
A Fog Computing Service Placement for Smart Cities based on Genetic
Algorithms

Claudia Canali and Riccardo Lancellotti
Department of Engineering ”Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

Keywords: Fog Computing, Optimization Model, Genetic Algorithms, Smart Cities.

Abstract: The growing popularity of the Fog Computing paradigm is driven by the increasing availability of large amount
of sensors and smart devices on a geographically distributed area. The scenario of a smart city is a clear ex-
ample of this trend. As we face an increasing presence of sensors producing a huge volume of data, the
classical cloud paradigm, with few powerful data centers that are far away from the data sources, becomes
inadequate. There is the need to deploy a highly distributed layer of data processors that filter, aggregate and
pre-process the incoming data according to a fog computing paradigm. However, a fog computing architecture
must distribute the incoming workload over the fog nodes to minimize communication latency while avoiding
overload. In the present paper we tackle this problem in a twofold way. First, we propose a formal model for
the problem of mapping the data sources over the fog nodes. The proposed optimization problem considers
both the communication latency and the processing time on the fog nodes (that depends on the node load).
Furthermore, we propose a heuristic, based on genetic algorithms to solve the problem in a scalable way. We
evaluate our proposal on a geographic testbed that represents a smart-city scenario. Our experiments demon-
strate that the proposed heuristic can be used for the optimization in the considered scenario. Furthermore, we
perform a sensitivity analysis on the main heuristic parameters.

1 INTRODUCTION

The explosive growth in data generation in the con-
text of cyber-physical environments is driven by sen-
sors geographically distributed that produce an ever
increasing amount of information that require to be
filtered and processed. this evolution is leading to
the need of new solutions with respect to the classi-
cal cloud paradigm. As data increase in size, pushing
them towards the Internet core could cause stress for
the network infrastructure and introduce excessive de-
lays for the applications.

A solution to improve scalability and reduce net-
work latency lies in taking advantage of the ever in-
creasing presence of fog computing resources. Fog
computing, indeed, is a quite novel paradigm that
extends cloud computing by moving some services
and tasks to the edge of the network. Basically, an
intermediate layer of fog nodes is placed at the ac-
cess network, between the data sources and the cloud
data center, to host data filtering, aggregation and pre-
processing tasks. The fog paradigm was conceived
to address applications and services that do not fit
well the cloud paradigm, including (Liu et al., 2018;

Sasaki et al., 2016):

• Applications that require very low and predictable
very latency (gaming, videoconferencing)

• Geo-distributed applications (pipeline monitor-
ing, sensor networks to monitor the environment)

• Fast mobile applications (smart connected vehi-
cle, connected rail)

• Large-scale distributed control systems (smart
grid, smart traffic monitoring, support for au-
tonomous driving)

For example, in this paper, we focus on a scenario
where the Fog infrastructure is applied to reduce la-
tency and delays experienced by a traffic/air pollution
monitoring application in a smart city scenario.

Nevertheless, the use of a distributed and complex
infrastructure poses several new challenges (Yi et al.,
2015). Several studies in literature focus on the issues
concerning the level of the infrastructure included be-
tween the Fog layer and the cloud data centers, not
taking into account the previous level connecting the
sensors as data sources and the fog nodes. For ex-
ample, the studies in (Deng et al., 2016; Yousefpour

Canali, C. and Lancellotti, R.
A Fog Computing Service Placement for Smart Cities based on Genetic Algorithms.
DOI: 10.5220/0007699400810089
In Proceedings of the 9th International Conference on Cloud Computing and Services Science (CLOSER 2019), pages 81-89
ISBN: 978-989-758-365-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

81

et al., 2017) address the issue of optimizing the al-
location of the processing tasks coming from the fog
nodes over the cloud infrastructure, proposing differ-
ent solutions also exploiting fog-to-fog nodes com-
munication to reduce the service delay by sharing the
incoming load.

A relevant problem that received less attention in
literature regards the issue of determining, within a set
of available fog nodes, which nodes should receive
and elaborate the workload originated from the data
sources. In the state-of-the-art proposed solutions, in-
deed, a common assumption is that the fog nodes di-
rectly communicate with the sensors or mobile users
through single-hop wireless connections (Deng et al.,
2016) or that a domain of sensor nodes communicate
with a domain of fog nodes associated with the spe-
cific domain application(s) (Yousefpour et al., 2017).
However, to guarantee a high QoS in terms of re-
sponse time through the reduction of the total latency
and processing time, the problem of mapping the data
flows coming from sensors over the fog nodes that
perform operation on them becomes a critical task.

