
SC2Share: Smart Contract for Secure Car Sharing

Akash Madhusudan1, Iraklis Symeonidis1,2, Mustafa A. Mustafa1,3, Ren Zhang1,4 and Bart Preneel1
1imec-COSIC, KU Leuven, Belgium

2SnT-APSIA, University of Luxembourg, Luxembourg
3School of Computer Science, University of Manchester, U.K.

4Nervos, Beijing, China

mustafa.mustafa@manchester.ac.uk

Keywords: Smart Contracts, Ethereum, Car Booking and Payments, Security, Privacy, Car Sharing.

Abstract: This paper presents an efficient solution for the booking and payments functionality of a car sharing system
that allows individuals to share their personal, underused cars in a completely decentralized manner, annulling
the need of an intermediary. Our solution, named SC2Share, leverages smart contracts and uses them to carry
out secure and private car booking and payments. Our experiments on SC2Share on the Ethereum testnet
guarantee high security and privacy to its users and confirm that our system is cost-efficient and ready for
practical use.

1 INTRODUCTION

Recent years have witnessed an exponential growth
of the sharing economy (Cusumano, 2017). It enables
individuals to share their personal assets for financial
gain, helping others who temporarily need these as-
sets. As of 2018, all practical solutions supporting
the sharing economy rely on centralized platforms for
exchanging information and settling payments. Un-
fortunately, a series of incidents indicates that these
platforms are not as trustworthy as they promise to
be. First, their centralized membership system and
pricing scheme allow them to undermine fairness. Ai-
rbnb, an online marketplace for sharing accommoda-
tion, has been in the news for targeting a subgroup of
the population to exclude them from using its servi-
ces (Collins, 2018). This highlights the fact that there
is no mechanism to prevent them from misusing this
power, for instance, to target a minority. Furthermore,
the peer-to-peer car sharing platform Uber charges
its customers based on an algorithmic prediction on
how much they are willing to pay, rather than the
services they receive (Newcomer, 2017). Second, by
keeping all data in one database, these platforms be-
come attractive targets for attackers, resulting in se-
veral data breaches that violate the privacy of milli-
ons of users (Carsten, 2016; Lee, 2017). Along with
the fairness and privacy constraints, using these plat-
forms entails an added cost to both, the user and the

service provider. (Thellmann, 2018).
Fully decentralized solutions based on block-

chain (Sharma, 2018) are seen as a solution to the
fairness issues of these centralized platforms. A
blockchain is a trustless platform that allows any
user to transfer funds and execute smart contracts–
decentralized applications. Although the open na-
ture of the blockchain provides better fairness gua-
rantees, it is unclear how these solutions protect the
users’ privacy. Of the two blockchain-based asset-
sharing schemes the authors are aware of, La‘Zooz
stores the private information in a centralized da-
tabase (La‘Zooz, 2015), while the relevant code of
Slock.it is closed-source, possibly under develop-
ment (Jentzsch, 2016). Moreover, these systems pro-
vide a limited set of functionalities in comparison
with their centralized competitors. La‘Zooz only sup-
ports Consumer-to-Consumer (C2C) car-pooling in
their advertisement, therefore it is unclear whether
they can support C2C personal car sharing. As it ap-
pears, users of Slock.it cannot cancel a request once it
is registered, therefore any misoperation might lead to
financial loss for the user. Moreover, Slock.it has not
yet been extended to car sharing. Robust car access
provision protocols, such as SePCAR (Symeonidis
et al., 2017), are also limited in terms of functiona-
lity, as they do not provide a solution to booking and
payments.

This work proposes a novel peer-to-peer car

Madhusudan, A., Symeonidis, I., Mustafa, M., Zhang, R. and Preneel, B.
SC2Share: Smart Contract for Secure Car Sharing.
DOI: 10.5220/0007703601630171
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 163-171
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

163

booking and payments system, named SC2Share.
SC2Share works along the existing car access pro-
vision protocols such as SePCAR and uses a smart
contract to register car sharing offers, match requests
and settle payments. Compared with existing sche-
mes, our system has the following advantages:
• Fair. Our system provides better fairness guaran-

tees as it does not suffer from centralized price
manipulation and membership exclusion.

