 presents related work. Section 3 de-
scribes a case study. In Section 4, we discuss the find-
ings and their implications. Section 5 concludes.

2 RELATED WORK

There are a lot of methods that improve the quality of
software. Techniques utilizing statistical methods are
popularly applied, since the statistical approach can
visualize the quality of software. If qualitative infor-
mation can be presented quantitatively, we can com-
pare the qualitative characteristics of programs with
the quantitative data. We will be able to observe and
control the quality of software quantitatively to im-
prove the quality of software.

Cyclomatic complexity was introduced by Mc-
Cabe in 1976 (McCabe, 1976). There is a strong
correlation coefficient between the cyclomatic num-
ber and the number of defects. Therefore, when a

program is measured with a big cyclomatic number,
it implies that the program is more complex than pro-
grams with smaller cyclomatic numbers. The quan-
titatively presented “relatively complex” programs
need to be carefully reviewed. After a decade, mul-
tiple paradigms began to be applied. For object-
oriented software, Chidamber and Kemerer intro-
duced metrics to measure complexity based on cou-
pling and cohesion, readability, understandability,
modifiability, etc. (Chidamber and Kemerer, 1994).
Their set of metrics is known as CK metrics. Zimmer-
mann also introduced a defect prediction model (Zim-
mermann et al., 2007). These methods are based on a
quantitative approach to evaluate the quality of soft-
ware systems.

The quantitative approach needs evaluation crite-
ria. Lorenz and Kidd presented empirical data for typ-
ical metrics as criteria of the quality of object-oriented
programs (Lorenz and Kidd, 1994). Their intention
was that if the measurement of a program is not within
the “normal” range, the program must be reviewed.
This means that the metrics do not find defects or er-
rors of programs. Furthermore, even though testing
is effective in improving the quality of programs, it
cannot discover all errors. One of the difficult points
of improving the quality of programs is that all of the
defects do not occur in the complex program. We em-
ployed another approach to decide which part to re-
view intensively. The CNN approach may be able to
find defects that occur not only by the complexity of
the program, but also by the structural feature of the
program.

After the google cat (Le et al., 2012), research
and application examples of deep learning have in-
creased. There are studies that have applied deep
learning to software quality evaluation. For example,
Morisaki applied deep learning to evaluate the read-
ability of software in order to control the quality of
software (Morisaki, 2018). Kondo et al. utilized deep
learning to cope with the delay of feedback from static
code analysis (Kondo et al., 2018). Yang et al. (Yang
et al., 2015) also applied deep learning to observe
software changes and proposed W-CNN rather than
CNN. We evaluate the CNN-BI system whether it can
predict fault proneness of programs.

3 CASE STUDY

In order to evaluate an inference of fault proneness
of programs with deep learning, we analyzed the ef-
fectiveness of the inference qualitatively and quantita-
tively. In this section, we look at a case in which CNN
has been applied in order to infer the fault proneness

HAMT 2019 - Special Session on Human-centric Applications of Multi-agent Technologies

322



of programs. For training the CNN-BI system, we
utilized TensorFlow and KERAS that are provided by
Google with Python on Windows 10 Home. The de-
velopment system configuration was Core i7 - 6700 K
for CPU, 8 GB for MainMemory, and Geforce 980 Ti
for GPU.

3.1 Overview

The case shown in this paper is a project with fifteen
developers, who worked for a period of one year. The
number of programs developed was 575. They used
VisualBasic2008.

The images of programs were created by the fol-
lowing steps.
1. We collected source codes as training data.

We randomly selected 27 programs from 575 pro-
grams.

2. Each element in the statements was color coded
based on the following categories;

• instruction: blue
• reserved word: orange
• comment: green
• module name: bold face, green
• global variable name: bold face, blue
• local variable name: black
• control name: pink
• user defined function name, subroutine name:

bold face, red
• user defined type name: purple
• string: brown

3. We divided each module program into subpro-
grams with approximately thirty lines of code.
“One function must be developed within thirty
lines of code” is one of the coding conventions
in the project.