The main contribution of this paper is twofold.
First, we propose a formal model for the optimiza-
tion problem of mapping the incoming workload (data
sources) over the fog nodes: our solution takes into
account both the latency due to the communication
delay of the geographically distributed infrastructure
and the processing time on the fog nodes due to the lo-
cal load. Second, we propose a heuristic to solve the
optimization problem in a scalable way; to this aim,
we rely on Genetic Algorithms (GAs), that have been
previously and successfully exploited in the context
of cloud computing and Software-as-a-Service place-
ment (Yusoh and Tang, 2010). In this paper we fo-
cus on a smart city scenario, which is a typical ex-
ample of environment where data produced by geo-
graphically distributed sensors may require efficient
processing for a wide range of possible applications,
such as traffic monitoring and control, support for
autonomous driving and environmental sensing. We
evaluate our proposal on a geographic testbed repre-
senting the realistic scenario of a Fog architecture lo-
cated in a small-sized city in Emilia Romagna (Italy)
with roughly 180.000 inhabitants. Our experiments
demonstrate that the proposed genetic algorithm rep-
resent a viable heuristic to solve the mapping problem
in the considered scenario. Moreover, we carry out a
sensitivity analysis on the main heuristic parameters.

The remainder of this paper is organized as fol-
lows. Section 2 describes the problem formally de-
fines the considered optimization model, while Sec-
tion 3 presents the heuristic algorithms proposed for
solving the problem. Section 4 describes the experi-

mental testbed and results used to prove the viability
of our approach. Finally, Section 5 discusses the re-
lated work and Section 6 concludes the paper with
some final remarks and outlines open research prob-
lems.

2 PROBLEM DEFINITION

2.1 Problem Overview

Our problem concerns the management of data flows
in a fog infrastructure such as the one shown in Fig-
ure 1. The infrastructure, that we assume to be de-
ployed in a smart-city scenario, is composed of three
layers: a sensor layer that produces data (represented
as a set of wireless sensors at the bottom of the fig-
ure), a fog layer that is responsible for a preliminary
processing of data from the sensors (second layer in
the figure), while a cloud layer that is the final des-
tination of the data (at the top of the figure). The
underlying application logic involves the typical ser-
vices of a smart city scenario. Sensors collect infor-
mation about the city status, such as traffic intensity
or air quality (Trafair Project Staff, 2019). Such data
should be collected at the level of a Cloud infrastruc-
ture to provide value-added services such as traffic or
pollution forecast. The proposed fog layer intermedi-
ates the communication between the sensors and the
cloud to provide scalability and reliability in the smart
city services.

Figure 1: Fog infrastructure.

In our model, we assume a stationary scenario
where a set of similar sensors S are distributed over
an area (we consider the sensors to be not moving, al-
though a different scenario, where mobility is taken
into account can be easily introduced in our model).
Furthermore, we assume that sensors are producing
data at a steady rate, with a frequency that we denote

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

82

as λi for the generic sensor i (for a summary of the
symbols used in the model, the reader may refer to Ta-
ble 1). The fog layer consists of a set of nodes F that
receive the data from the sensors and performs opera-
tions on them. These operations typically include pre-
processing of the data, such as filtering and/or aggre-
gation, or may include some form of analysis to iden-
tify anomalies or problems as fast as possible. The re-
fined data samples from the fog nodes are then sent to
a cloud platform where additional analysis is carried
out and where all the information is stored. These ad-
ditional analysis tasks are typically highly expensive
from a computational point of view. Again, our model
presents only one cloud data center, but it is easy to
extend it to a multi-cloud scenario.

As the problem concerning the management of
large cloud data centers has been widely addressed in
literature (Shojafar et al., 2017), we do not consider
the inner details of the cloud layer in our problem
modeling, such as the computation time at the level of
the cloud data center. Instead, we focus our attention
to the problem of coordinating the communication of
the elements in the sensor layer with the nodes in the
fog layer. Specifically, we want to guarantee an high
QoS, in terms of fast response. To this aim, we must
consider that the response time has the following ma-
jor contributions that should be taken into account:

• Network-based latency due to the communication
between the sensor and the fog nodes. We denote
this value as δi,j where i is a sensor and j is a fog
node.