• Resistance against Data Breach. There is no
central point of failure in our design. Most inte-
ractions happen in a peer-to-peer fashion between
the car owner and the consumer, which involves
no intermediary. Sensitive information stored on
the blockchain is encrypted with the receiver’s pu-
blic key, which is different for each participant.
A compromised private key will not affect other
users of the system.

• Complete Functionalities. Our system offers
complete functionalities that cover all typical exe-
cution paths in an Uber car sharing instance, in-
cluding several conflict handling capabilities that
ensure financial safety of each involved party
against an adversary, the other party, and miso-
peration by the user himself. To the best of our
knowledge, these combination of features is not
offered in any existing decentralized car sharing
platform.

• Cost-effective. As an additional advantage, our
system is more cost effective to use due to the ab-
sence of a commission. The only cost involved
is the deployment and transaction costs incurred
by the blockchain. The experiments with our de-
ployed contract in Ethereum testnet highlights the
operational costs and efficiency of SC2Share.
The remainder of this paper is organized as fol-

lows. Section 2 presents the necessary background.
Section 3 presents the system model, threat model and
design requirements used in our design. Section 4
describes SC2Share, followed by its evaluation in
Section 5. Finally, Section 6 concludes this paper and
it offers future research directions.

2 BACKGROUND

Since SC2Share handles only the booking and pay-
ments aspect of car sharing, we first give a brief over-
view of SePCAR, a secure and privacy-enhancing car
access provision protocol to generate and revoke car
access tokens (Symeonidis et al., 2017). Then, we
briefly introduce smart contracts in Ethereum - the
main building block of SC2Share.

2.1 SePCAR

SePCAR (Symeonidis et al., 2017) is a car sharing
scheme that offers strong security and privacy proper-
ties; it extends earlier work described in (Symeonidis
et al., 2016). The system consists of various functio-
nal components. We only list the ones that are rele-
vant to our system. An Owner is a user who is willing
to share his car, a consumer is the user who wants to
rent a car and authorities are the entities responsible
for ensuring that the entire system is legal as well as
for resolving any disputes between users.

The SePCAR protocol starts with the mutual
agreement of booking details by the owner and con-
sumer. Due to the presence of sensitive information
such as the identities of the owner, consumer and the
car along with its usage duration and location, the
system server encrypts these booking details and an
access token is generated. This access token is then
stored in a public ledger, where it is retrieved by the
consumer. Subsequently, a consumer uses this token
to access the car without revealing his private infor-
mation. SePCAR also guarantees the confidentiality
of the car key and booking details.

2.2 Smart Contracts in Ethereum

Ethereum is a cryptocurrency with the third largest
market capitalization (CoinMarketCap, 2018). Ai-
ming at realizing a “world computer”, Ethereum al-
lows users to program smart contracts with a Turing-
complete language and guarantees the correct execu-
tion of these contracts and the integrity of the system
with its underlying blockchain (Buterin, 2014).

Smart contracts are special accounts on Ethereum
blockchain, that contain code and persistant storage
along with an address and balance like normal ac-
counts (Luu et al., 2017). They are computerized pro-
tocols, that, without relying on any intermediaries, sa-
tisfy contractual conditions and minimize attacks by
adversaries. As in any other computer program, the
code of smart contracts also manipulates variables,
and it can be invoked by sending a transaction to its
address along with the required payment for its exe-
cution and parameters.

Miners, entities who embed transactions into the
blockchain, are compensated by transaction fees in
ether, the native currency of Ethereum, from the tran-
saction initiators. The transaction fee is calculated as
the total amount of gas consumed by the transaction
execution, multiplied by the gasPrice, while the gas-
ether exchange rate is specified in the transaction. The
total gas is calculated by accumulating the gas con-
sumption of all instructions of the execution. Each

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

164

owner Consumer

Car

Smart Contract

Public Ledger

Figure 1: System model of SC2Share.

instruction has a predefined gas consumption. To pre-
vent denial of service attacks, each transaction also
specifies a startGas. A transaction execution that ex-
ceeds that startGas cannot be carried out, however, the
transaction fee still goes to the miner.

3 SYSTEM MODEL, THREAT
MODEL AND DESIGN
REQUIREMENTS

This section introduces the system model, the threat
model and assumptions as well as the functional, se-
curity and privacy requirements used in the design of
SC2Share.