4. The image of each subprogram was created in B5
size horizontals.
We got 1490 images as training data. In other
words, each image represents a program frag-
ment. The fault proneness would be trained and
inferred for each image.

5. The training data for supervised learning was cat-
egorized into two groups; “with fault” and “with-
out fault,” and were labeled “BUG” or “OK” re-
spectively.

6. We trained the CNN-BI system with the training
data.

We used VGG 16 (VGG ILSVRC 16 layers)
which is a learned model of ImageNet as the

Table 1: The amount of training data and verification data.

Data Category Label #cases
Training data OK 945

BUG 545
Verification data OK 213

BUG 109

Figure 1: VGG 16 model diagram.

learning model of the CNN-BI system. The
VGG16 has 16 layers in total, including 13 con-
volution layers, and 3 full connected layers. The
VGG16 has learned about object recognition of
1000 categories.
Figure 1 shows the structure of the VGG16. The
convolution layers was reused as the learned mod-
els of the CNN-BI system. We trained the full
connected layers with the training data in order
to infer the fault proneness of program fragments,
then classified them into two categories based on
the presence or absence of defects, and output the
inference results.
Figure 2 shows the model of the all full connected
layers that we trained. Such a learning method
is called transfer learning. Transfer leaning helps
us apply the trained model from a certain area to
another area in which we have a limited amount
of data. Hence, we utilized transfer learning and
evaluate the quality of source codes with the lim-
ited amount of training data.

7. Similarly, we derived 322 images as verification
data.
Here, the verification data was utilized to verify
the adequacy of the learning.

8. We verified the CNN-BI system with the verifica-
tion data.
Underfitting and overfitting were categorized as
inadequate learning.

The amount of training and verification data is shown
in Table 1.

Predicting Fault Proneness of Programs with CNN

323



Figure 2: Modified model of the full connected layers.

3.2 Results of Training and Verification

We set the objective of the machine learning with the
goal of achieving 85% of the accuracy. We weighted
the training data (Japkowicz, 2000) so that the num-
ber of cases belonging to the two categories would be
balanced. The training process with the learning data
is shown in Figure 3.

The x axis and y axis of the figure shown on the
left hand side represent the number of epochs, and the
number of losses respectively. Similarly, the y axis
of the figure shown on the right hand side represents
the accuracy of the learning. Here, one “epoch” is
one full training cycle of learning. Thus, x axis rep-
resents the number of training cycles. For example,
100 epochs mean that the machine learning cycle has
iterated 100 times.

In the figures, the blue lines represent the loss and
accuracy for training. On the other hand, red lines
represent the loss and accuracy for validation. We
have done 100 epochs of training. As shown in the
Figure 3a, the loss drops to the right. Figure 3b rep-
resents the accuracy, and rises to the right. Because
the lower loss and higher accuracy represents a bet-
ter CNN model, the training was done successfully
without overfitting nor underfitting. After the train-
ing, the loss and accuracy rates reached to 19.04%
and 82.97% respectively.

The first goal of the accuracy of our training was
85% or greater. However, our achieved accuracy rate
was 82.97%, which was lower than our targeted accu-
racy, but we do retrain the ability to train CNN with-
out overfitting or underfitting. Hence, we decided to
apply the trained CNN to infer the fault prone pro-
gram fragments.

3.3 Results of Inference

Thus, we applied the trained CNN-BI system to infer
the fault proneness of program fragments. Constraints
of the inference were as follows.

1. Source codes that were used to train the CNN-BI
system should not be applied for the inference.

2. Source codes that we utilized for the inference
should be programs that had not yet been cor-
rected or modified to resolve the faults.

3. The number of “OK” and “BUG” images should
not deviate considerably from the percentage of
training data. This constraint was intended to
make the inference result be comparable and ver-
ifiable with the training data.
The inference was carried out for 692 images.

Then, we were able to get a judgement for each im-
age. Figure 4 shows an example of the results of an
inference. In Figure 4, the name of a jpeg file is shown
at the top of the figure. The following image is the
thumbnail of the inferred image. The inferred result
is shown under the image. Since the training had been
done with two labels: “OK” and “BUG”, the label
whose possibility is larger than that of the other la-
bel is shown as the inferred result. In this example,
“Result: OK” represents that this program was not in-
ferred as a fault prone program. On the other hand, if
the result is shown as “Result: BUG”, the image was
inferred as a fault prone program. The bottom line of
the figure represents the probability of BUG and that
of OK. The results of the example are as follows, the
probability of BUG was approximately 0.41, and that
of OK was approximately 0.59.