• Network-based latency due to the communication
between the fog node and the cloud data center.
As this depends just on the fog node due to the
single cloud considered in our model, we simply
denote this measure as δj , where j is the fog node.

• Computation time on the fog node. This time de-
pends on the computation cost of the request (we
denote as 1/µj the time to process a packet of data
from a sensor on fog node j) and on the data rate
λi of all the sensors i that are communicating with
the fog node j – we define as λj the incoming data
rate at fog node j.

For the sake of clarity we summarize the symbols
used throughout the paper in Table 1.

2.2 Optimization Model

The main problem in the considered fog scenario is
how to map on the fog nodes the data flows com-
ing from the sensors. To this aim, we define an opti-
mization problem where we use as the main decision
variable a matrix of boolean flags xi,j . In our model

xi,j = 1 if and only if sensor i is sending data to fog
node j, otherwise xi,j = 0. As the function of fog
nodes is to pre-process the incoming data performing
filtering and aggregation, we consider that all the data
of a sensor must be sent to the same fog node and
cannot be distributed across the fog layer.

Again, the reader may refer to Table 1 for a sum-
mary of the parameters used in our model.

Table 1: Notation.

Symbol Meaning/Role

Decision variables

xi,j Sending data flow from sensor i to Fog node j

Model parameters

S Set of sensors
F Set of Fog nodes
λi Outcoming data rate from sensor i
λj Incoming data rate at fog node j
1/µj Processing time at fog node j
δi,j Communication latency between sensor i to Fog node j
δj Communication latency Fog node j and Cloud data center

Model variables

i Index of a sensor
j Index of a Fog node

The optimization model to address the previously-
described problem can be formalized as follows, with
an approach similar to the problem of allocating re-
quests over a distributed infrastructure, such as VMs
on a Cloud (Shojafar et al., 2017; Noshy et al., 2018;
Duan et al., 2017). In particular, we introduce a ma-
trix of boolean decision variables X = xi,j that is
used to define the objective function and the con-
straints as follows:

min obj(X) =
∑
i∈S

∑
j∈F

xi,j ·
(1

µj − λj
+ δi,j + δj

)
(1.1)

subject to:

λj =
∑
i∈S

xi,j · λi ∀j ∈ F , (1.2)∑
j∈F

xi,j = 1 ∀i ∈ S, (1.3)

λj < µj ∀j ∈ F , (1.4)
xi,j = {0, 1}, ∀i ∈ S, j ∈ F , (1.5)

In the problem formalization, the objective func-
tion 1.1 aims at reducing the total (and hence the av-
erage) latency and processing time from every sensor
to the cloud, including the operation carried out at the
level of fog computing nodes. The expression of re-
sponse time used for our objective function is consis-
tent with other studies in literature focusing on dis-
tributed cloud infrastructures (Ardagna et al., 2018).

A Fog Computing Service Placement for Smart Cities based on Genetic Algorithms

83

Specifically, the average processing time is derived
from Little’s result applied to a M/G/1 model and con-
siders just the average arrival frequency λj and the
processing rate µj of each fog node j. This defini-
tion of the response time has been widely adopted in
literature, for example in (Ardagna et al., 2018). The
second part of the objective function, that is the la-
tency contribution, captures effectively the commu-
nication delay of a geographically distributed infras-
tructure using the latencies δi,j and δj .

Together with the objective function, we have a set
of constraints. Equation 1.2 defines the incoming load
λj on each fog node j. Constraint 1.3 means that for
every sensor i, we direct its output to one and only one
fog node. Constraint 1.4 guarantees that, for every fog
node j, we avoid a congestion situation, where the
incoming load λj exceeds the processing capability
µj of that node. Finally, constraint 1.5 defines the
boolean nature of the decision variables xi,j .

3 HEURISTIC ALGORITHM

The previously defined optimization problem is a gen-
eral definition for mapping sensors over fog nodes.
The actual solution of this problem can be carried
out using commercial solvers, such as CPLEX or K-
NITRO, already applied in similar problems (Canali
and Lancellotti, 2017), or can be addressed using a
specific heuristic.

We consider interesting in this scenario to intro-
duce a solution method based on the Genetic Algo-
rithms (GAs) heuristic and to compare this approach
with commercial solvers to validate its viability. In
GAs we operate on a population of individuals, where
each individual represents a possible solution of the
problem. The solution is encoded in a chromosome
that defines the individual and the chromosome is
composed by a fixed number genes that represent
the single parameters characterizing a solution of the
problem.