3.1 System Model

As illustrated in Figure 1, our system model consists
of the following entities:
• Owner - An individual with the intention to share

his underused personal car.
• Consumer - A person in temporary need of a car.
• Car - The car that is available to be shared. Access

provision to this car is handled by any robust
access provision protocols such as SePCAR (Sy-
meonidis et al., 2017).

• Public Ledger - A structure that irrefutably re-
cords transactions and is operated by a single
or several decentralized parties. All transactions
made in SC2Share are recorded in this public led-
ger.

• Smart Contract - This smart contract is responsi-
ble for receiving a booking request, making sure
that appropriate deposits have been made by both
the owner and the consumer, handling cancella-
tion requests, dealing with fraudulent activities,
and a smooth rental procedure in general.

3.2 Threat Model and Assumptions

In SC2Share the following threat model is used. The
owner and the consumer are not trusted to carry out
all transactions honestly. The integrity and correct
execution of the smart contract is guaranteed by the
underlying public ledger, in our case the Ethereum
blockchain. Due to the blockchain’s public nature,
any private information embedded in the blockchain
is considered leaked.

For our system to work, we also make the follo-
wing assumptions. The owner and the consumer mu-
tually agree upon the initial booking details and are
successful in keeping them confidential against any
third party. We also assume that the owner and the
consumer have a public/private-key pair along with
their digital certificates. Lastly, the communication
channels are used by the owner and the consumer are
private and authentic.

3.3 Design Requirements

Our system should satisfy the following functional,
security and privacy requirements.

Functional Requirements

• Booking and Payments Process: SC2Share
should handle bookings, car usage and payments
in an immutable way. It should be able to re-
ceive booking requests, safeguard deposits placed
by owners/consumers and handle payments.

• Fraud Prevention: SC2Share should be able to
deal with fraudulent actions taken by both ow-
ners and consumers. Example actions are not ma-
king the car availlable and not returning the car.
SC2Share should penalize the initiators of such
fraudulent actions.

• Cancellation: SC2Share should handle cancella-
tions of the booking agreement and distribute the
deposit according to the booking agreement.

• Extra Time Surcharge: In case of extra time re-
quest by the consumer, SC2Share should be able
to deduct the required extra amount from the con-
sumer’s deposit and transfer it to the owner.

Security and Privacy Requirements

• Authenticity of Booking Details: the integrity,
origin and approval of the booking details should
be validated by the car.

• Non-repudiation of Access Token: SC2Share
should be able to prove the authenticity of the

SC2Share: Smart Contract for Secure Car Sharing

165

Car

Smart Contract

Owner Customer

Booking details

Retrieve balance (x - y eth)

Booking Request (x ether)

No. of daysCar info, price per day

Deployment (x ether)

encrypt and store details / allow car usage

Withdraw earnings (x + y eth)

1 2

33

Access Car

4

4

5

End Car Rental

6

7 7

Figure 2: Overview of the SC2Share system.

access token that is generated by the owner to the
car and the consumer.

• Forensic Evidence Provision: In an adverse sce-
nario of a fraudulent action, authorities should be
able to retrieve forensic evidence from the system
and gain access to specific booking details.

• Confidentiality of Booking Details: Only the
owner and consumer should have access to the
information stored in booking details. Booking
details can hold personal identifiable and potenti-
ally sensitive information such as the license plate
number, the location, booking time and type of the
car.

• Confidentiality of Access Token: Only the car
should have access to the information stored in the
access token.

• Anonymity of Consumer And Car: The identity
of the consumer and the car should be hidden to
anyone except the owner, the consumer and the
car.

4 SC2Share

This section provides an overview of how SC2Share
handles a car sharing scenario. Then, we explain in
detail the algorithms that implement the functionali-
ties described.

4.1 Overview of SC2Share

As it is illustrated in Figure 2, we provide a high-level
overview of how our system works. It consists of se-
ven steps described below.

1. An owner deploys a smart contract on the block-
chain and deposits a value of x ether in it.

2. A consumer sends a request to rent the car by de-
positing x ether (the same amount as in step 1) in
the deployed smart contract.

3. The owner and the consumer agree on mutu-
ally accepted booking details such as the required
number of days to share the car, the pick-up and
drop-off location and the daily price.

4. Once the details are agreed, the owner signs the
booking details using his private key and encrypts
them using the consumer’s public key. Once en-
crypted, he sends these details to the storage of
smart contract and allows the consumer to access
the car. The encrypted details stored in the smart
contract can be accessed by the consumer and de-
crypted using his private key. However, as seen in
Figure 3, we do not encrypt all information stored
in booking details.