As we mentioned above, the inference data were
program fragments before fixing any defects. In or-
der to discuss the precision and recall to evaluate the
results of the inferences, we investigated the modifi-
cation history of the programs. If a program was not
modified, the label of all of the images of the program
must be “OK.” Contrarily, if the program had been
modified at least once, the labels of the images cor-
responded to the modified fragments of the program,
and so, were “BUG”, however, the labels of other im-
ages were “OK.” If an inferred label was matched to
the actual label, the result of the inference was cor-
rect.

Each program is plotted in Figure 5 with the num-
ber of images on the x axis and the number of defects
on the y axis. As the number of images represents the
size of a program, the inclination of the line that con-
nects each plot from the origin represents the quality
of the program. For example, if the slope is large, the
quality of the program is low. There are two layered
data in the figure. We categorized programs into three
layers. Programs categorized in layer 1 were more
fault prone than programs in layer 2.

In order to evaluate the inferred results, we exam-
ined precision and recall with the actual label of each
program fragment. The inferred results are plotted in

HAMT 2019 - Special Session on Human-centric Applications of Multi-agent Technologies

324



(a) Epoch vs. Loss (b) Epoch vs. Accuracy
Figure 3: Learning Process.

learn006_000001.jpg

Result: OK

[[0.41111973 0.5888802 ]]

Figure 4: An example of the results of an inference.

Figure 6 with the number of images on the x axis and
the number of labels of “BUG” on the y axis.

Corresponding to the results of the label “BUG,”
we examine precision, recall, and F measure. Table 2
shows the results.
In Table 2, Pg. is the serial number assigned to the

fragment of a program, while #Positive is the num-
ber of images that were inferred positively as the fault
prone programs, and thus labeled images as “BUG.”
#True is the number of images that were actually
modified fragments by fixing bugs.
#TP. is the number of images in which defects were
detected or inferred correctly positive (true positive)
by the actual debugging process and inference.

There were however, bugs that could not be de-

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

Layer1 Layer2

The number of images of each program

N
u

m
b

er o
f

d
efects

Figure 5: A scatter plot of the number of images derived
from each program and the number of defects that were ac-
tually found in the program.

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

Layer1 Layer2

The number of images of each program

T
h

e n
u

m
ber o

f
d

efects

Figure 6: Scatter plot of the number of images and the num-
ber of inferred “BUG”s.

duced by the CNN. Table 3 shows the major defects
that could not be deduced.

Images that include SQL statements were success-
fully deduced as fault prone programs. In general,
syntax errors are detected by a compiler or a coding
tool, but it is hard to detect errors in SQL statements

Predicting Fault Proneness of Programs with CNN

325



Table 2: Precision, recall, and F measure.

Pg. #Posi- #True #TP. Preci- Re- F
tive sion call

a 8 9 6 0.75 0.67 0.71
b 14 3 2 0.14 0.67 0.24
c 28 15 7 0.25 0.47 0.33
d 18 13 3 0.17 0.23 0.19
e 91 59 41 0.45 0.69 0.55

Table 3: The major defects that could not be deduced.

Pg. Defects #cases
a Deletion of variables 1
a Deletion of program codes 2
b Correction of variables in the

condition of an IF statement
1

c Modification of called functions 8
d Addition of program codes 4
d Modification of program codes 3
d Deletion of program codes 3
e Addition and/or deletion of vari-

ables
13

e Addition of program codes 1
e Modification of program codes 2
e Modification of called functions 2

Table 4: Precision, Recall and F measure of the result of
interpretation of inference.