A population of individuals is typically initialized
randomly. A fitness function, that describes the objec-
tive function of the optimization problem is applied to
each individual. The evolution of population through
a set of generations aims at improving the fitness of
the population using the following main operators:

Mutation is a modification of a single or a group of
genes in a chromosome describing the individual
of the population. Figure 2 presents an example of
such operator where the ith gene of the rightmost
individual in the Kth generation undergoes a mu-
tation. The main parameter of this operator is the
probability of selecting an individual to perform

a mutation on one of its genes. In the sensitivity
analysis in Section 4.3, we will refer to this prob-
ability as Pmut.

Crossover is a merge of two individuals by exchang-
ing part of their chromosomes. Figure 2, again,
provides an example of this operator applied to the
two individuals composing the population at the
Kth generation. In particular, in Figure 2 the child
individual is characterized by a chromosome con-
taining the genes from c0 to ci−1 from the right-
most parent and the genes from ci to cS from the
leftmost parent. The main parameter of this oper-
ator concerns the selection of the parents. In the
sensitivity analysis in Section 4.3, we will refer
to the probability of selecting an individual for a
crossover operation as Pcross.

Selection concerns the criteria used to decide if an
individual is passed from the Kth generation to
the next. The typical approach in this case is to
apply the fitness function to every individual (in-
cluding new individuals generated through muta-
tion and crossover) and to consider a probability
of being selected for the next generation that is
proportional to the fitness value. The selection
mechanism ensures that the population size re-
mains stable over the generations.
When applying a GAs approach to the problem of

mapping sensors over the fog nodes of a distributed
architecture, we must encode a solution as a gene. In
particular, we aim to formalize the relationship be-
tween the model in Section 2.2 and the GA chromo-
some encoding. Hence, we define a chromosome as a
set of S genes, where S = |S| is the number of sen-
sors. Each gene is an integer number from 1 to F ,
where F = |F| is the number of fog nodes in our in-
frastructure. The generic ith gene in a chromosome
ci can be defined as: ci = {j : xi,j = 1}. Due
to constraint 1.3 in the optimization model, we know
that only one fog node will receive data from sensor
i, so we have a unique mapping between a solution of
the problem expressed using the decision variable xi,j
and the GA-based representation of a solution. As we
can map each chromosome into a solution of the orig-
inal optimization problem, we can use the objective
function 1.1 as the basis for fitness function of our
problem. Constraints 1.3 and 1.5 are automatically
satisfied by our encoding of the chromosomes. The
only constraint we have to explicitly take into account
is constraint 1.4 about the fog node overload. As em-
bedding the notion of unacceptable solution in a ge-
netic algorithm may hinder the ability of the heuristic
to converge towards a solution, we prefer to insert this
information into the fitness function, in such a way
that the individual providing a solution where one or

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

84

Figure 2: Examples of genetic algorithms operators.

more fog nodes are overloaded is characterized by a
high penalty and is unlikely to enter in the subsequent
generation.

Multiple optimization algorithms have been con-
sidered before adopting the choice of a genetic algo-
rithm. On one hand, greedy heuristics tend to provide
performance that heavily depends on the inherent na-
ture of the problem. For example, the non-linear ob-
jective function may hinder the application of some
greedy approaches, while the number of sensors that
may be supported by each fog node may have signifi-
cant impact on the performance of branch and bound
heuristics. As we aim at providing a general and flex-
ible approach to tackle this problem, we prefer to fo-
cus on meta-heuristics that are supposed to be better
adaptable to a wider set of problem instances (Binitha
et al., 2012). Among these solution, we focus on evo-
lutionary programming in general and on genetic al-
gorithms in particular as this glass of heuristics has
been proven a viable option in similar problems such
as the problem of allocating VMs on a cloud infras-
tructure (Yusoh and Tang, 2010).

4 EXPERIMENTAL RESULTS

4.1 Experimental Testbed

We tested the viability of our approach focusing on a
typical Fog scenario consisting of three components
that are: (1) a large number of sensors; (2) a set of fog
nodes, that we assume to be processing nodes with
limited computational power, responsible for data fil-
tering and aggregation; (3) a cloud data center that is
the final destination of the pre-processed sensor data.
Our testbed is based on a smart city scenario. To guar-

antee a realistic experimental testbed, we modeled the
scenario based on the small city of Modena in Italy,
which has roughly 180.000 inhabitants.