5. The consumer accesses the car and uses it for the
agreed amount of time.

6. After completing the trip, the consumer ends the
car rental process by dropping off the owner’s car
at the agreed location.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

166

Address of the owner
Address of the Consumer
Required number of days

Car plate number
Location of the car

Car type
Car access rights

Type of car
Price per day

Price per extra day

Address of the owner
Address of the Consumer
Required number of days
Price per day/extra day

Car plate number
Location of the car

Car type
Car access rights

Type of car

Details that we encrypt

Details that we do not encrypt

Figure 3: List of Booking Details.

7. Once the process is over, both the owner and the
consumer can separately withdraw their earnings
and balances, respectively.

4.2 SC2Share in Detail

This section describes SC2Share in detail. We first
present the main protocol followed by the description
of the cancellation, car access and extra time functio-
nalities.

Algorithm 1 depicts a pseudo-code of how our sy-
stem works. As explained in the overview, the system
is initiated by the owner, which is followed by the
consumer sending a request for booking. Once the
consumer is set as the current driver of the car, the
booking details are mutually agreed before being en-
crypted and stored on the blockchain. We use exter-
nal libraries such as eth-crypto and eth-ecies to carry
out the encryption off-chain, and to generate the iden-
tities of the owner and the consumer (libertylocked,
2018; pubkey, 2018). The Javascript code that exe-
cutes with the smart contract, and the smart contract
itself are available online.

While storing the details in the smart contract, the
owner has to set allow car usage value to ‘true’ in the
smart contract to inform SC2Share that the car can be
used by the consumer. Once the consumer has access
to the car, he can use it for the decided time. If they
exceed the agreed time limit, the extra time surcharge
is handled by Algorithm 4. In order to calculate extra
time, the smart contract keeps deducting the mutually
agreed ‘price per extra hour’ from the consumer’s de-
posit. SC2Share also has a fail-safe option, that is acti-
vated if the consumer fails to return the car. It awards
the owner the total deposit stored in the smart con-
tract, although it does not yet deal with the post-theft
scenario. A possible solution to the post-theft sce-
nario is provided by insurance businesses for sharing
economy industry, such as SafeShare.

In cases where either the owner or the consumer
wants to cancel the booking, Algorithm 2 comes into
play. The pseudo-code explains how SC2Share hand-

Algorithm 1: SC2Share main.

1: procedure SC2SHARE
2: Owner Deploys Contract
3: if Deployment successful then
4: Customer Requests for Car Booking
5: if Request successful then
6: currentDriverAddress← cAddress
7: cDeposit← x Ether
8: oDeposit← x Ether
9: Mutually agree on booking details(BD)

10: Encrypt BD and store
11: if Owner allows car usage then
12: if Owner wants to cancel then
13: goto Algorithm 2;
14: if Customer access’s car then
15: if Customer cancels then
16: goto Algorithm 2;
17: Use Car;
18: End Usage;
19: Owner withdraws earnings;
20: Consumer withdraws deposit;
21: if Extra time then
22: goto Algorithm 3;
23: else
24: if Customer cancels then
25: goto Algorithm 2;
26: else
27: if Owner cancels then
28: goto Algorithm 2;
29: Customer withdraws total deposit;
30: Restart if deployment fails.

les the cancellation at different stages of the system.
If the owner cancels the booking before allowing car
usage, he is not penalized, but if they do it after al-
lowing the car usage, then SC2Share ensures that the
consumer gets an incentive. The customer also pays
the penalty based on whether they cancel the booking
before accessing the car, or after.

If the owner fails to give car access to the con-
sumer after they have made the deposit, Algorithm 3
depicts how the owner is penalized for committing a
fraudulent action as SC2Share awards the total depo-
sit stored in the smart contract to the consumer.

Once the consumer has successfully ended the
car rental (see Algorithm 1), SC2Share calculates the
amount that has to be deducted from their deposit and
adds it to the owner’s deposit, after which the owner
and consumer can separately withdraw their money.

SC2Share: Smart Contract for Secure Car Sharing

167

Algorithm 2: Cancellation functionality.