Pg. #Posi- #True #TP. Preci- Re- F
tive sion call

a 14 9 7 0.50 0.78 0.61
b 22 3 2 0.09 0.67 0.16
c 51 15 12 0.24 0.80 0.36
d 31 13 4 0.13 0.31 0.18
e 153 59 50 0.33 0.85 0.47

prior to the run time. The CNN was able to detect
such defects that were sometimes hard to find. How-
ever, the inference of the CNN did not point out ac-
tual errors in the programs, but; the fault proneness
of each image. Therefore, after the CNN inference,
developers are expected to review the program frag-
ments that are inferred as fault prone programs.

There are problems we shall solve. When we com-
pared actual bugs with the inferred bugs, there were
multiple cases in which the image was labeled with
“BUG.”.

Table 4 shows precision, recall, and F measure
when we assumed that the CNN inferred the images
subsequent to accurate images.

Because the number of missing defects had de-
creased, the recall had increased, that said, the pre-
cision and F measure had decreased. In order to im-
prove precision, we should develop a method to cre-
ate images from programs with regard to the logic or
structure of the programs.

4 DISCUSSION

4.1 Possibility of Inference of Fault
Prone Programs

In this paper, we applied images of programs into
CNN in order to detect fault prone program frag-
ments. The machine learning system learned the re-
lationship between the fault and image based on the
supervised learning. After the machine learning was
completed, we analyzed the detected fault prone pro-
gram fragments and evaluated the machine learning
system.

4.1.1 Result of the Inference

Figure 5 and Figure 6 represent scatter plot with the
number of images of each program and the number
of actual/inferred faults. It means that the x-axis rep-
resents the size of each program and the y-axis rep-
resents their fault proneness. The scatter plot tells us
that there was a strong positive correlation between
the size of program and fault proneness. It is easy to
interpret this phenomena, since the number of faults,
as expected, increases according to the size of a pro-
gram. As shown in the diagrams, the number of in-
ferred faults was bigger than that of actual faults. This
is not a problem, because if the inference can point out
program fragments that need to be carefully reviewed,
we will be able to improve the quality of software.

4.1.2 Inference of Faults

As shown in Table 2, the recall of the inferred faults
was 0.68 at most. However, we now focus on faults
in Table 3 and pick up faults that were not inferred
by the machine learning system. The errors were as
follows;

• Mistakes of variable names in conditional state-
ments.

• Bugs in the addition and/or deletion of statements.

It must be difficult for any CNN based systems to
detect such faults. These errors cannot be detected
through inferences based on images. Even so, the
CNN-BI system must still be useful. Bugs-prone pro-
gram fragments with SQL statements were detected
well.

The most important point of our research is that
we clarify the weak points of the CNN-BI system
when we apply the technique to improve the quality of
programs. We will be able to review the weak points
as well as the fault prone program fragments that are
successfully inferred by the CNN-BI system.

HAMT 2019 - Special Session on Human-centric Applications of Multi-agent Technologies

326



4.2 Quality of the Inference

The precision, recall, and F-measure are shown in Ta-
ble 4. Still now, we do not expect the CNN-BI sys-
tem to infer with high precision, but, with high recall.
It is important to gain greater recall than precision.
According to our application of the CNN inference,
recall is greater than precision for every project. In
contrast, if precision is greater than recall, we may
miss a lot of errors, and thus, and will not be able to
improve the quality of software.

4.2.1 Improve the Accuracy of Inference

In order to increase the accuracy of the inference, we
will collect a bigger training data set that will include
various kinds of defects other than SQL statements.
This is our future work.

4.2.2 Faults Inference with Images

Inferring defects in source codes by images of pro-
gram fragments are effective in detecting defects in
programs with SQL statements. The image of a pro-
gram with SQL statements may have a typical feature.
On the other hand, we found weakness in the CNN-
BI system. Addition and deletion of variables and/or
codes were not detected, since, these changes do not
seem to cause any changes in the data of supervised
learning.

The CNN-BI system’s recall could be 85%.
Though its precision was 33%, which is a result that
implies the review of programs still needs a lot of ef-
fort on the part of reviewers, we can conclude that the
inference with images for detecting fault prone pro-
gram fragments works well. The following issues re-
main to infer the fault prone fragments of programs:

• Improve the precision of the CNN-BI system.
In order to improve the precision, we need more
training data, and we may have to re-consider the
coloring rules. More or less colors may help the
CNN-BI system improve the precision of its in-
ference. When we convert a program fragment
to an image, for example, we can change the size
of characters. In our study, each program was di-
vided into several images based on the number of
lines of codes. There are other ways to divide each
program; e.g. structural blocks, etc.