 44.54

 44.56

 44.58

 44.6

 44.62

 44.64

 44.66

 44.68

 44.7

 10.8 10.85 10.9 10.95 11 11.05

La
tit

ud
e

Longitude

Sensors
Fog nodes

Cloud datacenter

Figure 3: Smart city scenario.

Figure 3 provides a map of the sensors, fog nodes
and cloud data center considered for the smart city
scenario. We assume that our system supports an ap-
plication for traffic monitoring, with wireless sensors
placed on the main streets of the city and collecting
data about: the number of cars passing on the street,
their speed and other traffic related measures (an ex-
ample of this application can be found in the Trafair
Project (Trafair Project Staff, 2019)). To build the
map of sensors, we collected a list of the main streets
in the city and we geo-referenced them. We assume
that in each main street we have at least a sensor pro-
ducing data. We selected a group of 5 buildings host-
ing the offices of the municipality and we use them
as the location of the fog nodes – this assumption
is consistent with the current trend of interconnect-
ing the main public building of each city with high
bandwidth links. Our final scenario is composed of

A Fog Computing Service Placement for Smart Cities based on Genetic Algorithms

85

90 sensors and 5 nodes. The euclidean distance be-
tween the nodes is used to model the communication
latency and the delay is in the order of tens of mil-
liseconds (that is a common value for geographic net-
works). Finally, there is only one cloud data center
placed in the actual location of the municipality data
center.

For the data processing model, we consider a pre-
liminary smart city setup, where we have sensors col-
lecting a large set of samples concerning vehicular
traffic and environmental quality indicators. As the
data should support a real-time monitoring of the city,
we assume to have at least a set of samples available
every second. Hence, in our simulation, we consider
that λi = 1,∀i ∈ S. For the fog nodes processing
capability, we assume that the node have a compu-
tational power orders of magnitude higher than the
sensors; hence, considering the limited complexity of
most filtering and aggregating tasks, we assume that
each node can process up to 100 sensor feeds concur-
rently without risking overload (µj = 100,∀j ∈ F).

For the solution of the optimization problem, we
first implemented the model using the AMPL lan-
guage (AMPL, 2018) and we use the commercial
solver CPLEX. The obtained solution is then used as a
comparison for our heuristic implementation. Specif-
ically, the AMPL definition is directly based on the
optimization problem discussed in Section 2. The ge-
netic algorithm is implemented using the Distributed
Evolutionary Algorithms in Python (DEAP) frame-
work (DEAP, 2018) based on the details provided in
Section 3.

In the evaluation of the genetic algorithm ap-
proach, we run the experiments 10 times and we av-
erage the main metrics. In particular, for each run of
the genetic algorithm, we consider the best achieved
solution at each generation. The algorithm maintains
a population of 100 individuals and we force a stop
of the algorithm after 300 generations. When evaluat-
ing the convergence speed of the algorithm, we define
as the optimality-reached criteria the fact that the best
individual in the population has a fitness value within
1% of the optimum value obtained using the AMPL
solver.

4.2 Genetic Algorithm Performance

The first analysis in our experiment aims at demon-
strating that the genetic algorithms can reach an opti-
mal solution even in presence of a complex problem
with integer programming and a non-linear objective
function.

Figure 4 shows, for a run of the genetic algorithm,
the fitness value (corresponding to the objective func-

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 50 100 150 200 250 300

O
bj

ec
tiv

e
fu

nc
tio

n

Generations

Genetic algorithm
Optimum

Figure 4: Genetic algorithm performance.

tion) of the best individual within the population as a
function of the generation number. The optimal value
obtained using the AMPL-based problem definition
and the CPLEX solver is shown as the horizontal thick
dashed line in the lower part of the graph. We observe
that, for the genetic algorithm, convergence is very
fast, with the objective function almost reaching the
optimal value in little more than 50 generations. This
result is quite interesting because it means that the ge-
netic algorithm is able to explore the solution space in
a small amount of time, reaching the proximity of the
optimum (even if the actual optimum value may re-
quire more generation to be found). Comparing the
execution time, the time for the genetic algorithm to
reach a value within 1% of the optimum is roughly
one order of magnitude lower compared to the com-
plete run of the AMPL-based solution.

4.3 Sensitivity Analysis

Our first experiment showed that the genetic algo-
rithm is able to reach an optimal solution rapidly.
However, we also consider important to evaluate if
this behavior occurs just for a properly tuned algo-
rithm or if the property of fast convergence is main-
tained. To this aim, we carry out a sensitivity analy-
sis with respect to several parameters of the algorithm
and we present the most interesting findings.