1: procedure CANCELLATION
2: currentDriverAddress← cAddress
3: cBalance← consumer balance
4: oBalance← owner balance
5: cDeposit← consumer deposit
6: oDeposit← owner deposit
7: Owner Allows Car Usage:
8: if consumer access’s car & cancels booking

then
9: x← clientDeposit− penalty

10: ownerBalance← balance+ x
11: return true
12: if owner cancels booking then
13: x← oDeposit− penalty
14: cBalance← cBalance+ x
15: return true
16: if consumer cancels & does not access then
17: return true
18: Owner Does Not Allow Usage:
19: if owner cancels booking then
20: oBalance← oBalance+oDeposit
21: cBalance← cBalance+ cDeposit
22: return true

Algorithm 3: Car access functionality.

1: procedure CAR ACCESS
2: currentDriverAddress← cAddress
3: cBalance← consumer balance
4: if owner allows usage then
5: carStatus← ready
6: consumer← access
7: return true
8: if owner does not allow usage then
9: carStatus← notready

10: consumer← noAccess
11: consumer can retrieve total deposit
12: x← totalDeposit
13: cBalance← cBalance+ x
14: return true

5 EVALUATION

In this section, we analyze our design and provide a
description of how SC2Share fulfills the functional,
security and privacy requirements. We also provide
the real-world deployment cost of SC2Share on the
Ethereum blockchain along with all the transaction
costs it incurs while being used. Evaluation on the ba-
sis of total time taken is tricky as the execution time
for each transaction in SC2Share can only be aggre-
gated since there is no concrete way of knowing how

Algorithm 4: Extra time functionality.

1: procedure EXTRA TIME
2: currentDriverAddress← cAddress
3: cBalance← consumer balance
4: oBalance← owner balance
5: cDeposit← consumer deposit
6: oDeposit← owner deposit
7: consumer Ends Car Rental:
8: if end time =< decided time then
9: currentDriverAddress← null

10: carStatus← idle
11: x← cDeposit− rentCharge
12: oBalance← oDeposit + x
13: cBalance← cDeposit
14: return true
15: if end time > decided time then
16: currentDriverAddress← null
17: carStatus← idle
18: x← cDeposit− rentCharge
19: y← cDeposit− chargePerExtraHour
20: z← x+ y
21: oBalance← oDeposit + z
22: cBalance← cDeposit
23: return true
24: Consumer Runs Away With Car:
25: x← totalDeposit
26: oBalance← oBalance+ x
27: return inform insurance

long a transaction would take before its included in
Ethereum. As of January 2019, the median wait time
between each block is ≈ 32 seconds.

5.1 Functionality Analysis

SC2Share uses the Ethereum blockchain to imple-
ment the booking and payment functionalities for car
sharing applications. All transactions related to car
rental, are immutable when published on the block-
chain. Once a transaction is made using SC2Share,
the owner or the consumer cannot refute the owners-
hip of it. Moreover, no outsider knows the identities
of the owner and consumer, and all the sensitive infor-
mation in booking details is encrypted before being
stored on-chain.

The Algorithm 3 and 4 demonstrates how to mi-
tigate a malicious owner or consumer and hence pre-
vent fraudelent actions. Possible fraud behaviour is
countered with a penalty of losing the deposit made
in the smart contract. The Algorithm 4 also enables
the functionality of extra time surcharge.

Moreover, in SC2Share we consider all possible
cancellation scenarios, and a fair settlement for both
the owner and consumer in Algorithm 2. Hence we
guarantee the functionality of cancellation.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

168

Table 1: Deployment Costs of SC2Share.

Total Size (bytes) Deployment Cost in gas Deployment Cost in USD
8520 1,352,283 gas $0.21623

Table 2: Costs of Executing each Transaction in SC2Share.

Transaction Cost in gas Cost in USD
set required days (customer) 42,131 gas $0.00674
store encrypted details in contract (owner) 63,022 gas $0.02739
rent car (customer) 112,220 gas $0.01795
allow use of the car (owner) 28,655 gas $0.00459
access the car (customer) 29,038 gas $0.00464
cancellation of booking (owner/customer) 76,342 gas $0.0122
ending the rental procedure (owner/customer) 82,590 gas $0.01321
triggering the distribution of earnings (owner) 32,992 gas $0.00528
withdrawal of money (owner/consumer) 22,099 gas $0.00353

5.2 Security and Privacy Analysis

Before publishing the booking details in the block-
chain, the owner has to encrypt and sign them.
SC2Share verifies the owner’s signature on the book-
ing details before giving access to the consumer to
verify if the owner also agrees with the conditions set
for the car rental, thus providing authenticity of book-
ing details.