• Improve the scalability and applicability of the
CNN-BI system.
In this study, we utilized program source codes
of a single project. We are not sure whether the
CNN-BI system is scalable and applicable to other
projects or not.

5 CONCLUSION

We have applied CNN with already trained data sets
in order to infer fault prone parts of programs by
transforming source codes to image data. The key of
our approach is the way to derive images from the
program source codes. We have taken advantages of
the strength of CNN to extract features from image
data.

We have demonstrated the effectiveness of our ap-
proach through the following processes.

• Analyze the inferred results as compared with the
flaws that were actually found in target programs.

• Validate the result of inferred defects in the source
code.

According to the results, we have succeeded in in-
ferring fault prone parts of programs. Here are the
answers to the research questions.

• The CNN-BI system could extracted features of
fault proneness from images of programs. Even
though the inference is not perfect, we can use
our system to designate the focal points of pro-
gram reviews. The CNN-BI system is effective
to predetermine where we need to concentrate to
investigate programs.

• We have successfully identified some typical
flaws in programs. We also found that some cat-
egories of problems are hard to find with our ap-
proach.

• The accuracy of the inference acceptable was ac-
cepted in our study. We discussed the possible
ways to improve the accuracy of the inference.

In the experiments, we have applied CNN to a
small number of training data. In order to improve
the accuracy of the inference, we need to train the
CNN with a much larger collection of training data
(programs).

In our future work, we need to expand our ap-
proach to grasp a much larger set of defects, which
will contribute to the improvement of the quality of
software.

REFERENCES

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6):476–493.

Japkowicz, N. (2000). Learning from imbalanced data sets:
A comparison of various strategies. In AAAI Technical
Report WS-00-05. AAAI.

Predicting Fault Proneness of Programs with CNN

327



Kambayashi, Y. and Takimoto, M. (2005). Higher-order
mobile agents for controlling intelligent robots. Inter-
national Journal of Intelligent Information Technolo-
gies (IJIIT), 1(2):28–42.

Kondo, M., Mori, K., Mizuno, O., and Choi, E.-H. (2018).
Just-in-time defect prediction applying deep learning
to source code changes (in japanese). Journal of In-
formation Processing Systems, 59(4):1250–1261.

Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K.,
Corrado, G. S., Dean, J., and Ng, A. Y. (2012). Build-
ing high-level features using large scale unsupervised
learning. In Proc. of the 29th International Confer-
ence on Machine Learning, Edinburgh.

Lorenz, M. and Kidd, J. (1994). Object-Oriented Software
Metrics. Prentice-Hall.

Mayer, B. (2000). Object-Oriented Software Construction,
2nd ed. Prentice Hall.

McCabe, T. J. (1976). A complexity measure. IEEE Trans-
actions on Software Engineering, SE-2:308–320.

Morisaki, M. (2018). Deep learning use cases and their
points and tips : 6. review source code with AI. IPSJ
Magazine, 59(11):985–988.

Shehory, O. and Sturm, A., editors (2016). Agent-Oriented
Software Engineering: Reflections on Architectures,
Methodologies, Languages, and Frameworks (English
Edition). Springer.

Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016). A
survey of transfer learning. Journal of Big Data,
3(1):9.

Yang, X., Lo, D., Xia, X., Zhang, Y., and Sun, J. (2015).
Deep learning for just-in-time defect prediction. In
2015 IEEE International Conference on Software
Quality, Reliability and Security, pages 17–26.

Zimmermann, T., Premraj, R., and Zeller, A. (2007). Pre-
dicting defects for eclipse. In Third International
Workshop on Predictor Models in Software Engineer-
ing (PROMISE’07: ICSE Workshops 2007), pages 9–
15.

HAMT 2019 - Special Session on Human-centric Applications of Multi-agent Technologies

328