The first analysis concerns the probability of se-
lecting an individual for a crossover operation Pcross.
Figure 5 shows the number of generations required
to converge (that is obtaining a value within 1% of
the optimum) and best value of the objective function
(that is used as the fitness score in our analysis) as a
function of Pcross that ranges from 0.1% to 20%.

We observe that the time to converge shows a non-
negligible dependence from this value: the genera-
tions needed to converge start close to the threshold
value of 300 and gradually descend as the we ap-
proach a value of 1%. After this point, the conver-

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

86

 0

 50

 100

 150

 200

 250

 300

 0.1 1 10
 2000

 2100

 2200

 2300

 2400

 2500

G
en

er
at

io
ns

O
bj

ec
tiv

e
fu

nc
tio

n

Probability [%]

Convergence speed
Best fitness

Figure 5: Sensitivity to crossover probability.

gence speed remains stable. If we analyze this behav-
ior, we find that the low crossover probability has a
detrimental effect on the time to explore the space of
solutions because a low value in this probability hin-
ders the possibility of a good solution to replicate its
genes in the population. For very high crossover prob-
abilities, the effect is not so interesting, because the
good performing genes becomes rapidly widespread
and crossing similar solutions provides a limited per-
formance gain. On the other hand, the best value of
the objective function remains quite stable with re-
spect of this parameter (as expected) because in every
case we reach convergence, hence, for every proba-
bility value we are still within 1% of the optimum.

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1 1.2
 2000

 2100

 2200

 2300

 2400

 2500

G
en

er
at

io
ns

O
bj

ec
tiv

e
fu

nc
tio

n

Probability [%]

Convergence speed
Best fitness

Figure 6: Sensitivity to mutation probability.

The second significant analysis carried out con-
cerns the impact of the mutation probability Pmut.
Figure 6 shows the convergence speed and the ob-
jective function corresponding to the best fitness as
a function of the mutation probability. Once again
the most significant metric to observe is the number
of generation needed to reach a value within 1% of
the optimum (that measures the convergence speed).
In this case we observe that both very low values
(Pmut ≤ 0.1%) and high values (Pmut ≥ 1%) result
in the algorithm failing to converge within the thresh-

old of 300 generations. In general, we observe a clear
V-shaped curve with a point of fast convergence for a
probability close to 0.8%. To understand this behav-
ior, we must consider the two-fold effect of mutations.
On one hand, a low mutation probability hinders the
ability to explore the solutions pace, simply because
solution not present in the initial randomly-generated
population may be reached only through mutation.
On the other hand, a mutation in an already good solu-
tion may simply reduce the ability of the algorithm to
converge, because the population keeps changing too
rapidly. If we observe the objective function values
as a function of the mutation probability, we observe
that, when convergence is reached, the achieved fit-
ness is quite stable; on the other hand, when no con-
vergence occurs, the output of the genetic algorithm
may provide a solution significantly worse compared
to the potential optimal solution.

5 RELATED WORK

The explosive growth in the generation of data and the
need for their processing to provide innovative ser-
vices and applications has recently led researchers to
focus on fog computing solutions to complement the
cloud systems capabilities. To always exchange local-
ized data from and to the remote cloud, indeed, tends
to be inefficient under different points of view, thus
motivating fog computing to partially process work-
load and data locally on fog nodes (Deng et al., 2016;
Tang et al., 2015; Yi et al., 2015; Wen et al., 2017).

A survey discussing representative application
scenarios and identifying various issues related to de-
sign and implementation of fog computing systems
can be found in (Yi et al., 2015), while the study
in (Wen et al., 2017) provides an overview of the core
issues, challenges, and future research directions in
fog-enabled orchestration for IoT services, focusing
on smart cities as main motivating example of the re-
search. Also our study considers the smart cities as
a meaningful scenario where large amount of sensors
and smart devices produce a huge volume of data on
a geographically distributed area. Specifically, we fo-
cus on the specific issue of distributing the incoming
workload over the fog nodes to minimize communi-
cation latency while avoiding overload.