Car access provision protocols such as SeP-
CAR (Symeonidis et al., 2017) use the encryp-
ted booking details to generate the access token.
SC2Share verifies the origin of encrypted details in
order to make sure that no one but the owner has sig-
ned them. This is achieved by comparing the address
of the signer to the address of the owner. This is how
we ensure non-repudiation of access token.

Smart contracts are auditable by nature, and in
case of an incident where the owner or the consu-
mer is involved, the SC2Share can be audited to re-
veal private information about the owner or the con-
sumer guaranteeing the requirement of forensic evi-
dence provision.

SC2Share ensures the confidentiality of booking
details by enabling only the owner and the consumer
to have access to the sensitive information stored in
booking details. These details are discussed offline
using a secure channel (see assumptions in Section 3)
and only stored in the smart contract when encrypted.

SC2Share treats the encrypted booking details
as the access token and stores them in its internal
storage. No one except the consumer and the owner
can decipher an access token thus guaranteeing confi-
dentiality of the access token.

Anonymity of consumer and car is provided by de-
sign in SC2Share. On the blockchain, the consumer
can choose to be anonymous by using his 20-byte ad-

dress to interact with the contract and not publicizing
any personal details, while the identity of the car is
encrypted along with the other private information by
the owner before storing it on-chain.

5.3 Deployment and Usage Cost

The deployment of a smart contract and the inte-
raction with it has a cost for the caller of the tran-
saction, and this cost is calculated in gas. This section
discusses the deployment and interaction costs asso-
ciated with SC2Share. It is important to mention that
the price of ether per gas unit is volatile, and these
results are obtained by using the price of ether per
gas unit for average confirmation time as of January
2019. To evaluate the total cost of SC2Share, we look
at two different costs, the deployment and the tran-
saction cost.

Deployment Cost

The main costs for deploying a smart contract can
be calculated by combining the following parame-
ters (Wood, 2014):

• The costs associated with storing the contract
code (200 gas per byte);

• Additional data storage cost on the contract
(20,000 gas per 256-bit word);

• Each transaction has a base cost of 21,000 gas,
and 32,000 gas have to be paid for a CREATE
transaction (deployment of a new contract);

Ganache was used as a provider for web3.js to per-
form tests on SC2Share and calculate the estimated
gas for deployment, as well as the execution of each
transaction. The absolute deployment cost is influen-
ced by the size of the contract and the total bytes in

SC2Share: Smart Contract for Secure Car Sharing

169

its storage. Table 1 illustrates the deployment cost of
SC2Share in USD. It can be calculated by multiplying
the total gas with the cost per gas unit in USD.

Transaction Cost

The cost for executing each transaction can be calcu-
lated as follows (Wood, 2014):

• The base cost of each transaction (21,000 gas);

• The cost for storing a 256-bit word on the smart
contract (20,000 gas);

• The cost for editing data stored in the smart con-
tract (5,000 gas);

• The cost of making a transaction call having a mo-
netary value (9,000 gas);

Table 2 illustrates the cost of executing each tran-
saction in SC2Share. Adding up the cost of all indivi-
dual transactions, the total cost of all transactions in
SC2Share is USD 0.095. Hence, it can be deduced
that our smart contract implementation is not expen-
sive to deploy and operate.

6 CONCLUSIONS AND FUTURE
WORK

This paper presented a fully decentralized car book-
ing and payments system known as SC2Share. This
system can be incorporated with car access provi-
sion protocols to provide a secure and private car
sharing environment without the need of any interme-
diary. We have shown that SC2Share provides all ma-
jor functionalities that are required for a car sharing
platform, and provides security and privacy by design.
The total cost of deploying and using our system on
the Ethereum network sums up to USD 0.312, which
in comparison to the commission fee paid to large or-
ganizations is relatively cheap. Hence, we conclude
that along with being functionally sound, secure and
private, SC2Share is also cost effective for its users.

As future work we would like to advance our sy-
stem design and implementation to work with fully
encrypted booking details, including the price per
day, price per extra day and required number of days
which are used for calculation of payments, as well as
to provide formal security and privacy proofs of the
advanced system.