Some existing studies focus on the issue of al-
locating the processing tasks coming from the fog
nodes to the cloud nodes to optimize performance
and reduce latency. Among these studies, Deng et
al. (Deng et al., 2016) explore the tradeoff between
power consumption and transmission delay in the fog-
cloud computing system, formulating an optimization

A Fog Computing Service Placement for Smart Cities based on Genetic Algorithms

87

of the allocation problem among fog and cloud nodes.
The study in (Yousefpour et al., 2017) explicitly fo-
cuses on the issue of minimizing the service delay
in IoT-fog-cloud application scenarios, proposing a
delay-minimizing policy for fog nodes: in contrast
to other proposals in literature, the proposed policy
employs fog-to-fog communication to reduce the ser-
vice delay by sharing load. It is worth to note that in
both these studies the issue of mapping data sources
on the fog nodes is not taken into account. In (Deng
et al., 2016), indeed, the fog nodes directly commu-
nicate with the mobile users through single-hop wire-
less connections using the off-the-shelf wireless inter-
faces, such as WiFi, Bluetooth, etc., while in (Yousef-
pour et al., 2017), the communication among the IoT
nodes and fog nodes works as follows: a domain of
IoT nodes (in a factory, for instance) communicate
with a domain of fog nodes associated with the spe-
cific domain application(s). On the other hand, our
study focuses on the issue of optimizing the mapping
of the workload coming from data sources over the
fog nodes.

Among the studies focusing on fog computing
applied to the same context of our paper, in (Tang
et al., 2015) a hierarchical 4-layer Fog Comput-
ing architecture is proposed for big data analysis in
smart cities. The layered Fog computing network
exploits the natural characteristic of geo-distribution
in big data generated by massive sensors, perform-
ing latency-sensitive applications and providing quick
control loop to ensure the safety of critical infrastruc-
ture components. In this paper, the mapping between
fog nodes and sensors is fixed: each fog node is con-
nected to and responsible for a local group of sensors
that cover a neighborhood or a small community.

The study in (Cardellini et al., 2016) consid-
ers Data Stream Processing (DSP) applications and,
specifically, the so called operator placement prob-
lem, that is the allocation of DSP operator on fog
nodes with the goal of optimizing the applications
Quality of Service (QoS). The optimal DSP place-
ment is modeled as an Integer Linear Programming
(ILP) problem. In this case the authors made the
assumption that it is possible to split the incoming
data flow for parallel processing, while we consider
generic applications where this assumption may not
be true.

Finally, genetic algorithms (GAs) have been suc-
cessfully applied to the context of cloud computing
in recent literature. The study in (Yusoh and Tang,
2010) exploits GAs to produce a suitable and scalable
solution for the Software as a Service (SaaS) Place-
ment Problem (Yusoh and Tang, 2010), while Karimi
et al. (Karimi et al., 2017) proposes a QoS-aware ser-

vice composition for cloud computing systems based
on GAs.

6 CONCLUSIONS AND FUTURE
WORK

Throughout the present paper, we faced a typical sce-
nario that motivates a fog computing infrastructure:
a smart city where sensors or smart devices dissemi-
nated over a geographic area produce a large amount
of data. We pointed out that a classical cloud sce-
nario, where all the communications converge on a
single cloud data center (or, at most, on few data cen-
ters) becomes unmanageable due to the risk of net-
work congestion. As some applications in a smart
city scenario are clearly latency-sensitive (e.g. appli-
cations related to automated traffic management) or
produce a bulk of data that could create congestion at
the network level (e.g., widespread sensors for envi-
ronmental analysis) the most suitable approach is to
push a level a pre-processing as close as possible to
the sensors to filter and aggregate the data or to per-
form latency-critical tasks.

The presence of fog computing layer, opens the
problem we discussed in our research, that is how to
map the data streams from the sensors over the fog
nodes. We provided a formal model for the problem
of minimizing the overall latency experienced in the
system, considering both data transfer and process-
ing times. Furthermore, we proposed an heuristic al-
gorithm, based on genetic programming to solve the
problem without the need to rely on an external solver.

Our proposed solution is validated using a smart-
city scenario based on a realistic testbed. The exper-
iments demonstrate the viability of the proposed ge-
netic algorithm to solve the problem and provides a
sensitivity analysis with respect to the main parame-
ters of the proposed heuristic.

This paper is just a first step in a research line
on the application of fog computing to smart cities.
We plan to extend the current research taking into ac-
count more complex scenarios that involve dynamic
changes in the workload (for example to capture sen-
sor mobility or to consider adaptive sampling tech-
niques at the sensor level) providing contributions
both at the level of scenario definition and at the level
of algorithm and architecture proposals.

REFERENCES

AMPL (2018). AMPL: Streamlined modeling for real opti-
mization. – https://ampl.com/.

CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science

88

Ardagna, D., Ciavotta, M., Lancellotti, R., and Guerriero,
M. (2018). A hierarchical receding horizon algo-
rithm for qos-driven control of multi-iaas applications.
IEEE Transactions on Cloud Computing, pages 1–1.

Binitha, S., Sathya, S. S., et al. (2012). A survey of bio in-
spired optimization algorithms. International Journal
of Soft Computing and Engineering, 2(2):137–151.

Canali, C. and Lancellotti, R. (2017). Scalable and auto-
matic virtual machines placement based on behavioral
similarities. Computing, 99(6):575–595.

Cardellini, V., Grassi, V., Lo Presti, F., and Nardelli, M.
(2016). Optimal operator placement for distributed
stream processing applications. In Proceedings of the
10th ACM International Conference on Distributed
and Event-based Systems, DEBS ’16, pages 69–80,
New York, NY, USA. ACM.

DEAP (2018). DEAP: Distributed Evolutionary Algorithms
in Pyton. – https://deap.readthedocs.io.

Deng, R., Lu, R., Lai, C., Luan, T. H., and Liang, H. (2016).
Optimal Workload Allocation in Fog-Cloud Comput-
ing Toward Balanced Delay and Power Consumption.
IEEE Internet of Things Journal, 3(6):1171–1181.

Duan, H., Chen, C., Min, G., and Wu, Y. (2017). Energy-
aware scheduling of virtual machines in heteroge-
neous cloud computing systems. Future Generation
Computer Systems, 74:142 – 150.

Karimi, M. B., Isazadeh, A., and Rahmani, A. M. (2017).
Qos-aware service composition in cloud computing
using data mining techniques and genetic algorithm.
J. Supercomput., 73(4):1387–1415.

Liu, J., Li, J., Zhang, L., Dai, F., Zhang, Y., Meng, X., and
Shen, J. (2018). Secure intelligent traffic light control
using fog computing. Future Generation Computer
Systems, 78:817 – 824.

Noshy, M., Ibrahim, A., and Ali, H. (2018). Optimization
of live virtual machine migration in cloud computing:
A survey and future directions. Journal of Network
and Computer Applications, 110:1–10.

Sasaki, K., Suzuki, N., Makido, S., and Nakao, A. (2016).
Vehicle control system coordinated between cloud and
mobile edge computing. In 2016 55th Annual Confer-
ence of the Society of Instrument and Control Engi-
neers of Japan (SICE), pages 1122–1127.

Shojafar, M., Canali, C., and Lancellotti, R. (2017). A
Computation- and Network-Aware Energy Optimiza-
tion Model for Virtual Machines Allocation. In Proc.
of International Conference on Cloud Computing and
Services Science (CLOSER 2017), Porto, Portugal.

Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., and
Yang, Q. (2015). A hierarchical distributed fog com-
puting architecture for big data analysis in smart cities.
In Proceedings of the ASE BigData & SocialInfor-
matics 2015, ASE BD&SI ’15, pages 28:1–28:6, New
York, NY, USA. ACM.

Trafair Project Staff (2019). Forecast of the impact by lo-
cal emissions at an urban micro scale by the combi-
nation of lagrangian modelling and low cost sensing
technology: the trafair project. In Proc. of 19th In-
ternational conference on Harmionisation within At-
mospheric Dispersion Modelling for Regulatory Pur-
poses, Bruges, Belgium.

Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., and Rovat-
sos, M. (2017). Fog orchestration for internet of things
services. IEEE Internet Computing, 21(2):16–24.

Yi, S., Li, C., and Li, Q. (2015). A survey of fog comput-
ing: Concepts, applications and issues. In Proceed-
ings of the 2015 Workshop on Mobile Big Data, Mo-
bidata ’15, pages 37–42, New York, NY, USA. ACM.

Yousefpour, A., Ishigaki, G., and Jue, J. P. (2017). Fog
computing: Towards minimizing delay in the internet
of things. In 2017 IEEE International Conference on
Edge Computing (EDGE), pages 17–24.

Yusoh, Z. I. M. and Tang, M. (2010). A penalty-based
genetic algorithm for the composite saas placement
problem in the cloud. In IEEE Congress on Evolu-
tionary Computation, pages 1–8.

A Fog Computing Service Placement for Smart Cities based on Genetic Algorithms

89