Another potential direction could be to adapt
SC2Share so that it supports the use of advanced cryp-
tographic primitives such as zero-knowledge proofs.
Ethereum Whisper could also be used to possibly re-
move the waiting time of customer to get car access.

ACKNOWLEDGEMENTS

This work was supported in part by the Research
Council KU Leuven: C16/15/058 and by the Fle-
mish Government through FWO SBO project SNIP-
PET S007619N. We would also like to thank the ano-
nymous reviewers for their constructive feedback.

REFERENCES

Buterin, V. (2014). A next-generation smart contract
and decentralized application platform. URL:
http://blockchainlab.com/pdf/Ethereum white paper-
a next generation smart contract and decentralized
application platform-vitalik-buterin.pdf, last checked

on 2018-12-20.
Carsten, P. (2016). Hackers attack 20 mln ac-

counts on alibaba’s taobao shopping site. URL:
https://www.reuters.com/article/alibaba-cyber-
idUSL3N15J1P2, last checked on 2018-12-10.

CoinMarketCap (2018). Top 100 cryptocurrencies by mar-
ket capitalization. URL: https://coinmarketcap.com/,
last checked on 2018-12-20.

Collins, K. (2018). A running list of websites and apps
that have banned, blocked, deleted, and otherwise
dropped white supremacists. URL: https://qz.com/
1055141/what-websites-and-apps-have-banned-neo-
nazis-and-white-supremacists/, last checked on
2018-12-07.

Cusumano, M. A. (2017). The sharing economy meets rea-
lity. Commun. ACM, 61(1):26–28.

Jentzsch, C. (2016). Decentralized autonomous organiza-
tion to automate governance. URL: https://download.
slock.it/public/DAO/WhitePaper.pdf, last checked on
2018-12-10.

La‘Zooz (2015). La‘zooz white paper. URL: https://
www.weusecoins.com/assets/pdf/library/LaZooz
%20Blockchain%20Taxi%20Whitepaper.pdf, last
checked on 2018-12-10.

Lee, D. (2017). Uber concealed huge data breach. URL:
https://www.bbc.com/news/technology-42075306,
last checked on 2018-12-10.

libertylocked (2018). eth-ecies. URL: https://github.com/
libertylocked/eth-ecies, last checked on 2018-12-20.

Luu, L., Velner, Y., Teutsch, J., and Saxena, P. (2017). Smart
pool: Practical decentralized pooled mining. In USE-
NIX Security Symposium.

Newcomer, E. (2017). Uber starts charging what
it thinks youre willing to pay. URL: https://
www.bloomberg.com/news/articles/2017-05-19/uber-
s-future-may-rely-on-predicting-how-much-you-re-
willing-to-pay, last checked on 2018-12-07.

pubkey (2018). eth-crypto. URL: https://github.com/
pubkey/eth-crypto, last checked on 2018-12-20.

Sharma, T. K. (2018). What does blockchain me-
ans for a sharing economy? URL: https://
www.blockchain-council.org/blockchain/what-does-

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

170

blockchain-mean-for-a-sharing-economy/, last
checked on 2018-12-10.

Symeonidis, I., Aly, A., Mustafa, M. A., Mennink, B.,
Dhooghe, S., and Preneel, B. (2017). Sepcar: A secure
and privacy-enhancing protocol for car access provi-
sion. in the 22nd European Symposium on Research
in Computer Security (ESORICS17), ser. LNCS, vol.
10493. Springer, 2017, pages 475–493.

Symeonidis, I., Mustafa, M. A., and Preneel, B. (2016).
Keyless car sharing system: A security and privacy
analysis. In IEEE International Smart Cities Confe-
rence (ISC2 2016), pages 1–8.

Thellmann, P. (2018). Blockchain is the infrastruc-
ture for a new decentralized sharing economy.
URL: https://hackernoon.com/blockchain-is-the-
infrastructure-for-a-new-decentralized-sharing-
economy-f715da32bece, last checked on 2018-12-5.

Wood, G. (2014). Ethereum: A secure decentralised ge-
neralised transaction ledger byzantium version. URL:
https://ethereum.github.io/yellowpaper/paper.pdf, last
checked on 2018-08-5.

SC2Share: Smart Contract for Secure Car Sharing

171

